16 CHAPTER

Fluid Mechanics

Impulse of Jets

- Q.1 The force exerted by a jet of water on a stationary vertical plate in the direction of jet is given by
 - (a) p*av*
- (b) ρ*av*
- (c) pa²v
- (d) pa^2v^2
- Q.2 The force exerted by a jet of water on a moving vertical plate, in the direction of motion of plate is given by
 - (a) pav²
- (b) pav³
- (c) pa(v-u)2
- (d) $\rho a(v u)^3$
- Q.3 When a steady jet strikes on a fixed inclined surface
 - (a) the flow is divided into parts proportional to the angle of inclination of the surface
 - (b) no force is exerted by the jet on the vane
 - (c) the momentum component remains unchanged parallel to the surface
 - (d) None of the above
- Q.4 For maximum efficiency of a series of curved vanes, the speed is
 - (a) equal to the jet speed
 - (b) $\frac{3}{4}$ of the jet speed
 - (c) $\frac{1}{2}$ of the jet speed
 - (d) $\frac{1}{3}$ of the jet speed
- Q.5 The efficiency of jet propulsion with inlet orilices at right angles to the direction of motion of ship is given by
 - (a) $\frac{2u}{V+u}$
- (b) $\frac{2V}{(V+u)^2}$

- $(c) \quad \frac{2Vu}{\left(V+u\right)^2}$
- (d) $\frac{2u(V-u)}{V^3}$
- Q.6 The efficiency of jet propulsion when the inlet orifices face the direction of motion of the ship is given by
 - (a) $\frac{2V}{V+L}$
- (b) $\frac{2u}{V+2u}$
- (c) $\frac{2Vu}{V+u}$
- (d) $\frac{2V}{V+u}$
- Q.7 A two-dimensional jet strikes a fixed twodimensional plane at 45° to the normal to the plane. This causes the jet to split into two streams whose discharges are in the ratio
 - (a) 1.0 (c) 5.83
- (b) 2.41 (d) 1.414
- Q.8 A jet of water issues from a 5 cm diameter nozzle, held vertically upwards, at a velocity of 20 m/sec.

 If air resistance consumes 10% of the initial energy of the jet, then it would reach a height; above the nozzle, of
 - (a) 18.35 m
- (b) 19.14 m
- (c) 19.92 m
- (d) 20.00 m
- Q.9 In case of jet striking on a series of flat plate mounted on the periphery of wheel, the maximum efficiency of the wheel can be
 - (a) 50%
- (b) 67%
- (c) 75%
- (d) 100%
- O.10 In case of semicircular vanes, the theoretical maximum efficiency of the wheel can be
 - (a) 50%
- (b) 67%
- (c) 75%
- (d) 100%

-

Answers Impulse of Jets

- 1. (b) 2. (c) 3. (a)
 - (a) 4.
- 5. (c)
- 7. (c)
- 8. (a)
- 9. (a) 10. (c

Explanations impulse of Jets

1. (b)

Applying the impulse-momentum equation, the force F exerted by the stationary plate on the jet of fluid in direction normal to the plate may be determined as:

$$-F = paV(0 - V)$$

or,
$$F = \rho a V^2$$

4. (c)

Efficiency of wheel,

$$\eta = \frac{\text{Work done per second}}{\text{Kinetic energy of jet per second}}$$

or,
$$\eta = \frac{2u(v-u)(1+\cos\theta)}{v^2}$$

The jet of constant velocity V, striking a given wheel, the efficiency will be maximum when

$$\frac{d\eta}{du} = 0$$

$$= \frac{2u(v - 2u)(1 + \cos \theta)}{v^2} = 0$$

$$v - 2u = 0$$
, or $V = 2u$

$$\eta_{max} = \left(\frac{1 + \cos\theta}{2}\right)$$

7. (c)

$$\frac{Q_p}{Q_1} = \frac{1 - \cos \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos 45^{\circ}}{1 + \cos 45^{\circ}} = 0.1716$$

$$\therefore \frac{Q_1}{Q_2} = \frac{1}{0.716} = 5.83$$

8. (a)

$$h = \frac{0.9v^2}{2a} = \frac{0.9 \times 20^2}{2 \times 9.81} = 18.35$$

10. (0

Maximum efficiency,

$$\eta_{\text{max}} = \left(\frac{1 + \cos \theta}{2}\right)$$

For $\theta=0^\circ$, the curved vanes will become semi-circular and $\eta_{max}=1$ or 100%.