12 CHAPTER

Surveying and Geology

Transition Curve

- Q.1 If L is the length of transition curve and R is the radius of circular curve, then the shift of the curve is directly proportional to
 - (a) Rand 1/L2
- (b) 1/R and L2
- (c) 1/R2 and L
- (d) A? and 1/1.
- Q.2 Consider the following two statements and select the correct answer
 - 1. Shift bisects the transition curve
 - 2. Transition curve bisects the shift
 - (a) only 1 is correct
 - (b) only 2 is correct
 - (c) both 1 and 2 are correct
 - (d) neither 1 nor 2 is correct
- Q.3 If R is the radius of the main curve, 0 the angle of deflection. S is the shift and L is the length of the transition curve, then, total tangent length of the curve, is
 - (a) $(R S) \tan \theta/2 L/2$
 - (b) $(R + S) \tan \theta/2 L/2$
 - (c) $(R + S) \tan \theta/2 + L/2$
 - (d) $(R S) \cos \theta/2 + U/2$
- Q.4 Match List-I (Transition curve) with List-II (Property of setting the curve) and select the correct answer using the codes given below the lists:

List-I

- A. Froude's transition
- 8. Cubic spiral
- C. True or clothoid spiral
- D. Lemniscate curve List-II
- Length of curve measured on the langent but y-coordinate calculated with two terms from equation for ideal transition
- The path actually traced by an automobile turning freely

- Length of curve measured on langent with the first term only taken into account for both x & y coordinates from equation for ideal transition curve
- Length of curve measured on the curve itself with first term from equation for ideal transition curve taken for y-coordinate
- Length of curve measured on the curve with at least two terms adopted for x & y coordinates from equation for ideal transition curve

Codes:

- ABCD
- (a) 2 3 4 1
- (b) 3 4 5 2
- (c) 4 5 1 3
- (4)
- (d) 5 1 2 3
- Q.5 Assertion A: The rate of increase of curvature along the transition curve should be equal to the rate of increase of super elevation
 - Reason R: The length of the transition curve should be fixed in such a manner that full superelevation is achieved at the junction with the circular curve
 - (a) both A and R are true and R is the correct explanation of A
 - (b) both A and R are true but R is not a correct explanation of A
 - (c) A is true but R is false
 - (d) A is false but R is true
- Q.6 In a parabolic vertical curve, the rising grade $g_1 = +0.80\%$ meets the falling grade $g_2 = -0.70\%$. The rate of change of grade is 0.05% per chain. The length of the vertical curve is
 - (a) 30 chains
- (b) 40 chains
- (c) 50 chains
- (d) 60 chains

- Q.7 A transition curve on a railway track is required for a circular curve of 200 m radius, the gauge being 1.5 m and maximum superelevation is restricted to 15 cm. The transition is to be designed for a velocity such that no lateral pressure is imposed on the rails and the rate of gain of radiat acceleration is 30 cm/s². The required length of transition curve will work out to be
 - (a) 460 m
- (b) 46 m
- (c) 4.6 m
- (d) 0.46 m
- Q.8 If R is the radius of the main curve, Δ the angle of deflection, S the shift, and L the length of the transition curve, the total tangent length of the combined curve is given by

(a)
$$(R-S) \tan \frac{\Delta}{2} - \frac{L}{2}$$
 (b) $(R+S) \tan \frac{\Delta}{2} + \frac{L}{2}$

(c)
$$(R+S)\tan{\frac{\Delta}{2}} - \frac{L}{2}$$
 (d) $(R-S)\tan{\frac{\Delta}{2}} + \frac{L}{2}$

- Q.9 Total angle of deflection of a transition curve is given by
 - (a) 'tz
- (b) $\alpha/2$
- (c) $\alpha/3$ where $\alpha = \text{spiral angle}$
 - (d) a/4
- Q.10 The length of the transition curve to be introduced between straight and circular curve of radius 500 m is 90 m. The maximum deflection angle to locate its junction
 - (a) 1° 43' 08"
- (b) 1° 43′ 18″
- (c) 1° 43′ 28″
- (d) 1° 43′ 38″
- Q.11 If the length of the transition curve to be introduced between a straight and a circular curve of radius of 500 m is 90 m, the maximum perpendicular offset for the transition curve is
 - (a) 0.70 m
- (b) 1.70 m
- (c) 2.70 m
- (d) 4.70 m
- Q.12 Perpendicular offset from a tangent to the junction of a transition curve and circular curve is equal to
 - (a) shift
- (b) 2 x shift
- (c) 3 x shift
- (d) 4 × shift
- Q.13 The approximate formula for radial or perpendicular offset from the tangent is

- (a) $\frac{x}{2D}$
- (b) $\frac{x}{2}$
- (c) $\frac{x}{R}$
- (d) $\frac{x^2}{R}$
- Q.14 A lemniscate curve between tangents will be transitional throughout if the polar deflection angle of its apex is
 - (a) $\frac{\Delta}{3}$
- b) $\frac{\Delta}{4}$
- (c) $\frac{a}{2}$
- $d) \frac{\Delta}{6}$
- Q.15 A lemniscate curve will not be transitional throughout, if its deflection angle is
 - (a) 45°
- (b) 60° (d) 120°
- (c) 90°
- Q.16 In a lemniscate curve, the ratio of the angle between the tangent at the end of the polar ray and the straight, and angle between the polar
 - (a) 3/2

ray and straight is

- (b) 3
- (c) 2
- (d) 2/3
- Q.17 If 'a' is the angle between the polar ray and the langent at the point commencement of a leminscate curve, the equation of the curve is
 - (a) k√sina
- (b) k√sin2a (d) k√cos2a
- (c) k√lan2a
- Q.18 An ideal transition curve is
 - (a) cubic parabola
 - bic parabola (b) cubic spiral
 - (c) clothoid spiral
- (d) true spiral
- Q.19 If the rate of gain of radial acceleration is 0.3 m/sec³ and full contrilugal ratio is developed on the curve, the ratio of the length of the transition curve of same radius on road and railway is
 - (a) 2.828
- (b) 3.828
- (c) 1,828 (d) 0.828
- Q.20 Which of the following statements are correct?
 - (i) Bernoulli's leminiscate is ideal transition curve.
 - (ii) Cubic spiral is more mostly used than cubic parabola since the farmer is simple to set out.

- (iii) In equation of cubic spiral, only one approximation is made whereas in the equation of cubic parabola, two approximations are made, which makes cubic spiral superior to cubic parabola.
- (a) (i) and (ii) only
- (b) (ii) and (iii) only
- (c) (ii) only
- (d) (i) only
- ---

Answers Transition Curve

- 1. (b)
- 2. (c)
- 3. (c)
- 4. (b) 5. (a) 6. (a) 7. (b) 8. (b)

- 9. (c) 10. (c)
- 11. (c) 12. (d) 13. (b) 14. (d) 15. (a) 16. (a) 17. (b) 18. (c) 19. (a) 20. (c)

Explanations Transition Curve

(b) 1.

Shift
$$S = \frac{L^2}{24R}$$

$$\therefore \quad S\alpha \frac{1}{R}$$

6.

The length of vertical curve

$$=\frac{g_1-(-g_2)}{c}=\frac{0.8-(-0.7)}{0.05}$$

$$=\frac{1.5}{0.05}=30$$
 chains

8. (b)

 Δ = deflection angle between the tangents.

6 = spiral angle for transition curve

$$V_{R} = \frac{L}{2} + (R + S) \tan \frac{\Delta}{2}$$

10. (a)

Maximum deflection angle

$$= \frac{L^2}{6LR} = \frac{L}{6R}$$

$$= \frac{90}{6 \times 500} \text{ radian} = 0.03 \text{ radian}$$

$$= 1^{\circ} 43' 08''$$

11. (c)

Maximum perpendicular offset

$$=\frac{L^2}{6R}=\frac{(90)^2}{6\times 500}=2.70$$
 m

12. (d)

Shift =
$$\frac{L^2}{24R}$$

Percendicular offset

$$= \frac{L^2}{6R} = 4 \times \text{shift}$$

20. (c)

> Cubical spiral is ideal transition curve and Bernoulli's leminiscate is autogenous curve. Cubic carabola is simple to set out as compared to cubic spiral.