Sample Question Paper <u>CLASS: XII</u> Session: 2021-22 Mathematics (Code-041) Term - 1

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

<u>SECTION – A</u>

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2}\right)\right]$ is equal to:	1
	a) $\frac{1}{2}$ b) $\frac{1}{3}$	
	c) -1 d) 1	
2.	The value of k (k < 0) for which the function f defined as	1
	$\left(\frac{1-\cos kx}{x\sin x}, x\neq 0\right)$	
	$f(x) = \begin{cases} \frac{1}{2} & x = 0 \end{cases}$	
	is continuous at $r = 0$ is:	
	13 continuous at $x = 0.13$.	
	a) ±1 b) -1	
	c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
3.	If A = [a _{ii}] is a square matrix of order 2 such that $a_{ii} = \begin{cases} 1, & when i \neq j \\ 0, & when i \neq j \end{cases}$ then	1
	$12^{2} \text{ in } (0, when i = j)$	
	A- 15.	
	$[1 \ 0]$ $[1 \ 1]$	
	$\begin{bmatrix} c \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} c \\ 0 \end{bmatrix} \begin{bmatrix} c \\ 0 \end{bmatrix}$	
1		1
4.	Value of k, for which A = $\begin{bmatrix} k & 0 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	I
	a) 4 b) -4	

5.	Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing:		1	
	a) $(-\infty, 2) \cup (2, \infty)$	b) $(2, \infty)$		
	C) (−∞, 2)	d) (−∞, 2]U (2, ∞)		
6.	Given that A is a square matrix of	of order 3 and $ A = -4$, then $ a $	dj A is	1
	equal to:			
	a) -4	b) 4		
	c) -16	d) 16		
7.	A relation R in set A = $\{1,2,3\}$ is	defined as $R = \{(1, 1), (1, 2), (2, \dots)\}$	2), (3, 3)}.	1
	Which of the following ordered p	pair in R shall be removed to mak	e it an	
	equivalence relation in A?			
	(1, 1)	b) (1.2)	1	
	$\begin{array}{c c} a & (1, 1) \\ \hline c & (2, 2) \end{array}$	d) (3, 3)		
8.	$\left[\int \frac{2a+b}{a-2b} \right] = \left[\begin{array}{c} 4 & -3 \end{array} \right]$	then value of $a + b - c + 2d$ is:	-	1
	$\begin{bmatrix} 1 & 1 \\ 5c & -d & 4c + 3d \end{bmatrix} \begin{bmatrix} 11 & 24 \end{bmatrix}$			
	a) 8	b) 10]	
	c) 4	d) -8]	
9.	The point at which the normal to	the curve $v = x + \frac{1}{x}$, $x > 0$ is performed	pendicular to	1
	the line $3x - 4y - 7 = 0$ is:	<i>x</i> '		
		-	_	
	a) (2, 5/2)	b) (±2, 5/2)		
10	(-1/2, 5/2) sin (tan ⁻¹ x) where $ x < 1$ is equ	d) (1/2, 5/2)		1
10.				I
	a) $\frac{x}{\sqrt{1-x^2}}$	b) $\frac{1}{\sqrt{2}}$		
	v1-x-	$\sqrt{1-x^2}$		
	C) $\frac{1}{\sqrt{1+r^2}}$	d) $\frac{x}{\sqrt{1+x^2}}$		
	VITA			
11.	Let the relation R in the set $A = \{$	$\{x \in Z : 0 \le x \le 12\}$, given by R =	{(a, b) : a –	1
		le equivalence class containing i	, 15.	
	a) {1, 5, 9}	b) {0, 1, 2, 5}		
	с) <i>ф</i>	d) A		
12.	If $e^x + e^y = e^{x+y}$ then $\frac{dy}{dy}$ is:			1
	dx			
	a) e ^{y - x}	b) e ^{x + y}]	
	c) – e ^{y-x}	d) 2 e ^{x-y}]	
1				

13.	13. Given that matrices A and B are of order 3×n and m×5 respectively, the		1
	order of matrix $C = 5A + 3B$ is:		
	$2 \cdot 3 \times 5$ and $m = n$	b) 3×5	
	a) 3x3 and m = m	d) 5x5	
14.	If y = 5 cos x - 3 sin x, then $\frac{d^2y}{dx^2}$ is	s equal to:	1
	a) - y	b) y	
	c) 25y	d) 9y	
15	<u>г 2 5</u> 1		1
15.	For matrix $A = \begin{bmatrix} 2 & 3 \\ -11 & 7 \end{bmatrix}$, $(adjA)'$	is equal to:	I
	a) $\begin{bmatrix} -2 & -5 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5 \end{bmatrix}$	
		² , l ₁₁ 2J	
	a) [7 11]		
	$\begin{bmatrix} c \\ l \\ -5 \\ 2 \end{bmatrix}$	[11 2]	
16	$r^2 y^2$		1
10.	The points on the curve $\frac{x}{9} + \frac{y}{16} =$	= 1 at which the tangents are parallel to y-	I
	axis are:		
	(0 ± 4)	b) $(+4.0)$	
	$\begin{array}{c} a) & (0, \pm 4) \\ c) & (\pm 3.0) \end{array}$	$\frac{b}{(\pm 4,0)}$	
17.	Given that A = $[a_{ii}]$ is a square r	natrix of order 3×3 and $ A = -7$, then the	1
	value of $\sum_{i=1}^{3} a_{i2}A_{i2}$, where A_{ii} de	enotes the cofactor of element a_{ii} is:	
	a) 7	b) -7	
	c) 0	d) 49	
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		1
	a) $\cos e^{x-1}$	b) $e^{-x} \cos e^x$	
	c) $e^x \sin e^x$	d) $-e^x \tan e^x$	
19.	Based on the given shaded region	on as the feasible region in the graph, at	1
	which point(s) is the objective ful	z = 3x + 9y maximum?	
	Y A A		
	+		
	25		
	²³ D(0,20)		
	(0,10) 5 B(5,5) (6)	0,0)	
	2 5 20 35 50		
	Y' (10,0)	x + 3y = 60	
	x + y = 10		
	a) Point B	b) Point C	
	c) Point D	d) every point on the line	
		segment CD	

ſ	20.	The least value of the function $f(x) = 2\cos x + x$ in the closed interval $[0, \frac{\pi}{2}]$		
		is:	2	
		a) 2	b) $\frac{\pi}{2} + \sqrt{3}$	
		C) $\frac{\pi}{2}$	d) The least value does not	
_			exist.	
		<u>SE</u> In this section, attempt any 16 Each Question	<u>CTION – B</u> questions out of the Questions 21 - 40. is of 1 mark weightage.	
	21.	The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as f	$f(x) = x^3$ is:	1
		a) One-on but not onto	b) Not one-one but onto	
		c) Neither one-one nor onto	d) One-one and onto	
	22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2 y}{dx^2}$	$\frac{1}{2}$ at $\theta = \frac{\pi}{6}$ is:	1
		a) $\frac{-3\sqrt{3}b}{\pi^2}$	b) $\frac{-2\sqrt{3}b}{2}$	
		$\frac{a^2}{-3\sqrt{3}b}$	$\frac{a}{-b}$	
			, 3\\3a ²	
-		w latha air	en events the feasible version far a LDD is	4
	20.	(0, 8) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0) (1, 0) (1, 0) (2, 0) (3, 0) (5, 0) (5	b) $(6, 8)$ d) $(6, 5)$	
	24.	The derivative of sin ⁻¹ $(2x\sqrt{1-x^2})$ a) 2 b) c) $\frac{\pi}{2}$ d)) w.r.t sin ⁻¹ x, $\frac{1}{\sqrt{2}} < x < 1$, is: $\frac{\frac{\pi}{2} - 2}{-2}$	1
F	25.			1
		If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ -4 \\ 2 & -4 \end{bmatrix}$	$\begin{bmatrix} 2 & -4 \\ 2 & -4 \\ -1 & 5 \end{bmatrix}$, then:	
		a) $A^{-1} = B$	b) $A^{-1} = 6B$	
		C) B ⁻ ' = B	d) $B^{-1} = \frac{1}{6}A$	

26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is:	1	
	a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$		
	b) Strictly decreasing in $(-2,3)$		
	c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$		
	d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$		
27.	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is:	1	
	a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$		
	c) $-\frac{x}{2}$ d) $\pi -\frac{x}{2}$		
28.	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is:	1	
	a) 4 b) 8		
	c) 64 d) 16		
29.	The value of <i>b</i> for which the function $f(x) = x + cosx + b$ is strictly	1	
	a) $b < 1$ b) No value of b exists		
	c) $b \le 1$ d) $b \ge 1$		
30.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then:	1	
	a) $(2,4) \in \mathbb{R}$ b) $(3,8) \in \mathbb{R}$ c) $(6,8) \in \mathbb{R}$ d) $(8,7) \in \mathbb{R}$		
31.	The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$	1	
	is continuous, is/are: $(-1, x \ge 0)$		
	a) $x \in \mathbb{R}$ b) $x = 0$		
	C) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1		
32.	If A = $\begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k, a and b respectively	1	
	are:		

	a) -6, -12, -18	b) -6, -4, -9	
	c) -6, 4, 9	d) -6, 12, 18	
33.	A linear programming problem is as fo	llows:	1
	$Minimize \ Z = 30x + 50y$		
	subject to the constraints,		
	$3x + 5y \ge 15$		
	$2x + 3y \le 18$		
	$x \ge 0, y \ge 0$		
	In the feasible region, the minimum va	lue of Z occurs at	
	a) a unique point b)	no point	
	c) infinitely many points d)	two points only	
34	The area of a trapezium is defined by	function f and given by $f(x) = (10 \pm$	1
54.	The area of a trapezium is defined by $\sqrt{100 - w^2}$ then the area when it is	$\frac{10}{10} + \frac{10}{10} + 10$	1
	x) $\sqrt{100 - x^2}$, then the area when it is i	naximised is:	
	a) $75cm^2$	b) $7\sqrt{2}cm^2$	
	$rac{1}{2}$	d) $5cm^2$	
	C) 7573Cm ²	u) 30m	
35.	If A is square matrix such that $A^2 = A$,	then $(I + A)^3 - 7 A$ is equal to:	1
	a) A	b) I + A	
	<u> </u>	d) I	
36.	If $\tan^{-1} x = y$, then:		1
	(2) - 1 < y < 1	b) $-\pi$ π	
	a) $-1 < y < 1$	$b) \frac{1}{2} \leq y \leq \frac{1}{2}$	
	π π π	$e^{-\pi}\pi_{2}$	
	c) $\frac{1}{2} < y < \frac{1}{2}$	d) $y \in \{\frac{1}{2}, \frac{1}{2}\}$	
37.	Let A = {1, 2, 3}. B = {4, 5, 6, 7} and le	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
••••	from A to B. Based on the given inform	nation, f is best defined as:	
	0		
	a) Surjective function	b) Injective function	
	c) Bijective function	d) function	
38.	For A = $\begin{bmatrix} 3 & 1 \\ -2 & -2 \end{bmatrix}$, then 14A ⁻¹ is given b	y:	1
	L-1 2J ² C		
	× [2 −1]		
	a) $[14[_{1}]_{1}$	b) [2 6]	
	r2 11	r 0 11	
	c) $2\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix}$	d) $2\begin{vmatrix} -3 & -1 \\ 1 & 2 \end{vmatrix}$	
39.	The point(s) on the curve $y = x^3 - 11x$	+ 5 at which the tangent is $y = x - 11$	1
	is/are:		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(2, -9)	
40	$(1 C) (\pm 2, 19)$ 0) (-2, 19) and (2, -9)	4
40.	Given that A = $\begin{vmatrix} \alpha & \rho \\ \gamma & -\alpha \end{vmatrix}$ and A ² = 3I, the	en:	
	<u></u> [γ μ]		

	a) $1 + \alpha^2 + \beta \gamma = 0$ b) 1 c) $3 - \alpha^2 - \beta \gamma = 0$ d) 3	$\frac{-\alpha^2 - \beta\gamma = 0}{+\alpha^2 + \beta\gamma = 0}$
	<u>SECTION – C</u> In this section, attempt any 8 Each question is of 1-mark Questions 46-50 are based on a	questions. weightage. a Case-Study.
41.	For an objective function $Z = ax + by$, where a, b the feasible region determined by a set of constr (0, 20), (10, 10), (30, 30) and (0, 40). The condit maximum Z occurs at both the points (30, 30) ar a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 2$	p > 0; the corner points of 1 raints (linear inequalities) are ion on <i>a</i> and <i>b</i> such that the hd (0, 40) is:
42.	For which value of m is the line $y = mx + 1$ a tana) $\frac{1}{2}$ b) 1c) 2d) 3	gent to the curve y ² = 4x? 1
43.	The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$, $0 \le x \le \frac{1}{2}$ (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) $\sqrt[3]{\frac{1}{3}}$	1 is: 1
44.	In a linear programming problem, the constraints and y are $x - 3y \ge 0, y \ge 0, 0 \le x \le 3$. The feas a) is not in the first quadrant b) is bound quadrant c) is unbounded in the first quadrant	s on the decision variables x 1 ible region led in the first t exist
45.	Let $A = \begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{bmatrix}$, where $0 \le \alpha \le 2$ (a) $ A =0$ (b) $ A $ (c) $ A \in (2,4)$ (d) $ A $	π, then: ε(2,∞) ε[2,4]
	CASE STU The fuel cost p to the square the fuel costs and the fixed of 1200 per hour Assume the speed of the train as v km/h.	DY per hour for running a train is proportional of the speed it generates in km per hour. If ₹ 48 per hour at speed 16 km per hour charges to run the train amount to ₹

	Based on the given information, a	answe	r the following questions.		
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:		1		
	$ \begin{array}{c c} a) & \frac{16}{3} \\ c) & 3 \end{array} $		b) $\frac{1}{3}$ d) $\frac{3}{16}$		
47.	If the train has travelled a distand the train is given by function:	ce of 5	00km, then the total cost	of running	1
	a) $\frac{15}{16}v + \frac{600000}{v}$		b) $\frac{375}{4}v + \frac{600000}{v}$		
	c) $\frac{5}{16}v^2 + \frac{150000}{v}$		d) $\frac{3}{16}v + \frac{6000}{v}$		
48.	The most economical speed to ru	un the	train is:		1
	a) 18km/h c) 80km/h	b) d)	5km/h 40km/h	-	
49.	The fuel cost for the train to trave	el 500k	m at the most economica	I speed is:	1
	a) ₹ 3750 c) ₹ 7500	b)	₹ 750 ₹ 75000]	
50.	The total cost of the train to trave	el 500k	m at the most economica	I speed is:	1
	a) ₹ 3750 c) ₹ 7500	b) d)	₹ 75000 ₹ 15000		

Marking Scheme

Mathematics (Term-I)

Class-XII (Code-041)

Q.N.	Correct Option	Hints / Solutions
1	d	$\sin\left(\frac{\pi}{2}-\left(\frac{-\pi}{2}\right)\right) - \sin\left(\frac{\pi}{2}\right) - 1$
		$\operatorname{Str}\left(\frac{1}{3} - \left(\frac{1}{6}\right)\right) = \operatorname{Str}\left(\frac{1}{2}\right) = 1$
2	b	$\lim_{x \to 0} \left(\frac{1 - \cos kx}{x \sin x} \right) = \frac{1}{2}$
		$\lim_{k \to \infty} \left(\frac{2\sin^2 \frac{kx}{2}}{2} \right) = 1$
		$ \xrightarrow{\rightarrow} x \rightarrow o \left(\frac{1}{x \sin x} \right) = \frac{1}{2} $
		$\Rightarrow \lim_{x \to 0} 2\left(\frac{k}{2}\right)^2 \left(\frac{\sin\frac{kx}{2}}{\frac{kx}{2}}\right)^2 \left(\frac{x}{\sin x}\right) = \frac{1}{2}$
		$\Rightarrow k^2 = 1 \Rightarrow k = \pm 1 \text{ but } k < 0 \Rightarrow k = -1$
3	d	$A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
4	С	As A is singular matrix $1 + 1 = 0$
		$\Rightarrow A = 0$ $\Rightarrow 2k^2 - 32 = 0 \Rightarrow k = \pm 4$
5	b	$f(x) = x^2 - 4x + 6$
		f'(x) = 2x - 4
		$let f'(x) = 0 \Rightarrow x = 2$
		\leftarrow \rightarrow
		as $f'(r) > 0 \forall r \in (2 \infty)$
		$\Rightarrow f(x)$ is Strictly increasing in $(2,\infty)$
6	d	as $ adj A = A ^{n-1}$, where <i>n</i> is order of matrix <i>A</i>
		$=(-4)^2 = 16$
/ 8	D 2	(1,2) 2a + b = 4 $a = 1$
	a	$ \begin{vmatrix} 2a + b - 1 \\ a - 2b = -3 \end{vmatrix} $ $ a = 1 $ $ b = 2 $
		$5c - d = 11$ $\Rightarrow c = 3$
		$4c + 3d = 24^{j} \qquad d = 4$
	_	$\therefore a + b - c + 2d = 8$
9	а	$f(x) = x + \frac{1}{x}, x > 0 \Rightarrow f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}, x > 0$
		As normal to $f(x)$ is \bot to given line
		$\Rightarrow \left(\frac{x^2}{1-x^2}\right) \times \frac{3}{4} = -1 (m_1 \cdot m_2 = -1)$
		$\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
		But $x > 0, \therefore x = 2$
		Therefore point= $\left(2, \frac{5}{2}\right)$
10	d	$\sin(\tan^{-1} x) = \sin\left(\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)\right) = \frac{x}{\sqrt{1+x^2}}$
11	а	{1,5,9}
12	C	$e^{x} + e^{y} = e^{x+y}$
		$\Rightarrow e^{-y} + e^{-x} = 1$ Differentiating w.r.t. x:

		$\Rightarrow -e^{-y}\frac{dy}{dx} - e^{-x} = 0 \Rightarrow \frac{dy}{dx} = -e^{y-x}$
13	b	3 × 5
14	а	$y = 5\cos x - 3\sin x \Rightarrow \frac{dy}{dx} = -5\sin x - 3\cos x$
		$\Rightarrow \frac{d^2 y}{dx^2} = -5\cos x + 3\sin x = -y$
15	С	$\operatorname{adj} A = \begin{bmatrix} 7 & -5\\ 11 & 2 \end{bmatrix} \Rightarrow (adjA)' = \begin{bmatrix} 7 & 11\\ 5 & 2 \end{bmatrix}$
16	С	$\frac{x^2}{x^2} + \frac{y^2}{y^2} = 1 \Rightarrow \frac{2x}{x^2} + \frac{2y}{y^2} \frac{dy}{dy} = 0$
		9 16 9 16 dx \Rightarrow slope of normal = $\frac{-dx}{dx} = \frac{9y}{dx}$
		As curve's tangent is parallel to y-axes
		$\Rightarrow \frac{9y}{16x} = 0 \Rightarrow y = 0 \text{ and } x = \pm 3$
		$\therefore points = (\pm 3, 0)$
17	b	A = -7
18	d	$\therefore \sum_{i=1}^{n} a_{i2}A_{i2} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32} = A = -7$
10	u	$y = \log(\cos e^{-1})$ Differentiating wrt x
		$\frac{dy}{dx} = \frac{1}{1} \left(-\sin e^x\right) e^x \text{(chain rule)}$
		$dx = \cos(e^x)$. (c) and (c) an
		$\Rightarrow \frac{dy}{dx} = -e^x \tan e^x$
19	d	Z is maximum 180 at points $C(15, 15)$ and $D(0, 20)$.
20	•	\Rightarrow Z is maximum at every point on the line segment CD
20	L L	$f(x) = 2\cos x + x$, $x \in [0, \frac{1}{2}]$
		f'(x) = -2sinx + 1
		Let $f'(x) = 0 \Rightarrow x = \frac{1}{6} \in [0, \frac{1}{2}]$
		f(0) = 2
		$f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} + \sqrt{3}$
		$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \Rightarrow \text{least value of } f(x) \text{ is } \frac{\pi}{2} \text{ at } x = \frac{\pi}{2}$
		Section-B
21	d	$let f(x_1) = f(x_2) \forall x_1 x_2 \in R let f(x) = x^3 = y \forall y \in R$
		$\Rightarrow x_1^\circ = x_2^\circ \\ \Rightarrow x_2^\circ = x_2^\circ = x_2^\circ \\ \Rightarrow x_2^\circ = x_2^\circ = x_2^\circ $
		$\Rightarrow x_1 - x_2$ $\Rightarrow f$ is one - one every image $y \in R$ has a unique pre image in R
		\Rightarrow) is onto
		: f is one-one and onto
22	а	$x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = \operatorname{atan} \theta \sec \theta$
		$y = b \tan \theta \Rightarrow \frac{dy}{d\theta} = b \sec^2 \theta$
		$\therefore \frac{dy}{dt} = \frac{b}{cosec\theta}$
		ax a $a^{d^2y} = -b \cos ac\theta \cot \theta d\theta = -b \cot^3 \theta$
		$ \rightarrow \frac{dx^2}{dx^2} - \frac{dx^2}{a} \cos(\theta) \cos(\theta) - \frac{dx^2}{dx} - \frac{dx^2}{a^2} \cos^2(\theta) = \frac{d^2x}{dx} - \frac{dx^2}{a} \cos^2(\theta) + \frac{dx^2}{a} + \frac{dx^2}{a} \cos^2(\theta) + \frac{dx^2}{a} + \frac$
		$\therefore \left. \frac{a \ y}{dx^2} \right _{\theta = \frac{\pi}{a}} = \frac{-5\sqrt{5\theta}}{a^2}$
23	С	Z is minimum -24 at (0, 8)
24	a	let $u = \sin^{-1}(2x\sqrt{1-x^2})$

		and $v = \sin^{-1}x$, $\frac{1}{\sqrt{2}} < x < 1 \implies \sin v = x$ (1)
		Using (1), we get :
		$=sin^{-1}(2\sin v \cos v)$
		\Rightarrow u = 2v
		Differentiating with respect to v, we get: $\frac{du}{dv} = 2$
25	d	$AB = 6I \implies B^{-1} = \frac{1}{6}A$
26	b	$f'(x) = 6(x^2 - x - 6) = 6(x - 3)(x + 2)$
		$\xleftarrow[-\infty]{(+)} -2 (-) 3 (+) \infty$
		As $f'(x) < 0 \forall x \in (-2, 3)$
07		$\Rightarrow f(x)$ is strictly decreasing in (-2,3)
21	а	$\left \tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} - \sqrt{1-\cos x}} \right) \right $
		$-tam^{-1}\left(\frac{-\sqrt{2}\cos^{\frac{x}{2}}+\sqrt{2}\sin^{\frac{x}{2}}}{\sqrt{2}}\right) = \pi < x < \frac{3\pi}{2}$
		$= \iota u n \left(\frac{1}{-\sqrt{2}\cos(-\sqrt{2}\sin\frac{x}{2})} \right) , n < x < \frac{1}{2}$
		$= tan^{-1} \left(\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\frac{x}{2} + \frac{x}{2} + \frac{x}{2}} \right)$
		$-\frac{\pi}{2} - \frac{x}{2}$
20		$-\frac{1}{4}-\frac{1}{2}$
20	C	$A^2 = ZA$ $\rightarrow A^2 = 2 A $
		$\Rightarrow A = 2A $ $\Rightarrow A ^2 - 2^3 A $ as $ kA - k^n A $ for a matrix of order n
		$\Rightarrow \text{ either } A = 0 \text{ or } A = 8$
		But A is non-singular matrix
		$: A = 8^2 = 64$
29	b	$f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \forall x \in R$
		\Rightarrow no value of b exists
30	С	a = b - 2 and $b > 6\rightarrow (6, 9) \in P$
31	а	$\frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$
0.	ŭ	$f(x) = \begin{cases} -x & -x & -x \\ -x & -x & -x \\ -x & -x &$
		$(-1, x \ge 0)$ $\Rightarrow f(x) = -1 \forall x \in \mathbb{R}$
		$\Rightarrow f(x) = 1 \forall x \in \mathbb{R}$ $\Rightarrow f(x)$ is continuous $\forall x \in \mathbb{R}$ as it is a constant function
32	b	$ k_{A} = \begin{bmatrix} 0 & 2k \end{bmatrix} = \begin{bmatrix} 0 & 3a \end{bmatrix} $
		$\begin{bmatrix} kA \\ 3k \\ -4k \end{bmatrix} = \begin{bmatrix} 2b \\ 24 \end{bmatrix}$
		$\Rightarrow k = -6, a = -4 \text{ and } b = -9$
33	a	Corner points of feasible region $Z = 30x + 50y$
		(5,0) 150 (0,0) 270
		(0,3) 150
		(0,6) 300
		Minimum value of Zoccurs at two points
34	С	$f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{2}}$
		$\int \sqrt{100-x^2}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5$. But $x > 0 \Rightarrow x = 5$
		$\int (x) = \frac{2x^3 - 300x - 1000}{5} + \frac{6}{5} = \frac{-30}{5} = 0$
		$\int (x) - \frac{3}{(100-x)^2} \to \int (3) = \frac{3}{\sqrt{75}} < 0$
		\Rightarrow Maximum area of trapezium is $75\sqrt{3}$ cm ² when x = 5
35	d	$(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$
36	С	$\left \frac{-\pi}{2} < y < \frac{\pi}{2}\right $

37	b	As every per-image $x \in A$ has a unique image $y \in B$
		\Rightarrow <i>f</i> is injective function
38	b	$ A = 7, adjA = \begin{bmatrix} 2 & -2 \\ 1 & -2 \end{bmatrix}$
		$\begin{bmatrix} 1 & 3 \end{bmatrix}$
		$\therefore 14A^{-1} = \begin{bmatrix} 2 & - \\ 2 & 6 \end{bmatrix}$
39	b	$y = x^3 - 11x + 5 \Rightarrow \frac{dy}{dx} = 3x^2 - 11$
		Slope of line $y = x - 11$ is $1 \Rightarrow 3x^2 - 11 = 1 \Rightarrow x = +2$
		\therefore point is (2, -9) as (-2, 19) does not satisfy given line
40	С	$A^2 = 3I$
		$\Rightarrow \begin{bmatrix} \alpha^2 + \beta r & 0\\ 0 & \beta r + \alpha^2 \end{bmatrix} = \begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix} \Rightarrow 3 - \alpha^2 - \beta r = 0$
		Section C
41	а	As Z is maximum at (30, 30) and (0, 40)
		$\Rightarrow 30a + 30b = 40b \Rightarrow b - 3a = 0$
42	b	$y = mx + 1 \dots (1)$ and $y^2 = 4x \dots (2)$
		Substituting (1) in (2): $(mx + 1)^2 = 4x$
		$\Rightarrow m^2 x^2 + (2m - 4)x + 1 = 0 \dots (3)$
		As line is tangent to the curve \rightarrow line touches the curve at only one point
		\Rightarrow line touches the curve at only one point $\Rightarrow (2m - 4)^2 - 4m^2 = 0 \Rightarrow m = 1$
43	С	$\int (2m + 1)^{-1} m = 0^{-1} m = 1$
	-	Let $f(x) = [x(x-1) + 1]^3$, $0 \le x \le 1$
		$f'(x) = \frac{2x^2 - 1}{2(x^2 - x + 1)^2}$ let $f'(x) = 0 \Rightarrow x = \frac{1}{2} \in [0, 1]$
		$3(x - x + 1)^{3}$
		$f(o) = 1, f\left(\frac{1}{2}\right) = \left(\frac{3}{4}\right)^3$ and $f(1) = 1$
		: Maximum value of $f(x)$ is 1
44	b	Feasible region is bounded in the first quadrant
45	d	$ A = 2 + 2sin^2\theta$
		As $-1 \le \sin\theta \le 1$, $\forall \ 0 \le \theta \le 2\pi$
46	4	$\Rightarrow 2 \le 2 + 2\sin^2\theta \le 4 \Rightarrow A \in [2,4]$
40	u	Fuel cost= $\kappa(speea)^{-1}$
		$\Rightarrow 48 = \text{K} \cdot 16^2 \Rightarrow \text{K} = \frac{1}{16}$
47	b	Total cost of running train (let C) = $\frac{3}{16}v^2t + 1200t$
		Distance covered = 500km \Rightarrow time = $\frac{500}{v}$ hrs
		Total cost of running train 500 km = $\frac{3}{12}v^2(\frac{500}{2}) + 1200(\frac{500}{2})$
		$\Rightarrow C - \frac{375}{16} v + \frac{60000}{16}$
19	-	$\frac{1}{4} = \frac{1}{4} = \frac{1}{2} = \frac{1}$
40		$\frac{1}{dv} = \frac{1}{v^2} + \frac{1}{v^2}$
		Let $\frac{dc}{dv} = 0 \implies v = 80 \text{ km/h}$
49	С	Fuel cost for running 500 km $\frac{375}{4}v = \frac{375}{4} \times 80 = Rs.7500/-$
50	d	Total cost for running 500 km = $\frac{375}{v} + \frac{600000}{c}$
		$= \frac{375 \times 80}{00000} = \frac{600000}{1000} = \frac{1000}{1000}$
		$= \frac{1}{4} + \frac{1}{80} = KS.15000/-$