Chapter 23. Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]

Exercise 23(A)

Solution 1:

(i)
$$\sin 30^{\circ} \cos 30^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}$$

(ii)
$$\tan 30^{\circ} \tan 60^{\circ} = \frac{1}{\sqrt{3}} (\sqrt{3}) = 1$$

(iii)
$$\cos^2 60^0 + \sin^2 30^0 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

(iv)
$$\csc^2 60^\circ - \tan^2 30^\circ = \left(\frac{2}{\sqrt{3}}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{4}{3} - \frac{1}{3} = 1$$

$$(v)\sin^2 30^\circ + \cos^2 30^\circ + \cot^2 45^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + 1^2 = \frac{1}{4} + \frac{3}{4} + 1 = 2$$

(vi)

$$\cos^2 60^\circ + \sec^2 30^\circ + \tan^2 45^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^2 + 1^2$$

$$= \frac{1}{4} + \frac{4}{3} + 1$$

$$= \frac{3 + 16 + 12}{12}$$

$$= \frac{31}{12}$$

$$= 2\frac{7}{12}$$

Solution 2:

(i)
$$\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 + 1^2 + \left(\sqrt{3}\right)^2 = \frac{1}{3} + 1 + 3 = \frac{13}{3} = 4\frac{1}{3}$$

(ii)
$$\frac{\tan 45^{\circ}}{\cos ec30^{\circ}} + \frac{\sec 60^{\circ}}{\cot 45^{\circ}} - \frac{5\sin 90^{\circ}}{2\cos 0^{\circ}} = \frac{1}{2} + \frac{2}{1} - \frac{5}{2} = \frac{1+4-5}{2} = 0$$

$$= 3\left(\frac{1}{2}\right)^2 + 2\left(\sqrt{3}\right)^2 - 5\left(\frac{1}{\sqrt{2}}\right)^2 = \frac{3}{4} + 6 - \frac{5}{2} = \frac{3 + 24 - 10}{4} = 4\frac{1}{4}$$

Solution 3:

(i) LHS=sin 60° cos 30° + cos 60°, sin 30°

$$=\frac{\sqrt{3}}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}\frac{1}{2}=\frac{3}{4}+\frac{1}{4}=1=RHS$$

(ii) LHS=cos 30°. cos 60° - sin 30°. sin 60°

$$=\frac{\sqrt{3}}{2}\frac{1}{2}-\frac{1}{2}\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0$$
 =RHS

(iii) LHS= cosec² 45° - cot² 45°

$$=(\sqrt{2})^2-1^2=2-1=1$$
=RHS

(iv) LHS= cos2 300 - sin2 300

$$= \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{3}{4} - \frac{1}{4} = \frac{1}{2} = \cos 60^0 = \text{RHS}$$

(v) LHS=
$$\left(\frac{\tan 60^{\circ} + 1}{\tan 60^{\circ} - 1}\right)^{2}$$

$$= \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)^2 = \frac{4+2\sqrt{3}}{4-2\sqrt{3}} = \frac{1+\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}}{2}} = \frac{1+\cos 30^0}{1-\cos 30^0} = RHS$$

$$= 3\left(\frac{2}{\sqrt{3}}\right)^2 - 2\left(\sqrt{3}\right)^2 + \left(\sqrt{2}\right)^2 = 4 - 6 + 2 = 0 = RHS$$

Solution 4:

(i)

$$RHS =$$

$$\frac{2\tan 30^{\circ}}{1+\tan^2 30^{\circ}} = \frac{2 \times \frac{1}{\sqrt{3}}}{1+\left(\frac{1}{\sqrt{3}}\right)^2} = \frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}} = \frac{\sqrt{3}}{2}$$

LHS =
$$\sin (2 \times 30^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

RHS,

$$\frac{1 - \tan^2 30^\circ}{1 + \tan^2 30^\circ} = \frac{1 - \frac{1}{3}}{1 + \frac{1}{3}} = \frac{1}{2}$$

LHS,

$$\cos (2 \times 30^\circ) = \cos 60^\circ = \frac{1}{2}$$

$$LHS = RHS$$

(iii)

RHS,

$$\frac{2\tan 30^{\circ}}{1-\tan^2 30^{\circ}} = \frac{2\frac{1}{\sqrt{3}}}{1-\frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}} = \sqrt{3}$$

LHS,

$$\tan (2 \times 30^{\circ}) = \tan 60^{\circ} = \sqrt{3}$$

$$LHS = RHS$$

Solution 5:

Given that AB = BC = x

:
$$AC = \sqrt{AB^2 + BC^2} = \sqrt{x^2 + x^2} = x\sqrt{2}$$

(i)
$$\sin 45^\circ = \frac{AB}{AC} = \frac{x}{x\sqrt{2}} = \frac{1}{\sqrt{2}}$$

(ii)
$$\cos 45^\circ = \frac{BC}{AC} = \frac{x}{x\sqrt{2}} = \frac{1}{\sqrt{2}}$$

(iii)
$$\tan 45^{\circ} = \frac{AB}{BC} = \frac{x}{x} = 1$$

Solution 6:

(i) LHS =
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

RHS = 2 sin 60°cos 60° = 2 ×
$$\frac{\sqrt{3}}{2}$$
 × $\frac{1}{2}$ = $\frac{\sqrt{3}}{2}$
LHS = RHS

(ii) LHS =
$$4(\sin^4 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ)$$

= $4\left[\left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^4\right] - 3\left[\left(\frac{1}{\sqrt{2}}\right)^2 + (1)^4\right]$
= $4\left[\frac{1}{16} + \frac{1}{16}\right] - 3\left[\frac{1}{2} - 1\right] = \frac{4 \times 2}{16} + 3 \times \frac{1}{2} = 2$

$$RHS = 2$$

$$LHS = RHS$$

Solution 7:

(i)

The angle, x is acute and hence we have, 0 < x < 90 degrees We know that

$$\cos^2 x + \sin^2 x = 1$$
⇒ $2\sin^2 x = 1$ [since cos x = sin x]
⇒ $\sin x = \frac{1}{\sqrt{2}}$
⇒ $x = 45^\circ$

(ii)

$$\sec A = \csc A$$

$$\cos A = \sin A$$

$$\cos^2 A = \sin^2 A$$

$$\cos^2 A = 1 - \cos^2 A$$

$$2\cos^2 A = 1$$

$$\cos A = \frac{1}{\sqrt{2}}$$

$$A = 45^0$$

$$\tan \theta = \cot \theta$$

$$\tan \theta = \frac{1}{\tan \theta}$$

$$\tan^2 \theta = 1$$

$$\tan \theta = 1$$

$$\tan \theta = \tan 45^0$$

$$\theta = 45^0$$

(iii)

(iv)

$$\sin x = \cos y = \sin (90^{\circ} - y)$$

If x and y are acute angles,
 $x = 90^{\circ} - y$
 $\Rightarrow x + y = 90^{\circ}$

Hence x and y are complementary angles

Solution 8:

$$\sin x = \cos y = \sin\left(\frac{\pi}{2} - y\right)$$

if x and y are acute angles,

$$X = \frac{\pi}{2} - y$$

$$X + Y = \frac{\pi}{2}$$

$$\therefore \times + y = 45^{\circ}$$
 is false.

(ii)

$$\sec\theta \cdot \cot\theta = \frac{1}{\cos\theta} \frac{\cos\theta}{\sin\theta} = \frac{1}{\sin\theta} = \cos\theta$$

Sec θ . Cot θ = cosec θ is true

(iii)

$$\sin^2 \theta + \cos^2 \theta = \sin^2 \theta + 1 - \sin^2 \theta = 1$$

Solution 9:

- (i) For acute angles, remember what sine means: opposite over hypotenuse. If we increase the angle, then the opposite side gets larger. That means "opposite/hypotenuse" gets larger or increases.
- (ii) For acute angles, remember what cosine means: base over hypotenuse. If we increase the angle, then the hypotenuse side gets larger. That means "base/hypotenuse" gets smaller or decreases.
- (iii) For acute angles, remember what tangent means: opposite over base. If we decrease the angle, then the opposite side gets smaller. That means "opposite /base" gets decreases.

Solution 10:

(i)
$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} = \frac{1.732}{2} = 0.87$$

(ii)
$$\frac{2}{\tan 30^{\circ}} = \frac{2}{\frac{1}{\sqrt{3}}} = 2\sqrt{3} = 2 \times 1.732 = 3.46$$

Solution 11:

(i) Given that A= 150

$$\frac{\cos 3A - 2\cos 4A}{\sin 3A + 2\sin 4A} = \frac{\cos(3 \times 15^{0}) - 2\cos(4 \times 15^{0})}{\sin(3 \times 15^{0}) + 2\sin(4 \times 15^{0})}$$

$$= \frac{\cos 45^{0} - 2\cos 60^{0}}{\sin 45^{0} + 2\sin 60^{0}}$$

$$= \frac{\frac{1}{\sqrt{2}} - 2(\frac{1}{2})}{\frac{1}{\sqrt{2}} + 2(\frac{\sqrt{3}}{2})}$$

$$= \frac{\frac{1}{\sqrt{2}} - 1}{\frac{1}{\sqrt{2}} + \sqrt{3}}$$

$$= \frac{1 - \sqrt{2}}{1 + \sqrt{6}}$$

$$= \frac{1}{5}(\sqrt{6} - 1 - 2\sqrt{3} + \sqrt{2})$$

(ii) Given that B= 200

$$\frac{3\sin 3B + 2\cos(2B + 5^{\circ})}{2\cos 3B - \sin(2B - 10^{\circ})} = \frac{3\sin 3 \times 20^{\circ} + 2\cos(2 \times 20^{\circ} + 5^{\circ})}{2\cos 3 \times 20^{\circ} - \sin(2 \times 20^{\circ} - 10^{\circ})}$$

$$= \frac{3\sin 60^{\circ} + 2\cos 45^{\circ}}{2\cos 60^{\circ} - \sin 30^{\circ}}$$

$$= \frac{3\left(\frac{\sqrt{3}}{2}\right) + 2\left(\frac{1}{\sqrt{2}}\right)}{2\left(\frac{1}{2}\right) - \frac{1}{2}}$$

$$= \frac{3\sqrt{3}}{2} + \sqrt{2}$$

$$= 3\sqrt{3} + 2\sqrt{2}$$

Exercise 23(B)

Solution 1:

Given $A = 60^{\circ}$ and $B = 30^{\circ}$

LHS =
$$\sin(A+B)$$

= $\sin(60^{\circ} + 30^{\circ})$
= $\sin 90^{\circ}$
= 1
RHS = $\sin A \cos B + \cos A \sin B$
= $\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ}$
= $\frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} + \frac{1}{2} \frac{1}{2}$
= $\frac{3}{4} + \frac{1}{4}$
= 1
LHS = RHS

(ii)

LHS =
$$\cos(A+B)$$

= $\cos(60^{\circ} + 30^{\circ})$
= $\cos 90^{\circ}$
= 0

$$RHS = \cos A \cos B - \sin A \sin B$$

$$= \cos 60^{\circ} \cos 30^{\circ} - \sin 60^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \frac{1}{2}$$
$$= \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4}$$
$$= 0$$

$$LHS = RHS$$

LHS =
$$\cos(A - B)$$

= $\cos(60^{\circ} - 30^{\circ})$

$$= \cos 30^{\circ}$$

$$= \frac{\sqrt{3}}{2}$$
RHS = \cos A \cos B + \sin A \sin B
= \cos 60^{\circ} \cos 30^{\circ} + \sin 60^{\circ} \sin 30^{\circ}
= \frac{1}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \frac{1}{2}
= \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}
= \frac{\sqrt{3}}{2}
LHS = RHS

(iv)

LHS =
$$tan(A - B)$$

= $tan(60^{\circ} - 30^{\circ})$
= $tan30^{\circ}$
= $\frac{1}{\sqrt{3}}$
RHS = $\frac{tan A - tan B}{1 + tan A \cdot tan B}$
= $\frac{tan60^{\circ} - tan30^{\circ}}{1 + tan60^{\circ} \cdot tan30^{\circ}}$
= $\frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3}(\frac{1}{\sqrt{3}})}$
= $\frac{2}{2\sqrt{3}}$
= $\frac{1}{\sqrt{3}}$

LHS = RHS

Solution 2:

Given A= 300

(i)

$$\sin 2A = \sin 2(30^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$2\sin A \cos A = 2\sin 30^{\circ} \cos 30^{\circ}$$
$$= 2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$$
$$= \frac{\sqrt{3}}{2}$$

$$\frac{2 \tan A}{1 + \tan^2 A} = \frac{2 \tan 30^0}{1 + \tan^2 30^0}$$

$$= \frac{2\left(\frac{1}{\sqrt{3}}\right)}{1 + \left(\frac{1}{\sqrt{3}}\right)^2}$$

$$= \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}$$

$$= \frac{2}{\sqrt{3}} \times \frac{3}{4}$$

$$= \frac{\sqrt{3}}{2}$$

$$\therefore \sin 2A = 2\sin A \cos A = \frac{2\tan A}{1 + \tan^2 A}$$

(ii)

$$\cos 2A = \cos 2(30^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$$

$$\cos^2 A - \sin^2 A = \cos^2 30^0 - \sin^2 30^0$$

= $\frac{3}{4} - \frac{1}{4}$
= $\frac{1}{2}$

$$\frac{1 - \tan^2 A}{1 + \tan^2 A} = \frac{1 - \tan^2 30^0}{1 + \tan^2 30^0}$$
$$= \frac{1 - \frac{1}{3}}{1 + \frac{1}{3}}$$
$$= \frac{2}{4}$$
$$= \frac{1}{2}$$

:
$$\cos 2A = \cos^2 A - \sin^2 A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$2\cos^2 A - 1 = 2\cos^2 30^0 - 1$$

= $2\left(\frac{3}{4}\right) - 1$
= $\frac{3}{2} - 1$
= $\frac{1}{2}$

$$1 - 2\sin^{2}A = 1 - 2\sin^{2}30^{0}$$
$$= 1 - 2\left(\frac{1}{4}\right)$$
$$= \frac{1}{2}$$

$$1 - 2\sin^{2}A = 1 - 2\sin^{2}30^{0}$$
$$= 1 - 2\left(\frac{1}{4}\right)$$
$$= \frac{1}{2}$$

$$2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\sin 3A = \sin 3(30^{\circ})$$

= $\sin 90^{\circ}$
= 1

$$3 \sin A - 4 \sin^{3}A = 3 \sin 30^{0} - 4 \sin^{3}30^{0}$$
$$= 3\left(\frac{1}{2}\right) - 4\left(\frac{1}{2}\right)^{3}$$
$$= \frac{3}{2} - \frac{1}{2}$$
$$= 1$$

$$\therefore \sin 3A = 3 \sin A - 4 \sin^3 A$$

Solution 3:

Given that A = B = 45°

(i)

LHS =
$$\sin (A - B)$$

= $\sin (45^{\circ} - 45^{\circ})$
= $\sin 0^{\circ}$
= 0
RHS = $\sin A \cos B - \cos A \sin B$
= $\sin 45^{\circ} \cos 45^{\circ} - \cos 45^{\circ} \sin 45^{\circ}$
= $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$
= 0
LHS = RHS

(ii)

LHS = RHS

LHS =
$$\cos (A + B)$$

= $\cos (45^{\circ} + 45^{\circ})$
= $\cos 90^{\circ}$
= 0
RHS = $\cos A \cos B - \sin A \sin B$
= $\cos 45^{\circ} \cos 45^{\circ} - \sin 45^{\circ} \sin 45^{\circ}$
= $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$
= 0

Solution 4:

Given that A = 30°

(i)

LHS =
$$\sin 3 A$$

= $\sin 3(30^{\circ})$
= $\sin 90^{\circ}$
= 1
RHS = $4 \sin A \sin (60^{\circ} - A) \sin (60^{\circ} + A)$
= $4 \sin 30^{\circ} \sin (60^{\circ} - 30^{\circ}) \sin (60^{\circ} + 30^{\circ})$
= $4(\frac{1}{2})(\frac{1}{2})(1)$
= 1
LHS = RHS

(ii)

LHS =
$$(\sin A - \cos A)^2$$

= $(\sin 30^\circ - \cos 30^\circ)^2$
= $(\frac{1}{2} - \frac{\sqrt{3}}{2})^2$
= $\frac{1}{4} + \frac{3}{4} - \frac{\sqrt{3}}{2}$
= $1 - \frac{\sqrt{3}}{2}$
= $\frac{2 - \sqrt{3}}{2}$

$$RHS = 1 - \sin 2A$$

$$= 1 - \sin 2(30^{\circ})$$

$$= 1 - \sin 60^{\circ}$$

$$= 1 - \frac{\sqrt{3}}{2}$$

$$= \frac{2 - \sqrt{3}}{2}$$

$$LHS = RHS$$

(iii)

LHS =
$$\cos 2A$$

= $\cos 2(30^{\circ})$
= $\cos 60^{\circ}$
= $\frac{1}{2}$
RHS = $\cos^{4}A - \sin^{4}A$
= $\cos^{4}30^{\circ} - \sin^{4}30^{\circ}$
= $\left(\frac{\sqrt{3}}{2}\right)^{4} - \left(\frac{1}{2}\right)^{4}$
= $\frac{9}{16} - \frac{1}{16}$

(iv)

LHS = RHS

$$LHS = \frac{1 - \cos 2A}{\sin 2A}$$
$$= \frac{1 - \cos 2(30^{\circ})}{\sin 2(30^{\circ})}$$

$$= \frac{1 - \frac{1}{2}}{\frac{\sqrt{3}}{2}}$$

$$= \frac{1}{\sqrt{3}}$$

$$RHS = \tan A$$

$$= \tan 30^{\circ}$$

$$= \frac{1}{\sqrt{3}}$$

$$LHS = RHS$$

(v)

$$LHS = \frac{1 + \sin 2A + \cos 2A}{\sin A + \cos A}$$

$$= \frac{1 + \sin 2(30^{\circ}) + \cos 2(30^{\circ})}{\sin 30^{\circ} + \cos 30^{\circ}}$$

$$= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}$$

$$= \frac{3 + \sqrt{3}}{\sqrt{3} + 1} \left(\frac{\sqrt{3} - 1}{\sqrt{3} - 1}\right)$$

$$= \frac{3\sqrt{3} - 3 + 3 - \sqrt{3}}{2}$$

$$= \frac{2\sqrt{3}}{2}$$

$$= \sqrt{3}$$

$$RHS = 2 \cos A$$

$$= 2 \cos (30^{\circ})$$

$$= 2\left(\frac{\sqrt{3}}{2}\right)$$

= $\sqrt{3}$

$$LHS = 4 \cos A \cos \left(60^{\circ} - A\right) \cdot \cos \left(60^{\circ} + A\right)$$

$$= 4 \cos 30^{\circ} \cos \left(60^{\circ} - 30^{\circ}\right) \cdot \cos \left(60^{\circ} + 30^{\circ}\right)$$

$$= 4 \cos 30^{\circ} \cos 30^{\circ} \cos 90^{\circ}$$

$$= 4\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)(0)$$

$$= 0$$

$$RHS = \cos 3A$$

$$= \cos 3\left(30^{\circ}\right)$$

$$= \cos 90^{\circ}$$

$$= 0$$

$$LHS = RHS$$
(vii)
$$LHS = \frac{\cos^{3} A - \cos 3A}{\cos A} + \frac{\sin^{3} A + \sin 3A}{\sin A}$$

$$= \frac{\cos^{3} 30^{\circ} - \cos 3\left(30^{\circ}\right)}{\cos 30^{\circ}} + \frac{\sin^{3} 30^{\circ} + \sin 3\left(30^{\circ}\right)}{\sin 30^{\circ}}$$

$$= \frac{\left(\frac{\sqrt{3}}{2}\right)^{3} - 0}{\frac{\sqrt{3}}{2}} + \frac{\left(\frac{1}{2}\right)^{3} + 1}{\frac{1}{2}}$$

$$= \left(\frac{\sqrt{3}}{2}\right)^{2} + \frac{\frac{9}{8}}{\frac{1}{2}}$$

$$= \frac{3}{4} + \frac{9}{4}$$

$$= \frac{12}{4}$$

$$= 3$$

$$= RHS$$

Exercise 23(C)

Solution 1:

(i)

$$2 \sin A = 1$$

$$\sin A = \frac{1}{2}$$

$$\sin A = \sin 30^{0}$$

$$A = 30^{0}$$

(ii)

$$2\cos 2 A = 1$$

$$\cos 2 A = \frac{1}{2}$$

$$\cos 2 A = \cos 60^{\circ}$$

$$2A = 60^{\circ}$$

$$A = 30^{\circ}$$

(iii)

$$\sin 3A = \frac{\sqrt{3}}{2}$$

$$\sin 3A = \sin 60^{\circ}$$

$$3A = 60^{\circ}$$

$$A = 20^{\circ}$$

(iv)

$$\sec 2 A = 2$$

 $\sec 2 A = \sec 60^{\circ}$
 $2A = 60^{\circ}$
 $A = 30^{\circ}$

(V)

$$\sqrt{3}$$
tan A = 1
tan A = $\frac{1}{\sqrt{3}}$
tan A = tan 30°
 $A = 30^{\circ}$

$$\tan 3 A = 1$$

$$\tan 3 A = \tan 45^{\circ}$$

$$3A = 45^{\circ}$$

$$A = 15^{\circ}$$

(vii)

$$2 \sin 3 A = 1$$

$$\sin 3 A = \frac{1}{2}$$

$$\sin 3A = \sin 30^{\circ}$$

$$3A = 30^{\circ}$$

$$A = 10^{\circ}$$

$$\sqrt{3}\cot 2 A = 1$$

$$\cot 2 A = \frac{1}{\sqrt{3}}$$

$$\cot 2 A = \cot 60^{\circ}$$

$$2A = 60^{\circ}$$

$$A = 30^{\circ}$$

Solution 2:

(i)

(
$$\sin A - 1$$
) ($2\cos A - 1$) = 0
($\sin A - 1$) = 0 and $2\cos A - 1 = 0$
 $\sin A = 1$ and $\cos A = \frac{1}{2}$
 $\sin A = \sin 90^{\circ}$ and $\cos A = \cos 60^{\circ}$
 $A = 90^{\circ}$ and $A = 60^{\circ}$

(ii)

(tan A - 1) (cosec 3A - 1) = 0

$$\tan A - 1 = 0$$
 and $\csc 3A - 1 = 0$
 $\tan A = 1$ and $\csc 3A = 1$
 $\tan A = \tan 45^{\circ}$ and $\csc 3A = \csc 90^{\circ}$
 $A = 45^{\circ}$ $A = 30^{\circ}$

(iii)

(sec 2A - 1) (cosec 3A - 1) = 0
sec 2A - 1 = 0 and cosec 3A - 1 = 0
sec 2A = 1 and cosec 3A = 1
sec 2A =
$$\sec 0^0$$
 and $\csc 3A = \csc 90^0$
 $A = 0^0$ $A = 30^0$

(iv)

cos 3A. (2 sin 2A - 1) = 0
cos 3A = 0 and 2 sin 2A - 1 = 0
cos 3A = cos 90° and sin 2A =
$$\frac{1}{2}$$

3A = 90° and sin 2A = sin 30°
A = 30° $2A = 30° \Rightarrow A = 15°$

(v)

(cosec 2A - 2) (cot 3A - 1) = 0

$$cosec 2A - 2 = 0$$
 and $cot 3A - 1 = 0$
 $cosec 2A = 2$ and $cot 3A = 1$
 $cosec 2A = cosec 30^{\circ}$ and $cot 3A = cot 45^{\circ}$
 $2A = 30^{\circ}$ and $3A = 45^{\circ}$
 $A = 15^{\circ}$ and $A = 15^{\circ}$

Solution 3:

(i)

$$2 \sin x^{\circ} - 1 = 0$$
$$\sin x^{\circ} = \frac{1}{2}$$

(ii)

$$\sin x^{\circ} = \frac{1}{2}$$

$$\sin x^{\circ} = \sin 30^{\circ}$$

$$x^{\circ} = 30^{\circ}$$

(iii)

$$\cos x^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

 $\tan x^{\circ} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$

Solution 4:

(i)

$$4 \cos^2 x^\circ - 1 = 0$$

$$4 \cos^2 x^\circ = 1$$

$$\cos^2 x^\circ = \left(\frac{1}{2}\right)^2$$

$$\cos x^\circ = \frac{1}{2}$$

$$\cos x^\circ = \cos 60^\circ$$

$$x^\circ = 60^\circ$$

(ii)

$$\sin^2 x^\circ + \cos^2 x^\circ = \sin^2 60^\circ + \cos^2 60^\circ$$
$$= \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2$$
$$= \frac{3}{4} + \frac{1}{4}$$

$$\frac{1}{\cos^2 x^0} - \tan^2 x^0 = \frac{1}{\cos^2 60^0} - \tan^2 60^0$$
$$= \frac{1}{\left(\frac{1}{2}\right)^2} - \left(\sqrt{3}\right)^2$$
$$= 4 - 3$$
$$= 1$$

Solution 5:

$$4 \sin^2 \theta - 1 = 0$$

$$\sin^2 \theta = \frac{1}{4}$$

$$\sin \theta = \frac{1}{2}$$

$$\sin \theta = \sin 30^0$$

$$\theta = 30^0$$

$$\cos^{2}\theta + \tan^{2}\theta = \cos^{2}30^{0} + \tan^{2}30^{0}$$

$$= \left(\frac{\sqrt{3}}{2}\right)^{2} + \left(\frac{1}{\sqrt{3}}\right)^{2}$$

$$= \frac{3}{4} + \frac{1}{3}$$

$$= \frac{9+4}{12}$$

$$= \frac{13}{12}$$

Solution 6:

$$\sin 3A = 1$$

$$\sin 3A = \sin 90^{\circ}$$

$$A = 30^{\circ}$$

$$\sin A = \sin 30^{0}$$

$$\sin A = \frac{1}{2}$$

(ii)

$$\cos 2A = \cos 2(30^{\circ})$$
$$= \cos 60^{\circ}$$
$$= \frac{1}{2}$$

$$\tan^{2}A - \frac{1}{\cos^{2}A} = \tan^{2}30^{\circ} - \frac{1}{\cos^{2}30^{\circ}}$$

$$= \left(\frac{1}{\sqrt{3}}\right)^{2} - \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}$$

$$= \frac{1}{3} - \frac{4}{3}$$

$$= \frac{-3}{3}$$

Solution 7:

(i)

$$2\cos 2A = \sqrt{3}$$

$$\cos 2A = \frac{\sqrt{3}}{2}$$

$$\cos 2A = \cos 30^{\circ}$$

$$2A = 30^{\circ}$$

$$A = 15^{\circ}$$

(ii)

$$\sin 3A = \sin 3(15^{\circ})$$
$$= \sin 45^{\circ}$$
$$= \frac{1}{\sqrt{2}}$$

$$\sin^{2}(75^{\circ} - A) + \cos^{2}(45^{\circ} + A) = \sin^{2}(75^{\circ} - 15^{\circ}) + \cos^{2}(45^{\circ} + 15^{\circ})$$

$$= \sin^{2}60^{\circ} + \cos^{2}60^{\circ}$$

$$= \left(\frac{\sqrt{3}}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$

$$= \frac{3}{4} + \frac{1}{4}$$

$$= 1$$

Solution 8:

(i)

Given that $x = 30^{\circ}$

$$\sin x + \cos y = 1$$

$$\sin 30^{0} + \cos y = 1$$

$$\cos y = 1 - \sin 30^{0}$$

$$\cos y = 1 - \frac{1}{2}$$

$$\cos y = \frac{1}{2}$$

$$\cos y = \cos 60^{0}$$

$$y = 60^{0}$$

(ii)

Given that B = 90°

$$3 \tan A - 5 \cos B = \sqrt{3}$$

$$3 \tan A - 5 \cos 90^{\circ} = \sqrt{3}$$

$$3 \tan A - 0 = \sqrt{3}$$

$$\tan A = \frac{\sqrt{3}}{3}$$

$$\tan A = \frac{1}{\sqrt{3}}$$

$$\tan A = \tan 30^{\circ}$$

$$A = 30^{\circ}$$

Solution 9:

(i)

$$\cos x^{\circ} = \frac{10}{20}$$

$$\cos x^{\circ} = \frac{1}{2}$$

(ii)

$$\cos x^{\circ} = \frac{1}{2}$$
$$\cos x^{\circ} = \cos 60^{\circ}$$
$$x^{\circ} = 60^{\circ}$$

(iii)

$$\frac{1}{\tan^2 x^0} - \frac{1}{\sin^2 x^0} = \frac{1}{\tan^2 60^0} - \frac{1}{\sin^2 60^0}$$
$$= \frac{1}{\left(\sqrt{3}\right)^2} - \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}$$
$$= \frac{1}{3} - \frac{4}{3}$$
$$= -1$$

(iv)

$$tan \times^{\circ} = tan 60^{\circ}$$
$$= \sqrt{3}$$

We know that $\tan x^\circ = \frac{AB}{BC}$

$$\Rightarrow \tan x^{\circ} = \frac{y}{10}$$

$$\Rightarrow y = 10 \tan x^{\circ}$$

$$\Rightarrow y = 10 \tan 60^{\circ}$$

$$\Rightarrow y = 10\sqrt{3}$$

Solution 10:

(i)

$$\tan \theta^0 = \frac{5}{5} = 1$$

(ii)

$$\tan \theta^0 = 1$$

$$\tan \theta^0 = \tan 45^0$$

$$\theta^0 = 45^0$$

(iii)

$$\sin^2\theta^\circ - \cos^2\theta^0 = \sin^2 45^\circ - \cos^2 45^\circ$$
$$= \left(\frac{1}{\sqrt{2}}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^2$$
$$= 0$$

$$\sin \theta^0 = \frac{5}{x}$$

$$\sin 45^0 = \frac{5}{x}$$

$$X = \frac{5}{\sin 45^{\circ}}$$

$$x = \frac{5}{\frac{1}{\sqrt{2}}}$$
$$x = 5\sqrt{2}$$

$$x = 5\sqrt{2}$$

(i)

$$2 \sin A \cos A - \cos A - 2 \sin A + 1 = 0$$

 $2 \sin A \cos A - \cos A = 2 \sin A - 1$
 $(2 \sin A - 1) \cos A - (2 \sin A - 1) = 0$
 $(2 \sin A - 1) = 0$ and $\cos A = 1$
 $\sin A = \frac{1}{2}$ and $\cos A = \cos 0^{\circ}$
 $A = 30^{\circ}$ and $A = 0^{\circ}$

(ii)

(iii)

$$2\cos^{2}A - 3\cos A + 1 = 0$$

$$2\cos^{2}A - \cos A - 2\cos A + 1 = 0$$

$$\cos A(2\cos A - 1) - (2\cos A - 1) = 0$$

$$(2\cos A - 1)(\cos A - 1) = 0$$

$$2\cos A - 1 = 0 \text{ and } \cos A - 1 = 0$$

$$\cos A = \frac{1}{2} \text{ and } \cos A = 1$$

$$A = 60^{\circ} \text{ and } A = 0^{\circ}$$

2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
2 tan 3A cos 3A - tan 3A = 2 cos 3A - 1

$$tan3A(2cos 3A - 1) = 2 cos 3A - 1$$

(2 cos 3A - 1)(tan 3A - 1) = 0
2 cos 3A - 1 = 0 and $tan 3A - 1 = 0$
 $cos 3A = \frac{1}{2}$ and $tan 3A = 1$
 $cos 3A = 60^{\circ}$ and $cos 3A = 45^{\circ}$
 $cos 3A = 20^{\circ}$ and $cos 3A = 45^{\circ}$
 $cos 3A = 20^{\circ}$ and $cos 3A = 45^{\circ}$

Solution 12:

(i)

$$2\cos 3x - 1 = 0$$

$$\cos 3x = \frac{1}{2}$$

$$3x = 60^{\circ}$$

$$x = 20^{\circ}$$

(ii)

$$\cos \frac{x}{3} - 1 = 0$$

$$\cos \frac{x}{3} = 1$$

$$\frac{x}{3} = 0^{0}$$

$$x = 0^{0}$$

(iii)

$$\sin (x + 10^{\circ}) = \frac{1}{2}$$

 $\sin (x + 10^{\circ}) = \sin 30^{\circ}$
 $x + 10^{\circ} = 30^{\circ}$
 $x = 20^{\circ}$

$$\cos (2x - 30^{\circ}) = 0$$

$$\cos (2x - 30^{\circ}) = \cos 90^{\circ}$$

$$2x - 30^{\circ} = 90^{\circ}$$

$$2x = 120^{\circ}$$

$$x = 60^{\circ}$$

$$2\cos(3x - 15^{\circ}) = 1$$

$$\cos(3x - 15^{\circ}) = \frac{1}{2}$$

$$\cos(3x - 15^{\circ}) = \cos 60^{\circ}$$

$$3x - 15^{\circ} = 60^{\circ}$$

$$3x = 75^{\circ}$$

$$x = 25^{\circ}$$

(vi)

$$\tan^{2}(x - 5^{\circ}) = 3$$

 $\tan(x - 5^{\circ}) = \sqrt{3}$
 $\tan(x - 5^{\circ}) = \tan 60^{\circ}$
 $x - 5^{\circ} = 60^{\circ}$
 $x = 65^{\circ}$

(vii)

$$3 \tan^{2}(2x - 20^{\circ}) = 1$$

$$\tan(2x - 20^{\circ}) = \frac{1}{\sqrt{3}}$$

$$\tan(2x - 20^{\circ}) = \tan 30^{\circ}$$

$$2x - 20^{\circ} = 30^{\circ}$$

$$2x = 50^{\circ}$$

$$x = 25^{\circ}$$

(viii)

$$\cos\left(\frac{x}{2} + 10^{\circ}\right) = \frac{\sqrt{3}}{2}$$
$$\cos\left(\frac{x}{2} + 10^{\circ}\right) = \cos 30^{\circ}$$
$$\frac{x}{2} + 10^{\circ} = 30^{\circ}$$
$$x = 40^{\circ}$$

(ix)

$$\sin^{2}x + \sin^{2}30^{\circ} = 1$$

$$\sin^{2}x = 1 - \sin^{2}30^{\circ}$$

$$\sin^{2}x = 1 - \frac{1}{4}$$

$$\sin^{2}x = \frac{3}{4}$$

$$\sin x = \frac{\sqrt{3}}{2}$$

$$x = 60^{\circ}$$

(x)

$$\cos^2 30^\circ + \cos^2 x = 1$$
$$\cos^2 x = 1 - \cos^2 30^\circ$$
$$\cos^2 x = 1 - \frac{3}{4}$$
$$\cos x = \frac{1}{2}$$
$$x = 60^0$$

(xi)

$$\cos^2 30^\circ + \sin^2 2x = 1$$

$$\sin^2 2x = 1 - \cos^2 30^\circ$$

$$\sin^2 2x = 1 - \frac{3}{4}$$

$$\sin 2x = \frac{1}{2}$$

$$2x = 30^\circ$$

$$x = 15^\circ$$

(xii)

$$\sin^{2}60^{\circ} + \cos^{2}(3x - 9^{\circ}) = 1$$

$$\cos^{2}(3x - 9^{\circ}) = 1 - \sin^{2}60^{\circ}$$

$$\cos^{2}(3x - 9^{\circ}) = 1 - \frac{3}{4}$$

$$\cos^{2}(3x - 9^{\circ}) = \frac{1}{4}$$

$$\cos(3x - 9^{\circ}) = \frac{1}{2}$$

$$3x - 9^{\circ} = 60^{\circ}$$

$$3x = 69^{\circ}$$

$$x = 23^{\circ}$$

Solution 13:

(i)

$$4\cos^2 x = 3$$

$$\cos^2 x = \frac{3}{4}$$

$$\cos x = \frac{\sqrt{3}}{2}$$

$$x = 30^{\circ}$$

(ii)

$$\cos^{2}x + \cot^{2}x = \cos^{2}30^{0} + \cot^{2}30^{0}$$

$$= \frac{3}{4} + 3$$

$$= \frac{15}{4}$$

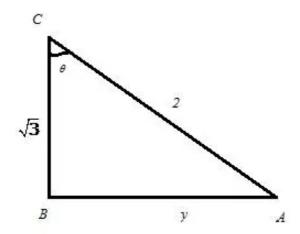
$$= 3\frac{3}{4}$$

(iii)

$$\cos 3x = \cos 3(30^{\circ}) = \cos 90^{\circ} = 0$$

$$\sin 2x = \sin 2(30^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

Solution 14:



(i)

From ∆ABC

$$\sin x^{\circ} = \frac{\sqrt{3}}{2}$$

(ii)

$$\sin x^{\circ} = \frac{\sqrt{3}}{2}$$
$$\sin x^{\circ} = \sin 60^{\circ}$$
$$x^{\circ} = 60^{\circ}$$

(iii)

$$\tan x^{\circ} = \tan 60^{\circ}$$
$$= \sqrt{3}$$

$$\cos x^{\circ} = \frac{y}{2}$$

$$\cos 60^{\circ} = \frac{y}{2}$$

$$\frac{1}{2} = \frac{y}{2}$$

$$y = 1$$

Solution 15:

$$2\cos(A + B) = 1$$

 $\cos(A + B) = \frac{1}{2}$
 $\cos(A + B) = \cos 60^{\circ}$
 $A + B = 60^{\circ}$ (1)
 $2\sin(A - B) = 1$
 $\sin(A - B) = \frac{1}{2}$
 $A - B = 30^{\circ}$ (2)

Adding (1) and (2)

$$A + B + A - B = 60^{\circ} + 30^{\circ}$$

 $2A = 90^{\circ}$
 $A = 45^{\circ}$
 $A + B = 60^{\circ}$
 $B = 60^{\circ} - A$
 $B = 60^{\circ} - 45^{\circ}$
 $B = 15^{\circ}$