Relations and Functions

```
Relation: If A and B are two non-empty sets, then any subset R of AXB is called
                    Relation from set A to B. i.e. R: A \rightarrow B \Leftrightarrow R \subseteq A \times B
     If (x,y)\in R then we write xRy (read as x is R related to y) and
      If (x,y) \notin R then we write x R y (read as x is not R related to y)
Domain and Range of a Relation: If R is any nelation from set A to set B then,

    Domain of R is the set of all first coordinates of elements of R and is denoted by Dom(R).

    Range of R is the set of all second coordinates of R and it is denoted by Range (R)

      A nelation R on set A means, the nelation from A to A i.e., RSAXA
Empty Relation: A Relation R in a set A is called empty nelation, if no element of A is
                                  related to any element of A, i.e. R = $ = AXA
Universal Relation: A Relation R in a set A is called universal nelation each of A is
nelated to every element of A, i.e. R = A \times A

Identity Relation: R = \{(x,y): x \in A, y \in A, x = y\} or R = \{(x,x); x \in A\}
     A Relation R in a set A is called -
Reflexive Relation: If (a,a) & A, for every a & A
Symmetric Relation: If (a,,a2) & R implies (a2,a1) & R fon all a,,a2 & A
Inansitive Relation: If (a1, a2) & R and (a2, a3) & R implies (a1, a3) & R for all a1, a2, a3 & A
Equivalence Relation: If R is neflexive, symmetric and transitive
Antisymmetric Relation: A nelation R in a set A is antisymmetric.
     if (a,b) \in R, (b,a) \in R \Rightarrow a = b \lor a,b \in R on aRb and bRa \Rightarrow a = b, \forall a,b \in R.
Invense Relation: If A and B are two non-empty sets and R be a relation from A to B,
                                    such that R = \{(a,b) : a \in A, b \in B\}, then the invense of R, denoted by R^{-1},
   is a nelation from 8 to A and is defined by R-1 = f(b a):(a,b) ER}
Equivalence class: Let R be an equivalence nelation on a non-empty set A. Fon all a EA,
                                the equivalence class of 'a' is defined as the set of all such elements of A
    which are related to 'a' under R. It is denoted by [a].
    i.e. [a] = equivalence class of 'a' = \{x \in A : (x, a) \in R\}
Function: Let X and Y be two non-empty sets. Then a nule f which associates
                       to each element x \in X, a unique element, denoted by f(x) of Y, is called
     a function from X to Y and written as f:X \to Y where, f(x) is called image of x
     and x is called the pre-image of f(x) and set Y is called the co-domain of f
     and f(x)={f(x):x \in x \
images of distinct element of X under f are distinct;
```

i.e $x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Otherwise f is called many - one.

- Onto or Sunjective: A function $f: X \to Y$ is said to be onto if every element of Y is the image of some element of X under f; i.e. for every $y \in Y$, there exists an element x in X such that f(x) = y
- One-One and onto or Bijective: A function $f:X \to Y$ is said to be one-one and onto, if f is both one-one and onto.
- vote: $f: X \rightarrow Y$ is onto if and only if Range of f = Y
- Composition of function: Let $f: A \to B$ and $g: B \to C$ be two function then the composition of f and g denoted by gof and defined as the function and $f: A \to C$

the function gof: $A \rightarrow C$ $gof = g[f(x)], \forall x \in A$

- Inventible function: A function $f: X \to Y$ is defined to be inventible, if there exists a function $g: Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$. The function g is called the inverse of f and is denoted by f.
- Binary operation: A binary operation * on a set A is a function *: $A \times A \rightarrow A$. we denote * (a,b) by a*b
- A binary operation * on a set A is called commutative, if a * b = b* a, for every a, b ∈ A.
- A binary operation $*:AXA \rightarrow A$ is said to be associative if (a*b)*c = a*(b*c), $\forall a,b,c \in A$ identity element
- A binary operation $*: A \times A \rightarrow A$, an element $e \in A$, if it exists, is called identity for the operation *, if a * e = e * a, $\forall \alpha \in A$
- A binaxy operation * : AXA → A with the identity element e in A, an element aEA is said to be invertible with respect to the operation *, if there exists an element b in A such that a*b = e = b*a and b is called the inverse of a and is denoted by a⁻¹.
- No. of function: Let $f: A \rightarrow B$ be any mapping and |A| = n and |B| = m where, |A| nepresent no. of elements in Set A |B| nepresent no. of elements in Set B

Then; Total no. of function from A to $B = m^n$

- Case (i) If n = m; then Total no. of mapping = n^n Total no. of one-one mapping = n!Total no. of onto mapping = n!
- Case (ii) If n < m; then Total no. of mapping = m^n Total no. of one-one mapping = m^n Total no. of onto mapping = m^n
- Case (iii) If n > m; then Total no. of mapping = m^n Total no. of one one mapping = 0Total no. of onto mapping = $\sum_{n=0}^{m-1} (-1)^n {}^m C_n (m-n)^n$