33. ABCD is a trapezium, in which AB is parallel to DC and its diagonals intersect each other at point O. show that $\frac{AO}{BO} = \frac{CO}{DO}$.

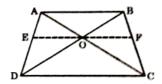
2014/2016 (2 Marks)

In the figure, ABCD is a trapezium with AB || DC.

Construction: Through O, draw EF || DC (see figure).

Now, in \triangle ADC, EO || DC, by BPT, we get:

$$\frac{AE}{DE} = \frac{AO}{OC} - \dots - (1)$$



Also, since AB || DC and EO || DC, we have:

EO || AB.

So, in $\triangle DAB$, we have:

$$\frac{DE}{AE} = \frac{DO}{BO} \qquad \text{(By BPT)}$$
$$\Rightarrow \qquad \frac{AE}{DE} = \frac{BO}{DO} \qquad \text{------(2)}$$

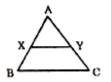
From (1) and (2) we get:

 $\frac{AO}{OC} = \frac{BO}{DO} \Longrightarrow \frac{AO}{BO} = \frac{OC}{DO}$ (Proved)

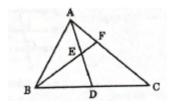
34. In \triangle ABC, X is the middle point of AB. If XY || BC, then prove that Y is the middle point of AC.

2015/2016 (3 Marks)

In figure, X is the mid-point of AB and XY || BC.



From BPT, $\frac{AX}{XB} = \frac{AY}{YC}$ $\Rightarrow \frac{AX}{AX} = \frac{AY}{YC}$ (X is the mid-point of AB) $\Rightarrow \frac{AY}{YC} = 1 \Rightarrow AY = YC.$ So, Y is the mid-point of AC. 35. In the figure, AD is median of \triangle ABC and E is the mid-point of AD. If BE is produced to meet AC at F, then prove that $AF = \frac{1}{3}AC$.



2015/2016(3 Marks)

In the figure,

Draw DG || BF.

In \triangle ADG, we have:

AE = ED	(Given)	
EF DG	(DG BF)	
So, by BPT,	$\frac{AE}{ED} = \frac{AF}{FG}$	
$\Longrightarrow_{\overline{AE}}^{\underline{AE}} = \frac{\underline{AF}}{FG}$	(AE = ED)	
\Rightarrow	AF = FG	(1)

Similarly, in $\triangle CBF$, we have:

BD = DCDG || BF

So, by BPT,

And

 $\frac{CG}{FG} = \frac{CD}{BD}$

-----(2)

 $\Rightarrow \frac{CG}{FG} = \frac{CD}{CD}$ (CD = BD)

 \Rightarrow CG = FG

From (1) and (2),

$$AF = FG = CG$$

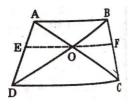
Also,
$$AC = AF + FG + GC$$

So,
$$AF = \frac{1}{3} AC.$$

36. The diagonals of a quadrilateral ABCD intersect each other at the point O, such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.

2014/2016 (3 Marks)

Through O, draw a parallel EF to DC. (See figure)



So, in $\triangle ADC$, we get

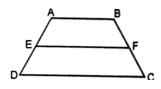
$\frac{AE}{ED} = \frac{AO}{OC}$	(By BPT)(1)	
Again,	$\frac{AO}{BO} = \frac{CO}{DO}$	(Given)
So,	$\frac{AO}{OC} = \frac{BO}{DO}$	(2)

From (1) and (2), we get

$$\frac{AE}{ED} = \frac{BO}{DO}$$

OE AB	(By converse of BPT) (3)
OE DC	(By construction) (4)
, AB DC	
trapezium.	
	OE DC AB DC

37. In the given figure, ABCD is a trapezium with AB || DC, E and F are the points on non-parallel sides AD and BC respectively such that EF || AB. Prove that $\frac{AE}{ED} = \frac{BF}{FC}$.

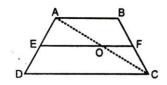


2011/2012/2013/2014/2016 (3 Marks)

Given AB || CD (Given)

And EF || AB (Given)

 $\Rightarrow \qquad AB || DC || EF.$

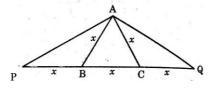


Join AC. It intersects EF at O. In \triangle ADC, OE || CD as EF || CD. Therefore, $\frac{AE}{ED} = \frac{AO}{OC}$ (By BPT)(1) In \triangle ACB, OF || AB as EF || AB. Therefore, $\frac{AO}{OC} = \frac{BF}{FC}$ (By BPT)(2)

From (1) and (2), we have:

 $\frac{AE}{ED} = \frac{BF}{FC}.$

38. In the given figure \triangle ABC is an equilateral Triangle, whose each side measures *x* units. P and Q are two points on BC produced such that PB = BC = CQ.



Prove that:

$$(a)\frac{PQ}{PA} = \frac{PA}{PB}(b)PA^2 = 3x^2$$

2015/2016 (3 Marks)

- In \triangle PAB,PB = ABSo, \angle APB = \angle PAB
- Also, $\angle ABP = 180^{\circ} 60^{\circ} = 120^{\circ}$
- So, $\angle APB = \angle PAB = \frac{1}{2}(180^\circ 120^\circ) = 30^\circ$
- Similarly, $\angle QAC = \angle QCA = 30^{\circ}$
- So, $\angle PAQ = \angle PAB + \angle BAC + \angle QAC$
 - $= 30^{\circ} + 60^{\circ} + 30^{\circ} = 120^{\circ}.$

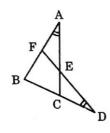
Now, in \triangle PQA and \triangle PAB, we have:

$$\angle APQ = \angle APB$$
 (Each 30°)

$$\angle PAQ = \angle PBA$$
 (Each 120°)

And
$$\angle PQA = \angle PAB$$
(Each 30°)So, $\triangle PQA \sim \triangle PAB$ (By AAA similarity creation)Hence, $\frac{PQ}{PA} = \frac{PA}{PB}$ (Proved)(b)(b) $PQ = 3x$ So, from $\frac{PQ}{PA} = \frac{PA}{PB}$, we have $PA^2 = PQ \times PB$ $PA^2 = 3x \times x = 3x^2$.(Proved)

39. In the figure, if $\angle A = \angle D$, then prove that $AE \times DC = DE \times AF$.

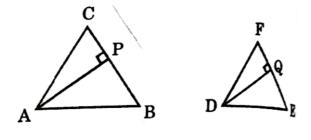


2014/2015/2016 (3 Marks)

In $\triangle AEC$ and $\triangle DEC$, we have:

 $\angle A = \angle D \qquad (Given)$ And $\angle AEF = \angle DEC \qquad (Vertically opposite angles)$ So, $\Delta AEF \sim \Delta DEC \qquad (By AA similarity criterion)$ Therefore, $\frac{AE}{DE} = \frac{AF}{DC}$ $\Rightarrow \qquad AE \times DC = DE \times AF, \qquad Proved.$

40. In the given figure, $\triangle ABC \sim \triangle DEF$, AP bisects $\angle CAB$ and DQ bisects $\angle FDE$.



Prove that:

(a) $\triangle ABC \sim \triangle DEF$ (Given) $\angle CAB = \angle FDE$ and $\angle B = \angle E$(1) So, $\angle CAB = \angle FDE \Rightarrow \frac{1}{2} \angle CAB = \frac{1}{2} \angle FDE.$ Now, $\angle PAB = \angle QDE$(2) \Rightarrow So, $\triangle APB \sim \triangle DQE$ [From (1) and (2), AA similarity criterion] $\frac{AP}{DQ} = \frac{AB}{DE}.$ \Rightarrow (b) $\triangle ABC \sim \triangle DEF$ Now, $\frac{AC}{DF} = \frac{AB}{DE}$ $\frac{AC}{DF} = \frac{AP}{DQ}$ \Rightarrow (Because $\frac{AP}{DQ} = \frac{AB}{DE}$, Proved above)(1) So, so $\frac{1}{2} \angle CAB = \frac{1}{2} \angle FDE$. $\angle CAB = \angle FDE$, Also, since $\angle CAP = \angle FDQ$ (2) \Rightarrow From (1) and (2), $\Delta CAP \sim \Delta FDQ$ (By SAS similarity criterion)

41. If $\triangle ABC \sim \triangle DEF$ and AX, DY are respectively the medians of $\triangle ABC$ and $\triangle DEF$. Then prove that:

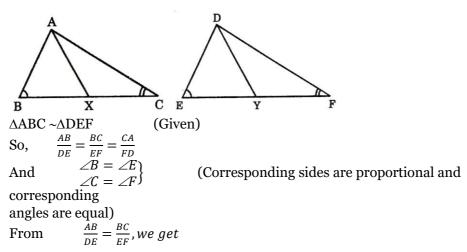
(i) $\triangle ABX \sim \triangle DEY$

(ii) $\triangle ACX \sim \triangle DFY$

(iii) $\frac{AX}{DY} = \frac{BC}{EF}$

2014/2015 (4 Marks)

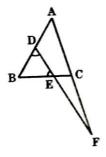
2015/2016 (3 Marks)



$\frac{AB}{DE} = \frac{2BX}{2EY}$	(X and Y are mid points of BC and EF)
$\Rightarrow \frac{AB}{DE} = \frac{BX}{EY}$	(2)
(i)	
Now, in $\triangle ABX$ and $\triangle DEY$, we have:

 $\frac{AB}{DE} = \frac{BX}{EY}$ [From (2)] $\angle B = \angle E$ And [From (1)] $\triangle ABX \sim \triangle DEY$ So, (By SAS similarity criterion), proved. (ii) $\frac{AC}{DF} = \frac{BC}{EF}$ Again, $\angle C = \angle F$ And [From (1)] So, $\Delta ACX \sim \Delta DFY$ (By SAS), Proved. (iii) From (i) above, $\frac{AX}{DY} = \frac{BX}{EY} \Longrightarrow \frac{AX}{DY} = \frac{2BX}{2EY}$ $\Rightarrow \frac{AX}{DY} = \frac{BC}{EF}$, Proved.

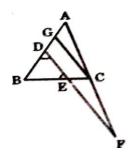
42. In the figure, $\angle BED = \angle BDE$ and E is the middle point of BC. Prove that $\frac{AF}{CF} = \frac{AD}{BE}$.



2014 /2015/ 2016 (4 Marks)

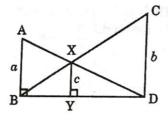
Construction: On AB, take a point G such that CG || DF.

In \triangle BDE, \angle E = \angle D (Given)(1) So, BD = BE(2)



From ∆BCC	From $\triangle BCG$, we have:	
DE GC		
So,	$\frac{BE}{EC} = \frac{BD}{DG}$	
But	BD =	BE [From (2)]
So,	EC = DG	
\Rightarrow	BE = DG	(E is mid-point of BC)(3)
Now,	CG FD	(By construction)
So,	$\Delta ACG \sim \Delta AFD$	
$\Rightarrow \frac{AC}{AF} = \frac{AG}{AD}$		
So,	$1 - \frac{AC}{AF} = 1 - \frac{AG}{AD}$	
$\Rightarrow \frac{AF - AC}{AF} =$	$\frac{AD-AG}{AD}$	
$\Rightarrow \frac{CF}{AF} = \frac{DG}{AD}$		
\Rightarrow		$\frac{AF}{CF} = \frac{AD}{DG}$
$\Longrightarrow \frac{AF}{CF} = \frac{AD}{BE}.$	[F:	rom (3)], Proved.

43 In the figure, $\angle ABD = \angle XYD = \angle CDB = 90^\circ, AB = a, XY = c \text{ and } CD = b, then prove that <math>c(a + b) = ab$.



2014/2015/2016 (4 Marks)

AB \perp BD and XY \perp BD (\angle ABD = 90°, \angle XYD = 90°)

$$\Rightarrow$$
 AB || XY

So, $\angle BAX = \angle YXD$

Hence,	$\Delta DXY \sim \Delta DAB$
Hence,	$\Delta DXY \sim \Delta DAB$

(By AA similarity criterion)

So, $\frac{DY}{DB} = \frac{c}{a} = \frac{DX}{DA}$

.....(1)

Also, by AA similarity criterion,

$$\Delta BXY \sim \Delta BCD$$
So,

$$\frac{BY}{DB} = \frac{c}{b} = \frac{BX}{BC} \qquad \dots \dots (2)$$
From (1),

$$\frac{DY}{BD} = \frac{c}{a} \Rightarrow 1 - \frac{DY}{DB} = 1 - \frac{c}{a}.$$

$$\Rightarrow \qquad \frac{DB - DY}{DB} = \frac{a - c}{a}.$$

$$\Rightarrow \qquad \frac{BY}{DB} = \frac{a - c}{a}.$$
So, from (2), we have:

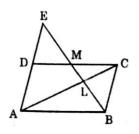
$$\frac{a - c}{a} = \frac{c}{b}.$$

$$\Rightarrow \qquad cb - bc = ac$$

$$\Rightarrow \qquad ab = ac + bc$$

$$\Rightarrow \qquad ab = c(a + b), \quad proved$$

44. In the parallelogram ABCD, middle point of CD is M. A line segment BM is drawn which cuts AC at L and meets AD extended at E. Prove that EL = 2BL.



2014/2015/2016 (4 Marks)

In \triangle EDM and \triangle BCM, we have

	DM = CM	(Given)
	$\angle DME = \angle BME$	(Vertically opposite angles)
	$\angle DEM = \angle CBM$	(Alternate interior angles, DE BC)
So,	$\Delta EDM = \Delta BCM$	(By AAS congruence criterion)
\Rightarrow	DE = BC	(CPCT)
So,	DE = AD	(Because BC = AD)

Now, in $\triangle AEL$ and $\triangle CBL$, we have:

\angle ELA = \angle BLC	(Vertically opposite angles)
$\angle DEL = \angle CBL$	(Vertically interior angles)

So,	$\Delta AEL \sim \Delta CBL$	(By AA similarity criterion)
	$\frac{AE}{EL} = \frac{CB}{BL}$	(Corresponding sides are proportional)
\Rightarrow	$\frac{2AD}{EL} = \frac{BC}{BL}$	(Since $AD = DE$)
\Rightarrow	$\frac{2AD}{EL} = \frac{AD}{BL}$	(BC = AD)
	2BL = EL	\Rightarrow EL = 2BL, proved.

45. Prove that if two sides and a median bisecting the third side of a triangle are respectively proportional to the corresponding sides and the median of another triangle, then the two triangles are similar.

2012/2013/2014/2016 (4 Marks)

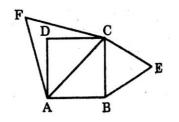
Produce AD to E such that AD = DE and PM to N such that PM = MN.



46. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

2010/2011/2015/2016 (3 Marks)

Given: A square ABCD. Equilateral Δ s BCE and ACF have been drawn on side BC and diagonal AC respectively.



To prove: $ar (\Delta BCE) = \frac{1}{2} \times ar (\Delta ACF)$

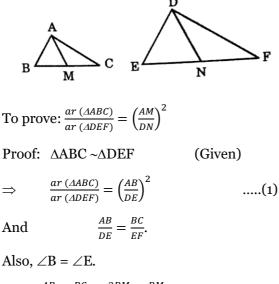
Proof: $\triangle BCE \sim \triangle ACF$ [Being equilateral, so similar by AAA criterion of similarity]

\Rightarrow	$\frac{ar(\Delta BCE)}{ar(\Delta ACF)} = \frac{BC^2}{AC^2}$
\Rightarrow	$\frac{ar(\Delta BCE)}{ar(\Delta ACF)} = \frac{BC^2}{\left(\sqrt{2}BC\right)^2} \qquad \text{[Diagonal} = \sqrt{2} \ side \Rightarrow AC = \sqrt{2} \ BC\text{]}$
\Rightarrow	$\frac{ar(\Delta BCE)}{ar(\Delta ACF)} = \frac{1}{2} \Longrightarrow ar(\Delta BCE) = \frac{1}{2}ar(\Delta ACF).$

47. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians

2012/2013/2015/2016 (3 Marks)

Given: $\triangle ABC \sim \triangle DEF$ and AM and DN are medians of two triangles.



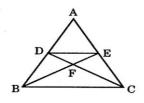
Now, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{2BM}{2EN} = \frac{BM}{EN}$

So, we have:

$$\frac{AB}{DE} = \frac{BM}{EN} \text{and } \angle B = \angle E.$$
So, $\triangle ABM \sim \triangle DEN$ (By SAS similarity criterion)
$$\Rightarrow \quad \frac{AB}{DE} = \frac{AM}{DN} \qquad \dots (2)$$
So, from (1) and (2),

$$\frac{ar (\Delta ABC)}{ar (\Delta DEF)} = \left(\frac{AM}{DN}\right)^2$$

48. In a \triangle ABC, DE || BC. If AD: DB = 3: 5, then find $\frac{ar(\triangle DFE)}{ar(\triangle CFB)}$.



2014/2015/2016 (4 Marks)

In the figure, DE || BC

So,	$ \angle FDE = \angle FCB \\ \angle FED = \angle FBC $	(Alternate angles)
So,	$\Delta DFE \sim \Delta CFB$	(AA similarity creation)

So, $\frac{ar(\Delta DFE)}{ar(\Delta CFB)} = \left(\frac{DE}{BC}\right)^2$ (1)

Now, we are given

So, from (2) and (3),

Now, from DE || BC, we also have:

$$\angle D = \angle B \text{ and } \angle E = \angle C$$
 (C)

(Corresponding angles)

So,

$$\Rightarrow \qquad \qquad \frac{AD}{AB} = \frac{DE}{BC}$$

So, from (4), we get

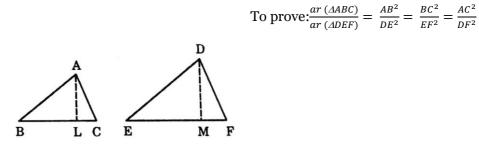
$$\frac{DE}{BC} = \frac{3}{8}$$

 $\triangle ADE \sim \triangle ABC$

Putting $\frac{DE}{BC} = \frac{3}{8}$ in (1), we get $\frac{ar(\Delta DFE)}{ar(\Delta CFB)} = \left(\frac{3}{8}\right)^2 = \frac{9}{64}.$

49. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. 2012/2013/2015/2016 (4 Marks)

Given: Two \triangle s ABC and DEF such that \triangle ABC ~ \triangle DEF.



Construction: Draw $AL \perp BC$ and $DM \perp EF$.

Proof: Since similar triangles are equiangular and their corresponding sides are proportional, therefore

 $\triangle ABC \sim \triangle DEF$

 $\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$

 \Rightarrow

And
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
(1)

Now, in Δs ALB and DME, we have:

$$\angle ALB = \angle DME$$
 [: Each = 90°]

[From (1)]

And

 \therefore By AA criterion of similarly, we have:

 $\angle B = \angle E$

$$\Rightarrow$$

$$\frac{AL}{DM} = \frac{AB}{DE} \qquad \dots \dots \dots (2)$$

From (1) and (2), we get

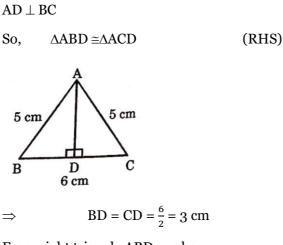
Now,
$$\frac{ar(\Delta ABC)}{ar(\Delta DEF)} = \frac{\frac{1}{2} \times BC \times AL}{\frac{1}{2} \times EF \times DM} = \frac{BC}{EF} \times \frac{AL}{DM}$$

 $= \frac{BC}{EF} \times \frac{BC}{EF} = \frac{BC^2}{EF^2} [\text{From (3)}, \frac{BC}{EF} = \frac{AL}{DM}]$
But, $\frac{BC}{EF} = \frac{AB}{DE} = \frac{AC}{DF} \Rightarrow \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$

Hence,
$$\frac{ar(\triangle ABC)}{ar(\triangle DEF)} = \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2}$$

50. In an isosceles triangle, if the length of its sides are AB = 5cm, AC = 5cm and BC = 6cm, then find the length of its altitude drawn from A on BC.

2014/2015/2016 (1 Mark)



From right triangle ABD, we have:

 $AB^{2} = BD^{2} + AD^{2} \Rightarrow 25 = 9 + AD^{2}$ $\Rightarrow AD^{2} = 16 \Rightarrow AD = 4$ Thus, AD = 4 cm.

51. Prove that in an equilateral triangle, three times of the square of one of the sides is equal to four times of the square of one of its altitudes.

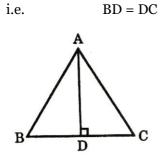
2013/2015/2016 (2 Marks)

 \triangle ABC is an equilateral triangle.

So, AB = BC = CA

Also, $AD \perp BC$

So, AD divides BC into two equal parts,



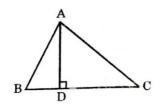
Now, in rt. \triangle ADC,

$$AC^2 = AD^2 + DC^2$$

$$= AD^{2} + \left(\frac{BC}{2}\right)^{2}$$
Or
$$AC^{2} - \frac{BC^{2}}{4} = AD^{2}$$
Or
$$AB^{2} - \frac{AB^{2}}{4} = AD^{2} \quad (\because AB = BC = AC)$$
Or
$$\frac{4AB^{2} - AB^{2}}{4} = AD^{2}$$
Or
$$\frac{3AB^{2}}{4} = AD^{2}$$
Or
$$3AB^{2} = 4AD^{2}$$

i.e. three times the square of a side of an equilateral triangle is equal to four times the square of its altitude.

52. In the figure, in $\triangle ABC$, $AD \perp BC$. Prove that $AC^2 = AB^2 + BC^2 - 2BC.BD$.

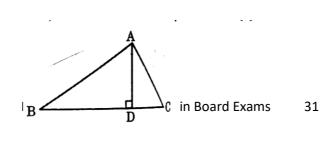


2013/2015/2016 (2 Marks)

In rt. $\triangle ADB$, $AB^2 = AD^2 + BD^2$ $\Rightarrow AD^2 = AB^2 - BD^2$ (1) In rt. $\triangle ADC$, $AC^2 = AD^2 + DC^2$ $\Rightarrow AD^2 = AC^2 - DC^2$ $= AC^2 - (BC - BD)^2$ $= AC^2 - (BC^2 + BD^2 - 2BC.BD)$ (2) From (1) and (2), $AB^2 - BD^2 = AC^2 - (BC^2 + BD^2 - 2BC.BD)$ $\Rightarrow AC^2 = AB^2 - BD^2 + BC^2 + BD^2 - 2BC.BD$ $\Rightarrow AC^2 = AB^2 + BC^2 - 2BC.BD$

53. The perpendicular from A on the side BC of a \triangle ABC intersects BC at D such that DB = 3CD. Prove that $2AB^2 = 2AC^2 + BC^2$.

2013/2015/2016 (2 Marks)



 $BD = 3CD \implies BD - CD = 2CD$

Now,
$$AB^2 = AD^2 + BD^2$$
 and $AC^2 = AD^2 + CD^2$
So, $AB^2 - AC^2 = BD^2 - CD^2$
 $\Rightarrow 2(AB^2) - 2(AC^2) = 2(BD^2 - CD^2)$
 $\Rightarrow 2(AB^2) - 2(AC^2) = 2(BD + CD)(BD - CD)$
 $\Rightarrow 2(AB^2) - 2(AC^2) = 2BC \times 2CD = 2BC \times 2(\frac{BC}{4})$ [:BC = 4CD from (1)]
 $\Rightarrow 2(AB^2) = 2(AC^2) + BC^2$

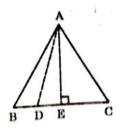
54. In an equilateral triangle ABC , D is a point on side BC such that 3BD = BC. Prove that $9AD^2 = 7AB^2$.

2010/2011/2013/2016 (2 Marks)

Let ABC be an equilateral triangle and let D be a point on BC such that

 $3BD = BC \implies BD = \frac{1}{3}BC$

Draw AE \perp BC. Join AD.



In Δ s AEB and AEC, we have:

 $\angle AEB = \angle AEC$ (:: Each = 90°)

And AE = AE (common)

 \therefore By RHS congruence criterion, we have:

 $\Delta AEB\cong\!\!\Delta AEC$

 \Rightarrow

 $BE = EC \qquad (CPCT)$

Now, we have:

$$BD = \frac{1}{3}BC, DC = BC - BD \implies BC - \frac{1}{3}BC = \frac{3BC - BC}{3} = \frac{2}{3}BC$$

So, $DE = DC - EC = \frac{2}{3}BC - \frac{BC}{2} = \frac{4BC - 3BC}{6} = \frac{BC}{6}$ (1)
And $BE = EC = \frac{1}{2}BC$ (2)

In rt. ∆AED,

And in rt. $\triangle AEB$,

$$AE^2 = AB^2 - BE^2$$
(4)

From (3) and (4),

$$AD^{2} = AB^{2} - BE^{2} + DE^{2}$$

$$= BC^{2} - \left(\frac{BC}{2}\right)^{2} + \left(\frac{BC}{6}\right)^{2} \quad [Using (1) and (2)]$$

$$= BC^{2} - \frac{BC^{2}}{2} + \frac{BC^{2}}{36}$$

$$= \frac{36BC^{2} - 9BC^{2} + BC^{2}}{36} = \frac{28BC^{2}}{36}$$

$$\Rightarrow \qquad AD^{2} = \frac{7BC^{2}}{9} \Rightarrow AD^{2} = \frac{7AB^{2}}{9} \quad (\because AB = BC)$$

$$\Rightarrow \qquad 9 AD^{2} = 7 AB^{2}$$

55. D and E are points on the sides CA and CB respectively of \triangle ABC, right angled at C. Prove that $AE^2 + BD^2 = AB^2 + DE^2$.

2012/2013/2015/2016 (2 Marks)

And

We have:

$$AE^{2} = AC^{2} + CE^{2}$$
$$BD^{2} = BC^{2} + CD^{2}$$

 $\Rightarrow AE^{2} + BD^{2} = AC^{2} + CE^{2} + BC^{2} + CD^{2}$ $= (AC^{2} + BC^{2}) + (CE^{2} + CD^{2})$ $= AB^{2} + DE^{2}$

56. Prove that the equilateral triangles described on the two sides of a right angled triangle are together equal to the equilateral triangle described on the hypotenuse in terms of their areas.

2010/2011/2012/2015/2016 (2 Marks)

Given: A right angled \triangle ABC with right angle at B. Equilateral \triangle s PAB, QBC and RAC are described on the sides AB, BC and CA respectively.

To prove: ar (\triangle PAB) + ar (\triangle QBC) = ar (\triangle RAC).

Proof: Since \triangle s PAB, QBC and RAC are equilateral, therefore they are equiangular and hence similar.

$$P \xrightarrow{A_1} P$$

$$= \xrightarrow{A_2} P$$

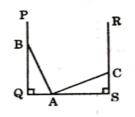
$$= \xrightarrow{AB^2 + BC^2} AC^2 + \frac{BC^2}{AC^2} + \frac{BC^2}{AC^2} = 1$$

$$[::\Delta ABC \text{ is right angled with } \angle B = 90^0 \therefore AC^2 = AB^2 + BC^2]$$

$$\Rightarrow \frac{ar(APAB) + ar(AQBC)}{ar(ARAC)} = 1$$

$$\Rightarrow ar(\Delta PAB) + ar(\Delta QBC) = ar(\Delta RAC)$$

57. As shown in the figure, a 26m long ladder is placed at A. If it is placed along wall PQ, it reaches a height of 24m, whereas it reaches a height of 10m, if it is placed against wall RS. Find the distance between the walls.



2014/2015/2016 (2 Marks)

From $\triangle ABQ$, $AB^2 = AQ^2 + BQ^2$

$$\Rightarrow$$
 (26)² = AQ² + (24)² \Rightarrow 676 = AQ² + 576

$$\Rightarrow \qquad AQ^2 = 100 \quad \Rightarrow AQ = \sqrt{100} \, m = 10m$$

From $\triangle ASC$, $AC^2 = AS^2 + CS^2$

$$\Rightarrow \qquad (26)^2 = AS^2 + (10)^2 \Rightarrow 676 = AS^2 + 100$$

$$AS^2 = 676 - 100 = 576 \implies AS = \sqrt{576} = 24m$$

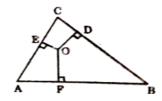
So, distance between the walls

 \Rightarrow

= QS
= AQ+ AS =
$$10 + 24 = 34$$
 m.

58. In a \triangle ABC, from any interior point O, OD \perp BC, OE \perp AC and OF \perp AB are drawn. Prove that: (i) $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AE^2 + CD^2 + BF^2$

(ii) $AE^2 + CD^2 + BF^2 = AF^2 + BD^2 + CE^2$

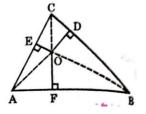


2014/2015/2016 (4 Marks)

Join OA, OB and OC.

(i)

	(1)	$OA^2 = AE^2 + OE^2$
	(2)	$OB^2 = BF^2 + OF^2$
(3)	$OC^2 = CD^2 + OD^2$	and



Adding (1), (2) and (3), we get:

 $OA^{2} + OB^{2} + OC^{2} = AE^{2} + BF^{2} + CD^{2} + OE^{2} + OF^{2} + OD^{2}$ $\Rightarrow \qquad OA^{2} + OB^{2} + OC^{2} - OD^{2} - OE^{2} - OF^{2} = AF^{2} + BF^{2} + CD^{2} \qquad \dots \dots \dots (4)$

(ii) Similarly, we can find that:

So, from (4) and (5), we get:

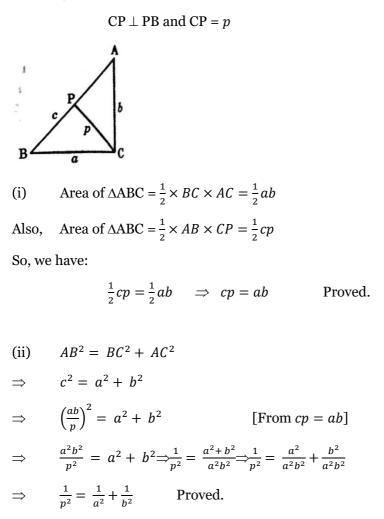
$$AE^2 + BF^2 + CD^2 = AF^2 + BD^2 + CE^2$$

59. \triangle ABC is right angled at C. If BC = a, CA = b, AB = c and p is length of perpendicular drawn from C on AB, then prove that:

(i) cp = ab (ii) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$

2014/2015/2016 (2 Marks)

In the figure, we have:



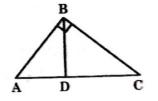
60. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides or state and prove Pythagoras theorem.

2010/2011/2012/2013/2014/2016 (2 Marks)

Given: A right angled $\triangle ABC$, in which $\angle B = 90^{\circ}$

To prove: $AC^2 = AB^2 + BC^2$

Construction: From B, draw $BD \perp AC$



Proof: In \triangle s ADB and ABC, we have:

 $\angle ADB = \angle ABC$ [::Each =90°]

And $\angle A = \angle$	A [Common]
-------------------------	------------

 \therefore By AA similarity criterion, we have:

 $\triangle ADB \sim \triangle ABC$

\Rightarrow	$\frac{AD}{AB} = \frac{AB}{AC}$	[·· Correspondin	ng sides are proportional]
\Rightarrow	$AB^2 = AD \times A$	С	(1)

In Δ s BDC and ABC, we have:

$\angle CDB = \angle ABC$	[∵ Each = 90°]

[Common]

And

So, by AA similarity criterion, we have:

 $\angle C = \angle C$

$\triangle BDC \sim \triangle ABC$

\Rightarrow	$\frac{DC}{BC} = \frac{BC}{AC}$	[:: Corresponding	g sides are proportional]
\Rightarrow	$BC^2 = AC \times DC$		(2)

Adding (1) and (2) we get

$$AB^2 + BC^2 = AD \times AC + AC \times DC$$

$$\Rightarrow AB^{2} + BC^{2} = AC(AD + DC)$$

$$\Rightarrow AB^{2} + BC^{2} = AC \times AC$$

$$\Rightarrow AB^{2} + BC^{2} = AC^{2}$$

$$\Rightarrow AC^{2} = AB^{2} + BC^{2}$$

61. In the figure, BL and CM are the medians of a triangle right angled at A. Prove that:

$$4(BL^2 + CM^2) = 5BC^2.$$

2010/2011/2013/2015/2016 (2 Marks)

Given that M is the mid-point of AB and L is the mid-point of AC.

In rt. ΔABC,

$$BC^2 = AB^2 + AC^2 \qquad \dots \dots (1)$$

In rt. **ABL**,

$$BL^2 = AB^2 + AL^2 \qquad \dots \dots (2)$$

In rt. ΔAMC,

$$MC^2 = AM^2 + AC^2$$
(3)

Adding (2) and (3) and subtracting (1) from the result, we get

$$BL^{2} + MC^{2} - BC^{2} = AL^{2} + AM^{2}$$

$$= \left(\frac{AC}{2}\right)^{2} + \left(\frac{AB}{2}\right)^{2} \quad (\because AM = MB \text{ and } AL = LC)$$

$$BL^{2} + MC^{2} - BC^{2} = \frac{AC^{2}}{4} + \frac{AB^{2}}{4} = \frac{AC^{2} + AB^{2}}{4} = \frac{BC^{2}}{4} \qquad [From (1)]$$

$$\Rightarrow \quad 4(BL^{2} + MC^{2}) - 4BC^{2} = BC^{2}$$

$$Or \qquad 4(BL^{2} + MC^{2}) = 5BC^{2}$$