Al-Ster Tradentity

SE'

SSC COMBINED GRADUATE LEVEL TIER-I EXAM

SOLVED PAPER =

Held on : 04.09.2011 =

= PAPER-I

ARITHMETICAL ABILITY

 In a division sum, the divisor is 4 times the quotient and twice the remainder. If a and b are respectively the divisor and the dividend, then

$$(1) \quad \frac{4b-a^2}{a} = 3$$

(2)
$$\frac{4b-2a}{a^2} = 2$$

(3) $(a + 1)^2 = 4b$

(4)
$$\frac{a(a+2)}{b} = 4$$

- If 738A6A is divisible by 11, then the value of A is

 (1) 6
 (2) 3
 - (3) 9 (4) 1
- The product of two numbers is 1575 and their quotient is 9/7. Then the sum of the numbers is

 74
 78
 80
 90
- 4. The value of $\frac{(81)^{3.6} \times (9)^{2.7}}{(81)^{4.2} \times (3)}$ is
- (1) 3 (2) 6 (3) 9 (4) 8.2
- 5. $\sqrt{6} + \sqrt{6} + \sqrt{6} + \frac{1}{2}$ is equal to (1) 2 (2) 5
 - (1) 2 (2) 5 (3) 4 (4) 3
- The sum of the squares of two natural consecutive odd numbers is 394. The sum of the numbers is
 (1) 24 (2) 32

(3) 40	(4) 28
When (67	+67) is divide

- 7. When (67⁶⁷ + 67) is divided by 68, the remainder is
 (1) 1
 (2) 63
 (3) 66
 (4) 67
- 8. A can do a plece of work in 24 days, B in 52 days and C in 64 days. All begin to do it together, but A leaves after 6 days and B leaves 6 days before the completion of the work. How many days did the work last?

CA	L ABILIT	Y
	(1) 15	(2) 20
	(3) 18	(4) 30
9.	21622	
	$\frac{(0.75)^3}{1-0.75}$ + [0.	.75 + (0.75) ² + 1] is
1.24	(1) 1	(2) 2
	(3) 3 —	(4) 4
10.	Given that $\sqrt{4}$	$\overline{096} = 64$, the value
	of $\sqrt{4096} + \sqrt{3}$ is	40.96 + √0.004096
	(1) 70.4	(2) 70.464
	(3) 71.104	
11.		sitive integer that
	should be sul	btracted from 3011
	× 3012 so tha	t the difference is a
	perfect squar	e is
	(1) 3009	(2) 3010
	(3) 3011	(4) 3012
12.	P.Q. Rare em	ployed to do a work
	for₹ 5750.	P and Q together
	finished $\frac{19}{23}$	of work and Q and nished $\frac{8}{23}$ of work.
	it together m	$\frac{1}{23}$ of work.
	Wage of Q, in	rupees, is
	(1) 2850	(2) 3750
	(3) 2750	(4) 1000
13.	marked price of 30%. If it is price, profit	g, a businessman discount on the and there is a loss sold at the marked percent will be
	(1) 10%	(2) 20%
	(3) $16\frac{2}{3}\%$	(4) $16\frac{1}{3}\%$
14.		3 /
In Carlos Co	respectively, in 1 hour. If the	3 pipes A, B and C. Ill it in 3 and 4 hours and C can empty it he pipes are opened p.m. and 5 p.m. on the same day, the e empty at
	(2) 7:15 p.m.	1 hours
	(3) 7:10 p.m.	
	(4) 7:18 p.m.	· - 111 23 down

(4) 7:18 p.m.

STNE-120

15.	If A works alo	ne, he would take				
	4 days more to	o complete the job				
	than if both	A and B worked				
	together. If B	worked alone, he				
	would take	16 days more to				
1.15		ob than if A and B				
	work together	. How many days				
	would they tal	ke to complete the				
	work if both	of them worked				
	together?	or them worked				
		(0) 10 1				
	(1) 10 days	(2) 12 days				
	(3) 6 days					
16.	250 men can f	finish a work in 20				
	days working	5 hours a day. To				
	finish the wor	rk within 10 days				
	working 8 h	ours a day, the				
		umber of men				
	required is	in the second se				
	(1) 310	(2) 300				
	(3) 313	(4) 312				
17.	100000000000000000000000000000000000000					
	2 men and 5	women can do a				
	work in 12 days. 5 men and 2					
	women can do that work in 9					
	days. Only 3	women can finish				
	the same wor	'k in				
	(1) 36 days	(2) 21 days				
	(3) 30 days	(4) 42 days				
18.	By selling an a	article at $\frac{3}{4}$ th of the				
	marked price	, there is a gain of				
	25%). The ra	tio of the marked				
	price and the	cost price is				
	(1) 5 : 3	(2) 3:5				
	(3) 3 : 4	(4) 4 : 3				
19.		(4) 4 : 5				
	There are an	n in the ratio 2 : 1				
	ney spend i	n the ratio 5:3 and				
	save in the ra	atio 4 : 1. If the total				
4	monthly savi	ings of both A and E				
	are \$ 5,000.	the monthly incom				
	OI D IS	145-1400000000. * 0000-0				
	(1) ₹ 7,000					
	(2) ₹ 14,000	T. Der store				
	(3) ₹ 5,000					
	(4) = 5,000					
00	(4) ₹ 10.000)				
20.	The ratio o	f the eum of tw				
	numbers an	d their difference				
	5 : 1. The	ratio of the greate				
1	number to th	the smaller number				
1.1	(1) 2 . 2	e smaller number				

- (1) 2 : 3 (3) 5 : 1
 - ¹ (4) 1 : 5

(2) 3:2

DADED OO

SO	IVED PAPER-09		-
21.	Successive discounts of 10%, 20% and 50% will be equivalent	27.	In
	to a single discount of	110	in
	(1) 36% (2) 64%		an
	(3) 80% (4) 56%	1.000	in
22.	A retailer offers the following		the
	discount schemes for buyers on an article.		wa
	I. Two successive discounts of		(1)
	10%.	28.	(3) Th
10	II. A discount of 12% followed by a discount of 8%.	-0.	15 th
	III. Successive discounts of 15% and 5%,.	-	nu
141	IV. A discount of 20%.		(1)
	The selling price will be minimum		(3)
	under the scheme	29.	Th
	(1) I (2) II	me	in
	(3) III (4) IV		is
23.	A mixture contains 80% acid and	1.00	the
	rest water. Part of the mixture		nu
	that should be removed and replaced by same amount of water		nu
	to make the ratio of acid and		(1)
-11	water 4:3 is	ò se	(3)
	1	30.	Th
	(1) $\frac{1}{3}$ rd (2) $\frac{3}{7}$ th	1.1	ina
	3 7		is f
	(3) $\frac{2}{3}$ rd (4) $\frac{2}{7}$ th	1.1	68
	$(3) \frac{1}{3}$ rd $(4) \frac{1}{7}$ rd		mi
24.	An employer reduces the number		(1)
F.	of his employees in the ratio 9 :		(3)
	8 and increases their wages in	31.	Of
	the ratio 14:15. If the original		thr
	wage bill was₹ 18,900, find the		firs
	ratio in which the wage bill is decreased.	(41) 1	nu
	(1) 20 : 21 (2) 21 : 20		nu
	(3) 20 : 19 (4) 19 : 21		(1)
25.	The batting average for 40 innings		(3)
	of a cricketer is 50 runs. His		
	highest score exceeds	32.	Ac
	his lowest score by 172 runs. If	3.5	from
hi.,	these two innings are excluded.		1101
	the average of the remaining 38		hr,
	innings is 48 runs. The highest		
	score of the player is		per
	(1) 165 (2) 170		spe
8.	(3) 172 (4) 174		the
ю.	the man of and two anoya or going		(1)
	and copper prepared by mixing		(2)
	metals in the ratio 7 : 2 and 7 : 11 respectively. If equal		(3)

- 7: 11 respectively. If equal quantities of the alloys are melted to form a third alloy C, the ratio of gold and copper in C will be (1) 5:7 (2) 5:9
- (3) 7:5 (4) 9:5

- a laboratory, two bottles ntain mixture of acid and water the ratio 2 : 5 in the first bottle d 7 : 3 in the second. The ratio which the contents of these o bottles be mixed such that e new mixture has acid and ater in the ratio 2 : 3 is 4:15 (2) 9:821:8 (4) 1:2 e average of three numbers is 4. The first number is twice e second and the second umber is twice the third. The st number is 264 (2) 132 88 (4) 66e average salary of all the staff an office of a corporate house € 5,000. The average salary of e officers is₹ 14,000 and that the rest is \$ 4,000. If the total umber of staff is 500, the imber of officers is 10 (2) 1525 (4) 50 e average marks of 40 students an English exam is 72. Later it found that three marks 64, 62 d 84 were wrongly entered as , 65 and 73. The average after stakes were rectified is 70 (2) 72 71.9 (4) 72.1 three numbers, the second is rice the first and the third umber is three-fourth of the st. If the average of the three mbers is 114, the largest mber is 72 (2) 216(4) 726 354 car covers $\frac{1}{5}$ of the distance m A to B at the speed of 8 km/ of the distance at 25 km hour and the remaining at the eed of 20 km per hour. Find e average speed of the whole
 - mey. 12.625 km/hr
 - 13.625 km/hr
 - (3) 14.625 km/hr
- (4) 15.625 km/hr
- 33. A jar contains 10 red marbles and 30 green ones. How many red marbles must be added to the jar so that 60% of the marbles will be red?

STNE-121

SOLVED PAPER-09

- (2) 30 (1) 25(4) 40 (3) 35
- If a number multiplied by 25% of 34. itself gives a number which is 200% more than the number, then the number is (2) 16 (1) 12
- (3) 20(4) 24 The value of an article depreciates 35. every year at the rate of 10% of its value. If the present value of
 - the article is₹729, then its worth 3 years ago was (2) ₹1000 (1) ₹1250
 - (4) ₹1200 (3) ₹1125
- The price of onions has been 36. increased by 50%. In order to keep the expenditure on onions the same the percentage of reduction in consumption has to be
 - (2) $33\frac{1}{3}\%$ (1) 50%
- 37.

(3) 33% (4) 30% Walking at 3 km per hour, Pintu reaches his school 5 minutes late. If he walks at 4 km per hour he will be 5 minutes early. The distance of Pintu's school from his house is

(1) $1\frac{1}{2}$ km	(2) 2 km
1	

 $(3) 2\frac{}{2} \text{ km}$

38. Nitin bought some oranges at 40 a dozen and an equal number at₹ 30 a dozen. He sold them at ₹ 45 a dozen and made a profit of \$ 480. The number of

(4) 5 km

oranges, no	e bought, was
(1) 48	(2) 60
(3) 72	(4) 84

(4) 84 39. A man buys two chairs for a total cost of₹ 900. By selling one

for $\frac{4}{5}$ of its cost and the other

for d of its cost, he makes a

profit of ₹ 90 on the whole transaction. The cost of the lower priced chair is

- (1) ₹ 360 (2) ₹ 400
- (3) ₹ 420 (4) ₹ 300
- By selling 100 oranges, a vendor 40. gains the selling price of 20 oranges. His gain percent is

SOLVED PAPER-09

- (1) 20
- (3) 30
- (4) 32 41. 60% of the cost price of an article is equal to 50% of its selling price. Then the percentage of profit or loss on the cost price is (1) 20% loss

(2) 25

(2)
$$16\frac{2}{3}$$
 % profit

- (3) 20% profit
- (4) 10% loss
- 42. Maninder bought two horses at ₹ 40,000 each. He sold one horse at 15% gain, but had to sell the second horse at a loss. If he had suffered a loss of ₹ 3,600 on the whole transaction, then the selling price of the second horse is
 - (1) ₹ 30,000 (2) ₹ 30,200 (3) ₹ 30,300 (4) ₹ 30,400
- A fruit-seller buys x guavas for ₹ y and sells y guavas for $\mathbf{T} \mathbf{x}$. If \mathbf{x} > y, then he made

(1)
$$\frac{x^2 - y^2}{xy} \% \log x$$

(2)
$$\frac{x^2 - y^2}{xy} \% \text{ gain}$$

(3) $\frac{x^2 - y^2}{y^2}$ % loss

(4)
$$\frac{x^2 - y^2}{y^2}$$
 % gain

- 44. If the simple interest on $\mathbf{T} \mathbf{x}$ at a rate of α % for m years is same as that on \mathbf{T} y at a rate of a^2 % for m^2 years, then x: y is equal to (1) m : a (2) am: 1
 - (3) $\frac{1}{m}:\frac{1}{q}$
 - (4) $\frac{1}{am}$:1
- 45. A took two loans altogether of ₹ 1200 from B and C. B claimed 14% simple interest per annum. while C claimed 15% per annum. The total interest paid by A in one year was₹172. Then, A borrowed
 - (1) ₹ 800 from C
 - (2) ₹ 625 from C
 - (3) ₹ 400 from B
 - (4) ₹ 800 from B

46.	If a regular polygon has each of
- 14	its angles equal to $\frac{3}{5}$ times of two
	right angles, then the number of sides is
	(1) 3 (2) 5
	(3) 6 (4) 8
47.	A square is of area 200 sq. m. A new square is formed in such a way that the length of its
	diagonal is $\sqrt{2}$ times of the
	diagonal of the given square. Then the area of the new square formed is
	(1) $200\sqrt{2}$ sq.m (2) $400\sqrt{2}$ sq.m
22	(3) 400 sq.m (4) 800 sq.m.
48.	The heights of a cone, cylinder and hemisphere are equal. If their radii are in the ratio 2:3:1, then the ratio of their volumes is
	(1) 2:9:2 (2) 4:9:1
	(3) 4:27:2 (4) 2:3:1
49.	A motor-boat can travel at 10 km/hour in still water. It travelled 91 km downstream in a river and then returned to the same place, taking altogether 20 hours. Find
	the sets of Que C i louis. Find

the rate of flow of river. (1) 3 km/hour (2) 4 km/hour (3) 2 km/hour (4) 5 km/hour

50. A man driving at
$$\frac{3}{4}$$
 th of his

original speed reaches his destination 20 minutes later than the usual time. Then the usual time is

- (1) 45 minutes
- (2) 60 minutes
- (3) 75 minutes
- (4) 120 minutes
- 51. A motor boat, travelling at the same speed, can cover 25 km upstream and 39 km downstream in 8 hours. At the same speed, it can travel 35 km upstream and 52 km downstream in 11 hours. The speed of the stream is (1) 2 km/hr (2) 3 km/hr (3) 4 km/hr (4) 5 km/hr 52. If a sum of money placed at com-
- pound interest, compounded annually, doubles itself in 5 years, then the same amount of money will be 8 times of itself in (1) 25 years (2) 20 years (3) 15 years (4) 10 years

STNE-122

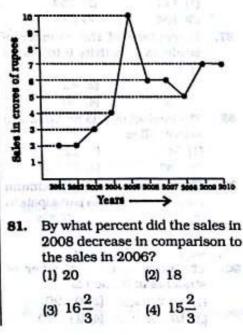
SOLVED PAPER-09

A person has left an amount of 53. ₹1,20,000 to be divided between his two sons aged 14 years and 12 years such that they get equal amounts when each attains 18 years of age. If the amount gets a simple interest of 5% per annum, the younger son's share at present is (1) ₹ 48,800 (2) ₹ 57,600 (3) ₹ 62,400 (4) ₹ 84,400 If $a^2 + b^2 + c^2 = 2(a - b - d) - 3$ 54. then the value of (a - b + c) is (1) -1 (2) 3 (4) - 2(3) 1 55. If $x^2 + 3x + 1 = 0$, then the value of $x^3 + \frac{1}{x^3}$ is (1) - 18(2) 18 (3) 36 (4) - 36If x^{a} . x^{b} . $x^{c} = 1$ then the value of 56. $a^3 + b^3 + c^3$ is (1) 9(2) abc (3) a + b + c(4) 3abc Base of a right pyramid is a 57. square, length of diagonal of the base is $24\sqrt{2}$ m. If the volume of the pyramid is 1728 cu.m, its height is (1) 7 m (2) 8 m (3) 9 m (4) 10 m 58. The height of a right circular cont and the radius of its circular base are respectively 9 cm and 3 cm The cone is cut by a plane parallel to its base so as to divide it into two parts. The volume of the frustum (i.e., the lower part) d the cone is 44 cubic cm. The radius of the upper circular surface of the frustum (taking" $=\frac{22}{7}$) is (1) ¥12 cm (2) 313 cm (3) ∛6 cm (4) \$20 cm 59. The ratio of radii of two right circular cylinders is 2:3 and the heights are in the ratio 5:4. The ratio of their curved surface are ls (1) 5:6(2) 3:4

Scanned by CamScanner

(4) 2:3

(3) 4 : 5


	-	
80.	A solid cylinder has total surface area of 462 sq. cm. Curved	68.
	surface area is $\frac{1}{3}$ rd of its total	-
	surface area. The volume of the	-191/
	cylinder is	
	(1) 530 cm ³ (2) 536 cm ³	
	(3) 539 cm ³ (4) 545 cm ³	69
61.	A cylinder and a cone have equal radii of their bases and equal	
	heights. If their curved surface	
	areas are in the ratio 8 : 5, the	
	ratio of their radius and height is	
	(1) 1 : 2 (2) 1 : 3	
	(3) 2:3 (4) 3:4	
	A solid is hemispherical at the	
62.	bottom and conical above. If the surface areas of the two parts are	70
	equal, then the ratio of radius and	
	height of its conical part is	
	(1) 1 : 3 (2) 1 : 1	71
	· · · · · · · · · · · · · · · · · · ·	100
	$(3) \sqrt{3} : 1$ $(4) 1 : \sqrt{3}$	- 110
63.	Base of a right prism is an equilateral triangle of side 6 cm. If the volume of the prism is	
	108 $\sqrt{3}$ cc, its height is	140
		110
	(1) 9 cm (2) 10 cm (3) 11 cm (4) 12 cm	73
64.	If $a + \frac{1}{a} + 2 = 0$, then the value of	
	$\left(a^{37}-\frac{1}{a^{100}}\right)$ is	
	(1) 0 (2) -2	1
10.1	(3) 1 (4) 2	
65.		
	graphs of $(k-1)x+y-2=0$ and	1.7
100	(2-k)x-3y+1=0 are parallel	100
	is	1.1
	St. south a	7
44	(1) $\frac{1}{2}$ (2) $-\frac{1}{2}$	
	- 500 Per-	11
	(3) 2 (4) -2	10
66.	The length of a shadow of a	
	vertical tower is $\frac{1}{\sqrt{3}}$ times its	
	height. The angle of elevation of	11
	the Sun is	
	(1) 30° (2) 45° (4)	
-	(3) 60° (4) 90° (4)	
67.	1 + 20 = 0	17
10	3x - 2y = 1 meet the Y-axis at	1
19	two points having distance	1
	• • • • • • • • • • • • • • • • • • •	E
	(1) $\frac{8}{3}$ units (2) $\frac{4}{3}$ units	
	(m 1 / m)	
	(3) 1 unit (4) 2 units	1

ď

ダクガイ

88.	If $x + \frac{1}{16x} = 1$, then the value of	1
19-17	$64x^3 + \frac{1}{64x^3}$	CONTRACTOR CONTRACTOR	
69.	(1) 4 (3) 64 If a, b, c are numbers suc	(2) 52 (4) 76 three non-zero real th that $a + b + c = 0$, then the value of	
1	$\frac{a^2+b^2+c^2}{b^2-ca}$	is	
70.		(2) 2 (4) 1 + $b^4 = 8$ and $a^2 + ab$	
71.	(1) -1 (3) 2 If $a = 25$, b	n the value of ab is (2) 0 (4) 1 = 15, $c = -10$, then	
1	the value of $a^3 + b^3$ $(a - b)^2 + (b)$	$\frac{+c^3 - 3abc}{-c)^2 + (c-a)^2}$ is	
72.	 (1) 30 (2) -30 A, B, C are circle. The taproduced at 	 (2) -15 (4) 15 three points on a angent at A meets BC T, ∠BTA = 40°, ∠CAT 	
73.	BC at the ce (1) 84° (3) 96° If the length at a distance	angle subtended by entre of the circle is (2) 92° (4) 104° of a chord of a circle ce of 12 cm from the 10 cm, then the	1
aP net	diameter of (1) 13 cm	(2) 15 cm (4) 30 cm	
74.	points of th	and Q are the middle he sides AB and AC	
18	segment PC	r. R is a point on the such that PR : RQ = = 2cm, then BC = (2) 2 cm	
75.	(3) 12 cm	(4) 6 cm ircumcentre of ΔABC	
	and $\angle OBC$ is equal to (1) 55° (3) 70°	= 35°, then the ∠ BAC (2) 110° (4) 35°	-
76	 If I is the ir ∠ BIC = 13 (1) acute ar (2) equilate 	ral	1
13	(3) right an (4) obtuse	gled	1

If $\sin^2 \alpha + \sin^2 \beta = 2$, then the 1 77. value of $\cos\left(\frac{\alpha+\beta}{2}\right)$ is (2) - 1(1) 1 (3) 0 (4) 0.5 78. The value of $\cot\frac{\pi}{20} \quad \cot\frac{3\pi}{20} \quad \cot\frac{5\pi}{20} \cot\frac{7\pi}{20}$ $\cot \frac{9\pi}{20}$ is (2) 1/2 (1) -1 (4) 1 (3) 0 If $\sin\theta + \cos\theta = \frac{17}{13}$, $0 < \theta < 90^{\circ}$, 79. then the value of $\sin\theta - \cos\theta$ is 5 (2) 19 (1) 17 (4) $\frac{7}{13}$ (3) 7/10 If $\tan \theta$. $\tan 2\theta = 1$, then the 80. value of sin² 20 + tan² 20 is equal to (2) (1) (3) 3 (4) 3 Directions (81 - 85) : The following line diagram represents the yearly sales figures of a company in the years 2001-2010. Examine the diagram and answer the questions 81 to 85.

SOLVED PAPER-09

- 82. The ratio of sales in 2002 to that in 2007 is (1) 2:3 (2) 1 : 3(3) 1 : 1(4) 3:2
- 83. Average sale (in crores of 3) of the company during the period 2003 - 2007 is (1) 5.8(2) 5
 - (3) 6(4) 5.5
- The percentage increase in sales in the year 2005 with respect to the previous year is (1) 80 (2) 100
 - (4) 150 (3) 120 Total sales (in crores of ₹) from
- 85 2005 to 2008 is (1) 17(2) 27
 - (3) 22(4) 31

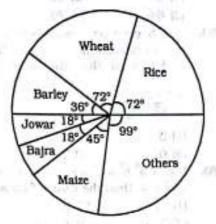
Directions (86 - 90) : The following table shows the number of students of 7 colleges participating in extra curricular activities :

Extra	Colleges						
Activities	Δ	B	C	D	E	F	G
1	200	300	500	100	400	300	200
п	100	200	200	100	100	100	100
ш	65	130	420	75	540	220	153
IV	317	155	438	105	385	280	120

Read the table and answer questions 86 to 90

86. The difference of the range of number of students in activity IV and the average of number of students in activity III per college

	is	and the second second
	(1) 111	(2) 153
	(3) 104	(4) 217
37.		of the number of activity II to that of
92	(1) 37	(2) 42
	(3) 48	(4) 50
38.	The median activity III i	of data pertaining to
	(1) 540	(2) 229
	(3) 153	(4) 75
89 .	number of a	in which minimum students participate in cular activities is
	(1) D	(2) G
	(3) F	(4) A
90.	The ratio students in	of total number of I and I is


8

1

(1) 1:2

(3) 19:7

Directions (91 - 95) : The piechart provided below gives the distribution of land (in a village) under various food crops. Study the ple-chart carefully and answer the questions from 91 to 95.

- 91. If the total area under bajra was three hundred acres, then the total area (in hundred acres) under rice and barley together is (1) 18 (2) 12
 - (3) 15 (4) 20 The combination of three crops
- 92. which contribute to more than 50% of the total area under the food crops is (1) Wheat, rice and maize
 - (2) wheat, rice and jowar
 - (3) wheat, rice and baira
 - (4) rice, barley and maize

1

(2) 9:20

(4) 21:10

93. The ratio of the land used for rice and barley is

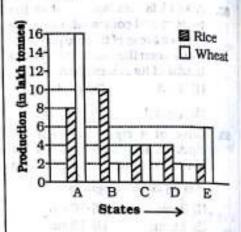
(1) 3 : 1	(2) 1:2
(3) 2 : 1	(4) 3:2

94. If 10% of the land reserved for rice be distributed to wheat and barley in the ratio 2 : 1, then the angle corresponding to wheat in the new pie-chart will be

On-line Shopping BOOKS AND MAGAZINES of Kiran Prakashan

Get books and magazines of Kiran Prakashan at your doorstep easily, log on our website :

www.kiranprakashan.com


SOLVED PAPER-00

(1) 38.4°	(2) 76.8°	
(3) 75.6°	(4) 45.5°	
TAL	lon of rice in E	

If the production of rice is 5 times 95. that of Jowar and the production of jowar is 2 times that of bajra then the ratio between the yield per acre of rice and bajra is 1011 0

(1) 5 : 1	(2) 3 ; 1
(3) 4 : 1	(4) 6 : 1

Directions (96 - 100) : The bar graph provided below represents the production of rice and wheat in different states of a country in a certain year. Answer questions 96 to 100 based on the bar graph.

96. The total production of rice and wheat in all the mentioned states is minimum in the state

(1) B	(2) C
(3) D	(4) E

97. The ratio of total production of rice in the mentioned states to that of wheat in those states, is (1) 15:16

(2) 12 : 13

(3) 13:14

(4) 14 : 15

98. The difference between the production in rice and wheat B maximum in

(1) A only

- (2) all of A, B and E
- (3) B and E both
- (4) A and B both 99.
- The state which is the largest producer of rice is (1) A (2) B
- (3) C (4) D
- 100. The average of production of riot in the mentioned states (in lake tonnes) is (1) 5.5 (2) 5.6 (3) 5.7

SOLVED PAPER-09

ANSWERS					
1. (4)	2. (3)	3. (3)	4. (3)		
5. (4)	6. (4)	7. (3)	8. (*)		
9. (2)	10. (2)	11. (3)	12. (4)		
13. (3)	14. (1)	15. (4)	16. (3)		
17. (1)	18. (1)	19. (1)	20. (2)		
21. (2)	22. (4)	23. (4)	24. (2)		
25. (4)	26. (3)	27. (3)	28. (1)		
29. (4)	30. (4)	31. (2)	32. (4)		
33. (3)	34. (1)	35. (2)	36. (2)		
37. (2)	38. (1)	39. (4)	40. (2)		
41. (3)	42. (4)	43. (4)	44. (2)		
45. (4)	46. (2)	47. (3)	48. (3)		
49. (1)	50. (2)	51. (3)	52 . (3)		
53. (2)	54. (3)	55. (1)	56. (4)		
57. (3)	58. (2)	59. (1)	60. (3)		
61. (4)	62. (4)	63. (4)	64. (2)		
65. (1)	66. (3)	67. (4)	68. (2)		
69. (2)	70. (4)	71. (4)	72. (4)		
73. (3)	74. (3)	75. (1)	76. (3)		
77. (3)	78. (4)	79. (4)	80. (3)		
81. (3)	82. (2)	83. (1)	84. (4)		
85. (2)	86. (3)	87. (4)	88. (3)		
89. (1)	90. (2)	91. (1)	92. (1)		
93. (3)	94. (2)	95. (*)	96. (3)		
97. (4)	98. (4)	99. (2)	100. (2)		
EXPLANATIONS 1. (4) Quotient $=\frac{a}{4}$					

Remainder = $\frac{u}{2}$

tient + Remainder

 $\Rightarrow b = \frac{a \times a}{4} + \frac{a}{2}$

 $=\frac{a^2+2a}{4}=\frac{a(a+2)}{4}$

 $\Rightarrow 4b = a(a+2)$

: Dividend = Divisor × Quo-

 $\Rightarrow \frac{a(a+2)}{b} = 4$ 2. (3) A number is exactly divisible by 11, if the difference between the sums of digits at even and odd places be either zero or a multiple of 11. $\therefore (A + A + 3) - (6 + 8 + 7) = 0$ \Rightarrow 2A + 3 = 21 $\Rightarrow 2A = 21 - 3 = 18$ $\therefore A = \frac{18}{2} = 9$ 3. (3) Let the numbers be a and b. : ab = 1575 and, $\frac{a}{b} = \frac{9}{7}$ $\therefore ab \times \frac{a}{b} = 1575 \times \frac{9}{7}$ $\Rightarrow a^2 = 2025$ $\Rightarrow a = \sqrt{2025} = 45$ ab = 1575 $\Rightarrow b = \frac{1575}{a} = \frac{1575}{45} = 35$ a + b = 45 + 35 = 804. (3) Expression = $\frac{(81)^{3.6} \times (9)^{2.7}}{(81)^{4.2} \times 3}$ $=\frac{(3^4)^{3.6}\times(3^2)^{2.7}}{(3^4)^{4.2}\times3}$ $=\frac{3^{14.4}\times3^{5.4}}{3^{5.4}}$ 316.8 × 3 $[\cdot: (a^m)^n = a^{mn};$ $a^m \times a^n = a^{m+n}$ $a^m \div a^n = a^{m-n}$ $\frac{3^{14.4+5.4}}{3^{16.8+1}} = \frac{3^{19.8}}{3^{17.8}}$ $= 3^{19.8-17.8} = 3^2 = 9$ 5. (4) Let $x = \sqrt{6} + \sqrt{6} + \sqrt{6} + \dots$ On squaring both sides, $x^2 = 6 + \sqrt{6} + \sqrt{6} + \sqrt{6} + \dots$ $\Rightarrow x^2 = 6 + x$ $\Rightarrow x^2 - x - 6 = 0$ $\Rightarrow x^2 - 3x + 2x - 6 = 0$ $\Rightarrow x(x-3) + 2(x-3) = 0$ \Rightarrow (x + 2) (x - 3) = 0 \Rightarrow x = 3 and x \neq -2 because

STNE-125

SOLVED PAPER-09

numbers are positive. 6. (4) By mental operation, $13^2 + 15^2 = 169 + 225 = 394$:. Required sum = 13 + 15 = 28 7. (3) Remainder when $(a-1)^n$ is divided by $a = (-1)^n$ ∴ 67⁶⁷ + 67 = (68 - 1)⁶⁷ + 67 Remainder when (68-1) is divided by 68 $= (-1)^{67} = -1$. Required remainder = -1 + 67 = 668. (*) Let the work be finished in x days. .: Work done by A in 6 days + work done by B in (x-6) days + work done by C in x days = 1 $\therefore \frac{6}{24} + \frac{(x-6)}{52} + \frac{x}{64} = 1$ $\Rightarrow \frac{x-6}{52} + \frac{x}{64} = 1 - \frac{1}{4} = \frac{3}{4}$ $\Rightarrow \frac{16(x-6)+13x}{13\times16\times4} = \frac{3}{4}$ $\Rightarrow 16x - 96 + 13x = 13 \times 16 \times 3$ $\Rightarrow 29x = 624 + 96 = 720$ $\Rightarrow x = \frac{720}{27}$ 29 9. (2) Expression $=\frac{(0.75)^3}{(1-0.75)} + \left[0.75 + (0.75)^2 + 1\right]$ $=\frac{(0.75)^3 + (1 - 0.75)(0.75)^2 + 0.75 \times 1 + 1^2}{1 - 0.75}$ $=\frac{(0.75)^3+1^3-(0.75)^3}{0.25}$ $\begin{bmatrix} \because (a-b)(a^2+ab+b^2) \\ = a^3-b^3 \end{bmatrix}$ $=\frac{1}{0.25}=\frac{100}{25}=4$. Required square root $=\sqrt{4}=2$ **10.** (2) $\sqrt{4096} = 64$ $\therefore \sqrt{40.96} = \sqrt{\frac{4096}{100}} = \frac{64}{10} = 6.4$ and 4096 1000000 = _____64 0.004096 = = 0.0641000

part

SOLVED PAPER-09

SOLVED PAPER-00

.: Expression = 64 + 6.4 +0.064= 70.464 11. (3) Expression = 3011 × 3012 = 3011 (3011 + 1) $=(3011)^2+3011$ ∴ Required answer = 3011 12. (4) Work done by (P + Q + R)(t) = 1 Work done by $(P + Q) = \frac{19}{23}$ Work done by $(Q + R) = \frac{1}{23}$(iii) From equations (ii) + (iii) - (i) $Q = \frac{19}{23} + \frac{8}{23} - 1 = \frac{27 - 23}{23} = \frac{4}{23}$:. Wage of Q = $\frac{4}{23} \times 5750$ = Rs. 1000 13. (3) Let the marked price of article be Rs. x and its C.P. be Rs. 100. $\therefore \frac{60x}{100} = 100 - 30 = 70$ $\Rightarrow 60x = 70 \times 100$ $\Rightarrow x = \frac{70 \times 100}{60} = \frac{700}{6} = \text{Rs}.\frac{350}{3}$ On selling at marked price, $Profit = \frac{350}{3} - 100 = \frac{50}{3} = 16\frac{2}{3}$ 14. (1) Part of the cistern filled in 2 hours by pipe A = $\frac{2}{3}$ Part of the cistern filled in 1 hour by pipe $B = \frac{1}{4}$.: Total part filled $=\frac{2}{3}+\frac{1}{4}=\frac{8+3}{12}=\frac{11}{12}$ When all three pipes are opened, the part filled in one $=\frac{1}{3}+\frac{1}{4}-1=\frac{4+3-12}{12}=\frac{-5}{12}$ i.e. $\frac{5}{12}$ part will be emptied per hour. \therefore Time taken to empty $\frac{11}{12}$

 $=\frac{11}{12}\times\frac{12}{5}=\frac{11}{5}$ hours = 2 hours 12 minutes .: Required time = 5 + 2 : 12 = 7 : 12 p.m. 15. (4) Let A and B together complete the work in x days \therefore Time taken by A = (x + 4) days Time taken by B = (x + 16) days $\therefore \ \frac{1}{x+4} + \frac{1}{x+16} = \frac{1}{x}$ $\Rightarrow \frac{x+16+x+4}{(x+4)(x+16)} = \frac{1}{x}$ $\Rightarrow 2x^2 + 20x = x^2 + 20x + 64$ $\Rightarrow x^2 = 64 \Rightarrow x = \sqrt{64} = 8$ days **16.** (3) $M_1D_1T_1 = M_2D_2T_2$ $\Rightarrow 250 \times 20 \times 5 = M_0 \times 10 \times 8$ $\Rightarrow M_2 = \frac{250 \times 20 \times 5}{10 \times 8} = 312.5$... Minimum number of men required = 313 17. (1) (2M + 5W) × 12 $= (5M + 2W) \times 9$ \Rightarrow 24M + 60W = 45M + 18W \Rightarrow 42 W = 21M $\Rightarrow 2W \equiv 1M$: 2M + 5W = 9W $\therefore M, D, = M, D_{2}$ $\Rightarrow 9 \times 12 = 3 \times D_{2}$ $\Rightarrow D_2 = \frac{9 \times 12}{3} = 36$ days 18. (1) Let the cost price be Rs. 100 and marked price be Rs. x. $\therefore x \times \frac{3}{4} = 125$ $\Rightarrow x = \frac{125 \times 4}{3} = \text{Rs.} \frac{500}{3}$.: Required ratio $=\frac{500}{3}:100=5:3$ 19. (1) Let the incomes of A and B be Rs. 2x and Rs. x respectively and their expenditures be Rs. 5y and Rs. 3y respectively A's savings $=\frac{4}{E} \times 5000 = \text{Rs.}4000$ B's savings = Rs. 1000 $\therefore 2x - 5y = 4000 \dots (i)$

STNE-126

 $x - 3y = 1000 \dots$ (ii) By equation (i) x 3 - equation (ii) × 5. 6x - 15x - (5x - 15x)= 12000 - 5000 - $\Rightarrow 6x - 5x = 7000$ ⇒ x = Rs. 7000 20. (2) Let the numbers be x and u where x > y. $\therefore \frac{x+y}{x-y} = \frac{5}{1}$ By componendo and dividendol $\Rightarrow \frac{x+y+x-y}{x+y-x+y} = \frac{5+1}{5-1}$ $\Rightarrow \frac{x}{u} = \frac{6}{4} = \frac{3}{2}$ 21. (2) Single equivalent discount for two successive discounts of x% and y% $=\left(x+y-\frac{xy}{100}\right)\%$. Single equivalent discount for 10% and 20% $=(10+20-\frac{10\times20}{100})\%=28\%$ Single equivalent discount for 28% and 50% $=\left(50+28-\frac{50\times28}{100}\right)\%$ = (78 - 14)% = 64%22. (4) I. Single equivalent discount $=\left(10+10-\frac{10\times10}{100}\right)\%=19\%$ II. Single equivalent discount $=\left(12+8-\frac{12\times8}{100}\right)\% = 19.04\%$ III. Single equivalent discount $=\left(15+5-\frac{15\times5}{100}\right)\%=19.25\%$

23. (4) In the beginning,
Acid : water = 4 : 1
Let x litres of mixture be replaced by x litres of water.
∴ In x litres of mixture,

milk = $\frac{4x}{5}$ litres

SOLVED PAPER-09

SOLVED PAPER-09

and, water = $\frac{x}{5}$ litres $\frac{4-\frac{4x}{5}}{1-\frac{x}{5}+x} = \frac{4}{3} - 6$ $\Rightarrow \frac{20-4x}{5-x+5x} = \frac{4}{3}$ $\Rightarrow 60 - 12x = 20 + 16x$ $\Rightarrow 28x = 40$ $\Rightarrow x = \frac{40}{28} = \frac{10}{7} = 5 \times \frac{2}{7}$ 24. (2) Required ratio =9×14:8×15 = 21 : 2025. (4) Let the cricketer's highest score = xruns : Minimum score = (x-172) runs . Total runs scored in 40 innings = 40 × 50 = 2000 runs Total runs scored in 38 innings = 38 × 48 = 1824 x + x - 172 = 2000 - 1824= 176 $\Rightarrow 2x = 176 + 172 = 348$ $\therefore x = \frac{348}{2} = 174$ 26. (3) Let the weight of alloy A be 1 kg. :. Gold in A = $\frac{7}{9}$ kg and cop $per = \frac{2}{2} kg$ In 1 kg of alloy B, Gold $=\frac{7}{18}$ and copper $=\frac{11}{18}$ kg .: Required ratio $=\left(\frac{7}{9}+\frac{7}{18}\right):\left(\frac{2}{9}+\frac{11}{18}\right)$ $=\frac{21}{18}:\frac{15}{18}=21:15=7:5$ 27. (3) Let required ratio be x: y. $\therefore \frac{\frac{2x}{7} + \frac{7y}{10}}{\frac{5x}{7} + \frac{3y}{10}} = \frac{2}{3}$ $\Rightarrow \frac{20x + 49y}{50x + 21y} = \frac{2}{3}$

 \Rightarrow 60x+147y = 100x+42y \Rightarrow 100x-60x=147y-42y $\Rightarrow 40x = 105u$ $\Rightarrow \frac{x}{u} = \frac{105}{40} = \frac{21}{8}$ **28.** (1) Let third number = x \therefore Second number = 2x and First number = 4x $\therefore 4x + 2x + x = 154 \times 3$ \Rightarrow 7x = 462 $\Rightarrow x = \frac{462}{7} = 66$.: First number $=4x=4 \times 66 = 264$ 29. (4) Let the number of officers be x, then number of the rest officials = 500 - x $\therefore x \times 14000 + (500 - x) 4000$ $= 5000 \times 500$ $\Rightarrow x \times 14 + (500 - x)4$ $= 5 \times 500$ $\Rightarrow 14x + 2000 - 4x = 2500$ $\Rightarrow 10x = 2500 - 2000 = 500$ $\Rightarrow x = \frac{500}{10} = 50$ 30. (4) Difference = (64 + 62 + 84) -(68+65+73)= 210 - 206 = 4.: Correct average $=72+\frac{4}{40}=72.1$ 31. (2) Let the first number be x. \therefore Second number = 3xThird number = $\frac{3x}{4}$:. $x + 3x + \frac{3x}{4} = 3 \times 114$ $\Rightarrow \frac{4x + 12x + 3x}{4} = 342$ $\Rightarrow 19x = 342 \times 4$ $\therefore x = \frac{342 \times 4}{19} = 72$: Largest number $= 3x = 3 \times 72 = 216$ 32. (4) Let the total distance be 1 km. .: Total time $=\frac{1}{5\times8}+\frac{1}{10\times25}+\left|\frac{1-\frac{1}{5}-\frac{1}{10}}{20}\right|$

STNE_127

 $Time = \frac{Distance}{Speed}$ $=\frac{1}{40}+\frac{1}{250}+\left(\frac{\frac{10-2-1}{10}}{20}\right)$ $=\frac{1}{40}+\frac{1}{250}+\frac{7}{200}$ $=\frac{25+4+35}{1000}=\frac{64}{1000}$ $=\frac{8}{125}$ hours : Average speed = Total distance Time taken $=\frac{125}{9}$ = 15.625 kmph 33. (3) Let x red marbles be added. $\therefore \frac{10+x}{40+x} \times 100 = 60$ $\Rightarrow \frac{(10+x)\times 5}{40+x} = 3$ \Rightarrow 50 + 5x = 120 + 3x \Rightarrow 5x - 3x = 120 - 50 $\Rightarrow 2x = 70 \Rightarrow x = \frac{70}{2} = 35$ 34. (1) Let the number be x. $\therefore x \times \frac{x}{4} = x \times \frac{300}{100}$ $\Rightarrow \frac{x^2}{4} = 3x \Rightarrow x = 3 \times 4 = 12$ **35.** (2) $A = P \left(1 - \frac{R}{100}\right)^T$ $\Rightarrow 729 = P \left(1 - \frac{10}{100}\right)^3$ $\Rightarrow 729 = P \times \left(\frac{9}{10}\right)^3 = \frac{729}{1000} P$ $\Rightarrow P = \frac{729 \times 1000}{729} = \text{Rs. 1000}$ 36. (2) Required reduction percent $=\frac{x}{100+x} \times 100$ $=\frac{50}{150}\times100=\frac{100}{3}=33\frac{1}{3}\%$ 37. (2) Let the distance of school be xkm.

SOLVED PAPER-09

Then. $\frac{x}{3} - \frac{x}{4} = \frac{10}{60}$ $\Rightarrow \frac{4x-3x}{12} = \frac{1}{6} \Rightarrow \frac{x}{12} = \frac{1}{6}$ $\Rightarrow x = 2 \text{ km}$ 38. (1) Let the number of oranges bought be 2x dozens. . Total C.P. =40x+30x=Rs.70xTotal S.P. $=45 \times 2x = Rs.90x$:. Profit = 90x-70x = Rs. 20x $\therefore 20x = 480$ $\Rightarrow x = \frac{480}{20} = 24$.: Number of oranges bought = 2 x 24 = 48 dozens 39. (4) Let the CP of chair sold at loss be Rs. x. . CP of second chair = Rs. (900 - x) $\therefore \frac{900-x}{4}-\frac{x}{5}=90$ $\Rightarrow \frac{4500-5x-4x}{20} = 90$ $\Rightarrow 4500 - 9x = 1800$ $\Rightarrow 9x = 4500 - 1800 = 2700$ $\Rightarrow x = \frac{2700}{9} = \text{Rs. 300}$ 40. (2) Let S.P. of 100 oranges be Rs. x. : SP of 20 oranges $=\frac{x\times 20}{100}$ = Rs. $\frac{x}{5}$ = Gain

 $\therefore \text{ C.P.} = x - \frac{x}{5} = \text{Rs.} \frac{4x}{5}$ $\therefore \text{ Gain per cent}$ $= \frac{\frac{x}{5}}{\frac{4x}{5}} \times 100 = \frac{100}{4} = 25\%$

41. (3) Let the C.P. of article be Rs. 100 and its S.P. be Rs. *x*.

 $\therefore 100 \times \frac{60}{100} = \frac{x \times 50}{100}$ $\Rightarrow 60 = \frac{x}{2} \Rightarrow x = 120$ $\therefore \text{ Gain\%} = 20\%$ **42.** (4) S.P. of first horse

= 40000 × 115 100 = Rs. 46000 : S.P. of second horse = Rs.(80000 - 46000 - 3600) = Rs. 30400 43. (4) Let the seller buy xy guavas. ∴ C.P. of xy guavas = y² S.P. of xy guavas $=xy\times\frac{x}{y}=x^2$ \therefore Gain = $x^2 - u^2$ $Gain\% = \frac{x^2 - y^2}{v^2} \times 100$ 44. (2) S.I. = Principal × Time × Rate $\therefore \frac{x \times m \times a}{100} = \frac{y \times m^2 \times a^2}{100}$ $\Rightarrow \frac{x}{u} = \frac{m^2 a^2}{ma} = \frac{ma}{1}$ 45. (4) Let A borrowed Rs. x from : Amount borrowed from C = Rs.(1200 - x) $\therefore \frac{x \times 14 \times 1}{100} + \frac{(1200 - x) \times 15 \times 1}{100} = 172$ $\Rightarrow 14x + 18000 - 15x = 17200$ $\Rightarrow 18000 - x = 17200$ $\Rightarrow x = 18000 - 17200 = \text{Rs. 800}$ 46. (2) Each interior angle of a regular polygon $=180 \times \frac{3}{5} = 108^{\circ}$ Each interior angle of a regular polygon of n sides $=\left(\frac{2n-4}{n}\right)\times 90^{\circ}$ $\therefore \left(\frac{2n-4}{n}\right) \times 90^\circ = 108^\circ$ $\Rightarrow \left(\frac{2n-4}{n}\right) \times 10 = 12$

 $\Rightarrow 20n - 40 = 12n$

 $\Rightarrow n=5$

 $\Rightarrow 8n = 40$

= √Area

 $\Rightarrow 20n - 12n = 40$

47. (3) Side of the first square

STNE-128

= \200 = 10\2 metre Its diagonal = 12 x sid. $= 10\sqrt{2} \times \sqrt{2}$ = 20 metre : Diagonal of new square $=\sqrt{2} \times 20 = 20\sqrt{2}$ metre : Its area = 1 × (diagonate $=\frac{1}{2}\times 20\sqrt{2}\times 20\sqrt{2}$ = 400 sq. metre 48. (3) Height of cone = height cylinder = radius of here sphere = r units . Ratio of the volumes . cone, cylinder and hemisphe $=\frac{1}{2}\pi r_1^2 h: \pi r_2^2 h: \frac{2}{3}\pi r^3$ $=\frac{1}{3}\pi 2^2 r^3 : \pi 3^2 r^3 : \frac{2}{3}r^3$ $=\frac{4}{3}:9:\frac{2}{3}$ = 4:27:2 49. (1) Let the rate of stream be kmph. .: Rate downstream = (10 + x) kmph Rate upstream = (10 - x) kmi $\therefore \ \frac{91}{10+x} + \frac{91}{10-x} = 20$ $\Rightarrow 91\left(\frac{10-x+10+x}{(10+x)(0-x)}\right) = 20$ $\Rightarrow (10 + x)(10 - x) = 91$ $\Rightarrow 100 - x^2 = 91$ $\Rightarrow x^2 = 100 - 91 = 9$ $\therefore x = \sqrt{9} = 3$ kmph 50. (2) Speed and time are inverse ly proportional for a fixed de tance. $\therefore \frac{4}{3}$ of usual time - usu time = 20 minutes \Rightarrow Usual time $\times \frac{1}{2} = 20$.: Usual time = 3 x 20 = 60 minutes 51. (3) Let speed of motorboal still water be x kmph af

SOLVED PAPED

SOLVED PAPER-09

speed of stream be y kmph. $\therefore \frac{25}{x-y} + \frac{39}{x+y} = 8$ (1) $\frac{35}{x-y} + \frac{52}{x+y} = 11$ (ii) By equation (i) $\times 4 - (ii) \times 3$, $\frac{100}{x-y} - \frac{105}{x-y} = 32 - 33$ $\Rightarrow \frac{-5}{x-y} = -1 \Rightarrow x-y = 5$ ··· (iii) From equation (i), $\frac{25}{5} + \frac{39}{7+11} = 8$ $\Rightarrow \frac{39}{x+y} = 8-5=3$ $\Rightarrow x + y = 13$ (iv) By equation (iv)-(iii) x+y-x+y=13-5=8 $\Rightarrow 2y = 8$ $\Rightarrow y = \frac{8}{2} = 4$ kmph

52. (3) Let the principal be Re. 1.

200

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$
$$\Rightarrow 2 = 1 \left(1 + \frac{R}{100} \right)^{5}$$
Cubing both sides,

 $2^{3} = \left(1 + \frac{R}{100}\right)^{5 \times 3}$ $\Rightarrow 2^{3} = \left(1 + \frac{R}{100}\right)^{15}$

 $\therefore \text{ Time} = 15 \text{ years}$ 53. (2) Let the younger son's share be Rs. x. $\therefore \text{ Elder son's share}$ = Rs. (120000 - x) $\therefore x + \frac{x \times 5 \times 6}{100} = (120000 - x) + \frac{(120000 - x) \times 4 \times 5}{100}$ $\Rightarrow 20x + 6x$ $= 20 \times 120000 - 20x + 480000 - 4x$ $\Rightarrow 50x = 2400000 + 480000$

⇒ 50x=2880000

 $\Rightarrow x = \frac{2880000}{50} = \text{Rs.57600}$ $\Rightarrow a^2 + b^2 + c^2 - 2a + 2b + 2c +$ 1 + 1 + 1 = 0 \Rightarrow (a² - 2a + 1) + (b² + 2b + 1) + $(c^2 + 2c + 1) = 0$ $\Rightarrow (a-1)^2 + (b+1)^2 + (c+1)^2 = 0$ $\Rightarrow a - 1 = 0 \Rightarrow a = 1$ $\Rightarrow b+1=0 \Rightarrow b=-1$ $\Rightarrow c+1 = 0 \Rightarrow c = -1$ a - b + c = 1 + 1 - 1 = 1**55.** (1) $x^2 + 3x + 1 = 0$ Dividing by x, $x+3+\frac{1}{x}=0$ $\Rightarrow x + \frac{1}{x} = -3$ Cubing both sides, $\left(x+\frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3\left(x+\frac{1}{x}\right)$ $\Rightarrow (-3)^3 = x^3 + \frac{1}{x^3} + 3(-3)$ $\Rightarrow -27 = x^3 + \frac{1}{x^3} - 9$ (c) 80 $\Rightarrow x^3 + \frac{1}{x^3} = -27 + 9 = -18$ 56. (4) x^{a} . x^{b} . $x^{c} = 1$ $\Rightarrow x^{a+b+c} = 1 = x^{o}$ $\Rightarrow a+b+c=0$ Now, $a^3 + b^3 + c^3 - 3abc$ $= (a + b + c) (a^2 + b^2 + c^2 - ab - b^2)$ bc - ac) $\Rightarrow a^3 + b^3 + c^3 - 3abc = 0$ $\Rightarrow a^3 + b^3 + c^3 = 3abc$ 57. (3) Area of the base $=\frac{1}{2}\times$ (diagonal)² $=\frac{1}{2}\times 24\sqrt{2}\times 24\sqrt{2}$ = 576 sq. metre. .: Volume of pyramid $=\frac{1}{3}$ x height x area of base $\Rightarrow 1728 = \frac{1}{9} \times h \times 576$

 $\Rightarrow h = \frac{1728 \times 3}{576} = 9 \text{ metre}$

STNE-129

SOLVED PAPER-09

58. (2) Let $DO' = r \, cm$ and $00' = h \, \text{cm}.$ From similar triangles ADO' and ABO, $\frac{AO'}{AO} = \frac{DO'}{BO}$ $\Rightarrow \frac{9-h}{9} = \frac{r}{3}$ $\Rightarrow 9 - h = 3r$ $\Rightarrow h = 9 - 3r$ Volume of frustum $=\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$ $\Rightarrow 44 = \frac{1}{9} \times \frac{22}{7} (9 - 3r) (9 + r^2 + 3r)$ $\Rightarrow 44 = \frac{22}{7}(3-r)(3^2+3r+r^2)$ $\Rightarrow \frac{44 \times 7}{22} = 3^3 - r^3$ $\Rightarrow 14 = 27 - r^3$ $\Rightarrow r^3 = 27 - 14 = 13$ ∴ r = ¥13 cm 59. (1) First cylinder Second cylinder $r_1 = 2r$ $r_2 = 3r$ h = 5h $h_{n} = 4h$.: Required ratio $= 2\pi r_{1}h_{1}: 2\pi r_{2}h_{2}$ $= 2 \times 5 : 3 \times 4 = 5 : 6$ 60. (3) Let the height of cylinder be h cm and radius of base = r cm $\therefore 2\pi r^2 + 2\pi rh = 462 \dots (i)$ Area of curved surfaces $=2\pi rh = \frac{1}{3} \times 462 = 154$ $\therefore 2\pi r^2 + 154 = 462$ $\Rightarrow 2\pi r^2 = 462 - 154 = 308$ $\Rightarrow 2 \times \frac{22}{7} \times r^2 = 308$

SOLVED PAPER-

SOLVED PAPER-09 $\Rightarrow r^2 = \frac{308 \times 7}{2 \times 22} = 49$ \Rightarrow r = 7 cm : 2mrh = 154 $\Rightarrow 2 \times \frac{22}{7} \times 7 \times h = 154$ $\Rightarrow h = \frac{154}{2 \times 22} = \frac{7}{2}$ cm :. Volume of cylinder = $\pi r^2 h$ $=\frac{22}{7}\times7\times7\times\frac{7}{2}$ = 539 cm³ 61. (4) Curved surface of cylinder _ 8 Curved surface of cone 5 $\Rightarrow \frac{2\pi r h}{\pi r \sqrt{h^2 + r^2}} = \frac{8}{5}$ $\Rightarrow \frac{h}{\sqrt{h^2 + r^2}} = \frac{4}{5}$ On squaring both sides, $\frac{h^2}{h^2 + r^2} = \frac{16}{25} \Rightarrow \frac{h^2 + r^2}{h^2} = \frac{25}{16}$ $\Rightarrow 1 + \frac{r^2}{h^2} = \frac{25}{16}$ $\Rightarrow \frac{r^2}{h^2} = \frac{25}{16} - 1 = \frac{9}{16}$ $\therefore \frac{r}{h} = \frac{3}{4}$ 62. (4) Let the radius of base = r units and height of cone = h units. $\therefore 2\pi r^2 = \pi r \sqrt{r^2 + h^2}$ $\Rightarrow 2r = \sqrt{r^2 + h^2} \Rightarrow 4r^2 = r^2 + h^2$ $\Rightarrow 3r^2 = h^2 \Rightarrow \sqrt{3} r = h$ $\Rightarrow \frac{r}{h} = \frac{1}{\sqrt{3}}$ 63. (4) Area of the base $=\frac{\sqrt{3}}{4} \times side^{2}$ $=\frac{\sqrt{3}}{4}\times6\times6=9\sqrt{3}$ sq.cm. :. Volume of the prism = Area of base × height ⇒108√3 = 9√3 × h

$$\Rightarrow h = \frac{108\sqrt{3}}{9\sqrt{3}} = 12 \text{ cm}$$

$$\Rightarrow h = \frac{108\sqrt{3}}{9\sqrt{3}} = 12 \text{ cm}$$

$$a^{3} + 1 + 2a = 0$$

$$\Rightarrow (a + 1)^{2} = 0 \Rightarrow a + 1 = 0$$

$$\Rightarrow a = -1$$

$$\therefore a^{37} - \frac{1}{a^{100}} = (-1)^{37} - \frac{1}{(-1)^{100}}$$

$$= -1 - 1 = -2$$
65. (1) The graphs of $(k - 1) x + y - 2 = 0$ and $(2 - k) x - 3y + 1 = 0$ are parallel.

$$\therefore \frac{k - 1}{2 - k} = \frac{1}{-3}$$

$$\Rightarrow -3k + 3 = 2 - k$$

$$\Rightarrow -3k + k = 2 - 3$$

$$\Rightarrow -2k = -1 \Rightarrow k = \frac{1}{2}$$
Note : Two straight lines $a_{1}x$

$$+ b_{1}y + c_{1} = 0 \text{ and } a_{2}x + b_{2}y + c_{3}$$

$$= 0 \text{ are parallel if}$$

$$\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$$
66. (3)
$$\int_{B} \frac{\theta}{\theta - c_{2}}$$
Let AB be tower and BC be its shadow.
If AB = x, then $BC = \frac{x}{\sqrt{3}}$

$$\therefore \tan \theta = \frac{AB}{BC} = \frac{x}{\sqrt{3}} = \sqrt{3}$$

$$\therefore \tan \theta = \tan 60^{\circ}$$

$$\Rightarrow \theta = 60^{\circ}$$
67. (4) On Y-axts, $x = 0$
Putting $x = 0$ in $x + 2y = 3$,
 $2y = 3 \Rightarrow y = \frac{3}{2}$
Putting $x = 0$ in $3x - 2y = 1$,

$$-2y = 1 \Rightarrow y = -\frac{1}{2}$$

$$\therefore \text{ Points on Y-axis are}$$

$$\left(0, \frac{3}{2}\right) \text{and} \left(0, -\frac{1}{2}\right).$$

$$\therefore \text{ Required distance}$$

$$= \sqrt{(0-0)^2 + \left(\frac{3}{2} + \frac{1}{2}\right)^2}$$

$$= \sqrt{0+4} = 2 \text{ units}$$

$$\text{Note : Distance} = \frac{3}{2} + \frac{1}{2} = 2$$

$$68. (2) x + \frac{1}{16x} = 1$$

$$\Rightarrow 4x + \frac{1}{4x} = 4$$

$$\text{cubing both sides,}$$

$$\left(4x + \frac{1}{4x}\right)^3 = (4x)^3 + \left(\frac{1}{4x}\right)^3$$

$$+ 3 \times 4x \times \frac{1}{4x} \left(4x + \frac{1}{4x}\right)$$

$$\Rightarrow 64 = 64x^3 + \frac{1}{64x^3} + 3\times 4$$

$$\Rightarrow 64x^3 + \frac{1}{64x^3} = 64 - 12 = 52$$

$$69. (2) a + b + c = 0$$

$$(a + c) = -b$$

$$\text{Squaring both sides,}$$

$$a^2 + c^2 = b^2 - 2ac$$

$$\therefore \frac{a^2 + b^2 + c^2}{b^2 - ca} = \frac{b^2 + b^2 - 2x}{b^2 - ca}$$

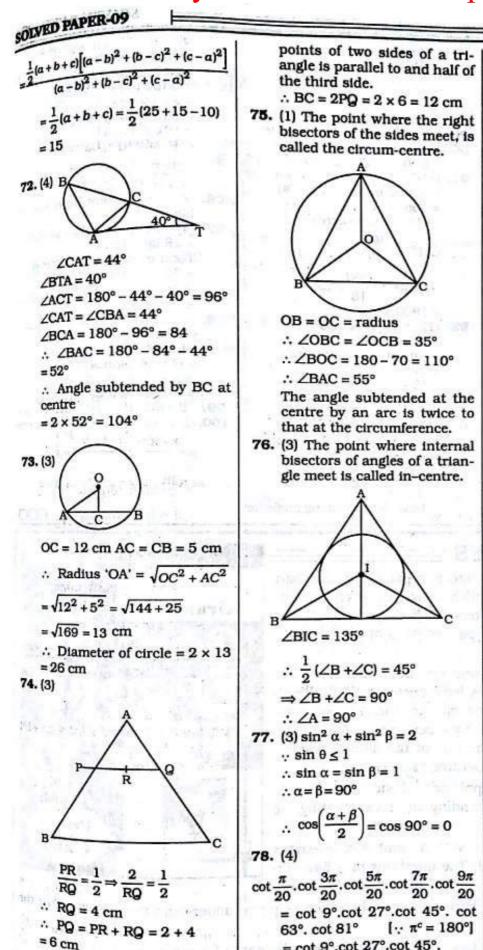
$$= \frac{2(b^2 - ac)}{b^2 - ac} = 2$$

$$70. (4) a^4 + a^2b^2 + b^4 = (a^2 + ab + b^4)$$

$$a^2 - ab + b^2 = 2 \dots(4)$$

$$a^2 + ab + b^2 = 4 \dots(4)$$

$$By \text{ equation } (4) - (4)$$


$$a^2 + ab + b^2 - a^2 + ab - b^4$$

$$= 4 - 2$$

$$\Rightarrow 2ab = 2 \Rightarrow ab = 1$$

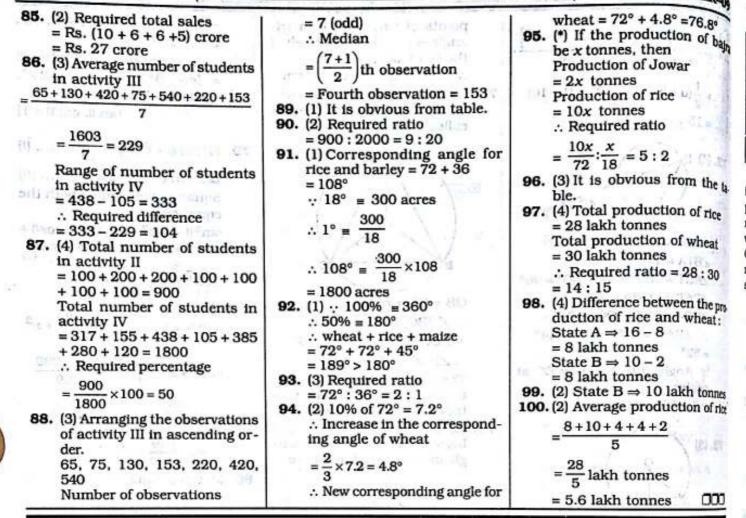
$$71. (4) a^3 + b^3 + c^3 - 3abc = (a + \frac{1}{2}(a + b + c](a - b)^2 + (b - c)^2 + (c - a^2)]$$

$$\therefore \text{ Expression}$$

The line joining the mid -

the third side.	$[\cot (90^\circ - \theta) = \tan \theta]$		
$\therefore BC = 2PQ = 2 \times 6 = 12 cm$	= (cot 9°.tan9°).(cot 27°.		
(1) The point where the right	$= (\cot 9^{\circ}, \tan 9^{\circ}).(\cot 27^{\circ})$ tan 27°).cot 45° = 1		
Disectors of the sides meet, is	$\tan 27^{\circ} \cdot \cot 45^{\circ} = 1$ [:: tan θ . cot $\theta = 1$]		
called the circum-centre.	$1 \div \tan \theta$. cot $\theta = x$		
	79. (4) $\sin \theta + \cos \theta = \frac{17}{13}$ (i)		
	Let, $\sin \theta - \cos \theta = x$ (ii)		
(\land)	Squaring and adding both the equations, $\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cdot \cos \theta + $		
B	$\sin^2\theta + \cos^2\theta - 2\sin\theta.\cos\theta$		
	$=\left(\frac{17}{13}\right)^2 + x^2$		
OB = OC = radius	(13)		
∴ ∠OBC = ∠OCB = 35°	$\Rightarrow 2 (\sin^2 \theta + \cos^2 \theta) = \frac{289}{169} + x^2$		
∴∠BOC = 180 - 70 = 110°	$\Rightarrow 2 (\sin^2 \theta + \cos^2 \theta) = \frac{169}{169} + \chi$		
∴ ∠BAC = 55°	289 338-289		
The angle subtended at the centre by an arc is twice to	$\Rightarrow x^2 = 2 - \frac{289}{169} = \frac{338 - 289}{169}$		
that at the circumference.	$=\frac{49}{169}$		
(3) The point where internal	169		
bisectors of angles of a trian- gle meet is called in-centre.	$\Rightarrow x = \sqrt{\frac{49}{169}} = \frac{7}{13}$		
A	80. (3) $\tan \theta \cdot \tan 2\theta = 1$		
\wedge			
	$\Rightarrow \tan \theta = \frac{1}{\tan 2\theta} = \cot 2\theta$		
FI	total and		
	$\Rightarrow \tan \theta = \tan (90^\circ - 2\theta)$ $\Rightarrow \theta = 90^\circ - 2\theta$		
	$\Rightarrow 6 = 90^{\circ} - 20^{\circ}$ $\Rightarrow 30 = 90^{\circ} \Rightarrow 0 = 30^{\circ}$		
XX	$\Rightarrow 30 = 90 \Rightarrow 0 = 30^{\circ}$ $\therefore \sin^2 2\theta + \tan^2 2\theta$		
c c			
∠BIC = 135°	$=\sin^2 60^\circ + \tan^2 60^\circ$		
$\therefore \frac{1}{2} (\angle B + \angle C) = 45^{\circ}$	$= \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\sqrt{3}\right)^2 = \frac{3}{4} + 3 = 3\frac{3}{4}$		
$\Rightarrow \angle B + \angle C = 90^{\circ}$			
∴ ∠A = 90°	81. (3) Percentage decrease		
$(3) \sin^2 \alpha + \sin^2 \beta = 2$	$=\frac{6-5}{6} \times 100$		
$\therefore \sin \theta \le 1$	First mass in teach in the second		
and the second se	$=\frac{50}{3}=16\frac{2}{3}$		
$\therefore \sin \alpha = \sin \beta = 1$	5 5		
$\therefore \alpha = \beta = 90^{\circ}$	82. (2) Required ratio = $2:6=1:$		
$\therefore \cos\left(\frac{\alpha+\beta}{2}\right) = \cos 90^\circ = 0$	83. (1) Required average sale		
(-)			
(4)	$= \operatorname{Rs.}\left(\frac{3+4+10+6+6}{5}\right) \operatorname{crore}$		
$\frac{\pi}{20}$. cot $\frac{3\pi}{20}$. cot $\frac{5\pi}{20}$. cot $\frac{7\pi}{20}$. cot $\frac{9\pi}{20}$	$=\frac{29}{5}$ = Rs. 5.8 crore		
$= \cot 9^{\circ}.\cot 27^{\circ}.\cot 45^{\circ}. \cot 45^{\circ}$	A CANADA AND AND AND AND AND AND AND AND AN		
63°. cot 81° [$:: \pi^c = 180^\circ$]	84. (4) Required percentage in-		
= cot 9°.cot 27°.cot 45°.	crease = $\frac{10-4}{4} \times 100$		
cot (90° - 27°). cot (90° - 9°)			
and the second	= 150		

SOLVED PAPER-09


= cot 9°.cot 27°.cot 45°. tan

27°. tan 9°

STNE-131

SOLVED PAPER-09

SOLVED PAPER-0

SALIENT FEATURES =

- This book has been divided into two parts. The first part contains several topics of English Grammar, which are classified into 14 different chapters. Each chapter discusses a topic at length. The second part consists of Model Question Papers.
- In each of the 14 chapters, concepts about the Fundamental and Basic Principles/Rules have been provided. Simultaneously, while discussing the various aspects of the chapter, several related examples have been provided. The variety of the questions tell the tale of the nature of questions asked in different competitive exams.
- Each chapter is essentially supplemented with 'a ready reckoner', which helps in understanding and recapitulating the basic rules at a glance.
- Each chapter is supplemented with a number of questions based on the topic discussed. The questions may have Error in one part and you are required to find out that error.

Kiran's COMMON COMMON ERRORS in English English Medium Price : 2295

- The questions have been explained adequately, which help you understand the root cause of the error.
- Model Question Papers help in understanding the overall genre of a topics and thereby assist developing a solid and sound knowledge of the topic of discussion.

STNE-132