

 \mathcal{A} ssignment

			Electron, cathod	le rays and positive rays (
1.	_	oton, α -particle and electron :		[AFMC 2004]
	(a) $e > p > \alpha$	(b) $p > \alpha > e$	(c) $e > \alpha > p$	(d) None of these
2.		 ⁴ electrons per second, when e. The charge on electron is 1.6 		
	(a) 2.7 μA	(b) 29 µA	(c) 72 µA	(d) 29 <i>mA</i>
3.	An electron is accelerate	d through a pd of 45.5 <i>volt</i> . The	e velocity acquired by it is (in <i>ms</i> ⁻¹) [AIIMS 2004]
	(a) 4×10^{6}	(b) 4×10^{4}	(c) 10 ⁶	(d) zero
4.	The specific charge of an	electron is	[MP	PET/PMT 1998; J &K CET 2004]
	(a) 1.6×10^{-19} coulomb	(b) 4.8×10^{-19} stat coulomb	(c) 1.76×10^{11} coulomb/kg	(d) 1.76×10^{-11} coulomb/kg
5.	The colour of the positive	e column in a gas discharge tub	be depends on	[Kerala (Engg.) 2002]
	(a) The type of glass used to construct the tube		(b) The gas in the tube	
	(c) The applied voltage		(d) The material of the ca	ithode
6.	Cathode rays are produce	ed when the pressure is of the	order of	[Kerala (Engg.) 2002]
	(a) 2 <i>cm</i> of <i>Hg</i>	(b) 0.1 <i>cm</i> of <i>Hg</i>	(c) 0.01 <i>mm</i> of <i>Hg</i>	(d) $1\mu m$ of Hg
7 .	Which of the following is	s not the property of a cathode	ray	[CBSE 2002]
	(a) It casts shadow		(b) It produces heating ef	ffect
	(c) It produces flurosence	ce	(d) It does not deflect in e	electric field
8.		, an oil drop having charge q rated by a distance ' d '. The we		g a potential difference V in [MP PET 2001]
	(a) <i>qVd</i>	(b) $q \frac{d}{V}$	(c) $\frac{q}{Vd}$	(d) $q \frac{V}{d}$
9.	In Thomson mass spectro	ograph $\vec{E} \perp \vec{B}$ then the velocity of	of electron beam will be	[CBSE PM/PD 2001]
	(a) $\left \frac{\vec{E}}{\vec{B}} \right $	(b) $\vec{E} \times \vec{B}$	(c) $\left \frac{\vec{B}}{\vec{E}} \right $	(d) $\frac{E^2}{B^2}$
10.	Which is not true with re	espect to the cathode rays		[Kerala (Engg.) 2001]
	(a) A stream of electrons	5	(b) Charged particles	
	(c) Move with speed san	ne as that of light	(d) Can be deflected by m	agnetic fields

11.		elerated through a potential the velocity acquired by the ele		<i>lts.</i> If e/m for the electron be [MP PET 2000]			
	(a) $8 \times 10^6 m/s$	(b) $8 \times 10^5 m/s$	(c) $5.9 \times 10^6 m/s$	(d) $5.9 \times 10^5 m/s$			
2.		on is $5 \times 10^5 m/s$. How long does					
	(a) $1 \times 10^{6} s$	(b) $2 \times 10^{-6} s$	(c) $2 \times 10^5 s$	(d) $1 \times 10^5 s$			
3.		ated, when cathode rays strike		(u) 1×10 3 [CPMT 2000]			
	(a) Kinetic energy of rays	· · ·	(b)	Potential energy of cathode			
	(c) Linear velocity of rays	f cathode rays	(d)	Angular velocity of cathode			
4.	In Milikan's oil drop	In Milikan's oil drop experiment, a charged drop falls with terminal velocity <i>V</i> . If an electric field <i>E</i> is applied in vertically upward direction then it starts moving in upward direction with terminal velocity 2 <i>V</i> . If magnitude					
	of electric field is dec	creased to $\frac{E}{2}$, then terminal ve	locity will become	[CBSE PMT 1999]			
	(a) $\frac{V}{2}$	(b) <i>V</i>	(c) $\frac{3V}{2}$	(d) 2V			
5۰	The current conduction	on in a discharged tube is due t	0	[CBSE PMT 1999]			
	(a) Electrons only		(b) + <i>ve</i> ions and ele	octrons			
	(c) – <i>ve</i> ions and elec	ctrons	(d) + <i>ve</i> ions, - <i>ve</i> io	ons and electrons			
6.	Cathode rays and canal rays produced in a certain discharge tube are deflected in the same direction if [SCRA 1998						
	(a) A magnetic field	is applied normally	(b) An electric field	is applied normally			
	(c) An electric field i	s applied tangentially	(d) A magnetic field	l is applied tangentially			
7.	Cathode rays enter i field their path will b	•	perpendicular to the dire	ection of the field. In the magnetic			
	(a) Otwaight line		(a) Damahalia	[MP PET/PMT 1998]			
8.	(a) Straight line	(b) Circle gnetic field in Thomson mass sj	(c) Parabolic	(d) Ellipse [RPMT 1998]			
0.	(a) Simultaneously, p simultaneously		(b)	Perpendicular but not			
	(c) Parallel but not s	imultaneously	(d)	Parallel simultaneously			
9.		tive rays helped in the discover		[RPMT 1998]			
-	(a) Proton	(b) Isotopes	(c) Electron	(d) α -particle			
20.	The ratio of momenta 100 <i>V</i> is	a of an electron and α -particle	which are accelerated fro	om rest by a potential difference of			
				[MNR 1994; RPET 1997]			
	(a) 1	(b) $\sqrt{\frac{2m_e}{m_\alpha}}$	(c) $\sqrt{\frac{m_e}{m_\alpha}}$	(d) $\sqrt{\frac{m_e}{2m_\alpha}}$			
1.	distance between its		-	stationary between its plates. The <i>lts</i> . The number of electrons on the			
	drop is			[MP PMT 1994; MP PET 1997]			
	(2) 500	$(\mathbf{h}) = 0$	(c) F	0 (b)			
2.	(a) 500 The expected energy	(b) 50 of the electrons at absolute zer	(c) 5 o is called	(d) 0 [RPET 1996]			

23.						
- J.	K.E. of emitted cathoo	de rays is dependent on		[CPMT 1996]		
	(a) Only voltage		(b) Only work function	on		
	(c) Both (a) and (b)		(d) It does not depen	nd upon any physical quantity		
24.	In a discharge tube at	t 0.02 <i>mm</i> , there is a format	tion of	[CBSE PMT 1996]		
	(a) FDS	(b) CDS	(c) Both space	(d) None of these		
5.	magnetic field $B = 2$	-	•	$3 \times 10^4 $ volt /m and an overlapping and magnetic field are mutually [MP PET 1995]		
	(a) 60 <i>m/s</i>	(b) $10.3 \times 10^7 m/s$	(c) $1.5 \times 10^7 m/s$	(d) $0.67 \times 10^{-7} m/s$		
26.	An oxide coated filament is useful in vacuum tubes because essentially			[SCRA 1994]		
	(a) It has high meltin temperatures	ng point	(b)	It can withstand high		
	(c) It has good mecha relatively lower temp	•	(d)	I can emit electrons at		
7.	Gases begin to condu	ct electricity at low pressur	e because	[CBSE 1994]		
	(a) At low pressure, g	gases turn to plasma				
	(b) Colliding electrons can acquire higher kinetic energy due to increased mean free path leading to ionisation of atoms					
	(c) Atoms break up into electrons and protons					
	(d) The electrons in a	atoms can move freely at lov	<i>w</i> pressure			
		5	1			
8.	When the speed of ele	ectrons increases then the	value of its specific charge	[MP PMT 100/]		
3.	-	ectrons increases, then the		[MP PMT 1994]		
8.	(a) Increases(c) Remains unchang		(b) Decreases			
	 (a) Increases (c) Remains unchang decrease Cathode rays moving field of strength x vol 	ed with same velocity v descri lt/metre. If the speed of the	(b) Decreases (d) Increases upto s ibe an approximate cirular pa	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r,</i> the value of electric field needed		
	 (a) Increases (c) Remains unchang decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descr 	ed with same velocity v descri lt/metre. If the speed of the	(b) Decreases (d) Increases upto s the an approximate cirular pa cathode rays is doubled to 2v circular path (<i>volt / metre</i>) is	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r,</i> the value of electric field needed		
9.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays describilities (a) 2<i>x</i> 	ed with same velocity <i>v</i> descri <i>lt/metre</i> . If the speed of the ribe the same approximate o	(b) Decreases (d) Increases upto s tibe an approximate cirular pa cathode rays is doubled to 2v circular path (volt / metre) is (c) 4x	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i>		
9.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays describing decrease (a) 2<i>x</i> Cathode rays are similar to the second strength of the second strengt	with same velocity <i>v</i> descri l <i>t/metre</i> . If the speed of the ribe the same approximate o (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and mag	(b) Decreases (d) Increases upto s the an approximate cirular part cathode rays is doubled to 2v circular path (<i>volt / metre</i>) is (c) 4x hat	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994]		
9.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays describing decrease (a) 2<i>x</i> Cathode rays are similar (a) They both can be definite magnitude of the strength of the strengt of the strength of the s	yed with same velocity <i>v</i> descri lt/metre. If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and ma f wavelength	(b) Decreases (d) Increases upto s the an approximate cirular part cathode rays is doubled to 2v circular path (<i>volt / metre</i>) is (c) 4x hat	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a		
9.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays describing decrease (a) 2<i>x</i> Cathode rays are similation (a) They both can be definite magnitude of (c) They both can ion 	with same velocity <i>v</i> descri <i>lt/metre.</i> If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and mathing f wavelength hise a gas through which the ment if the value of <i>q/m</i> is	(b) Decreases (d) Increases upto s ibe an approximate cirular pa cathode rays is doubled to 2v circular path (<i>volt / metre</i>) is (c) 4x hat agnetic fields	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate as striking the photographic plate,		
ə.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays describing decrease (a) 2<i>x</i> Cathode rays are similation (a) They both can be definite magnitude of (c) They both can ion In Thomson's experiment then the trace would an an	with same velocity <i>v</i> descri lt/metre. If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and mathing wavelength hise a gas through which the ment if the value of <i>q/m</i> is be	(b) Decreases (d) Increases upto s tibe an approximate cirular participate cirular path (volt / metre) is (c) $4x$ hat agnetic fields ey pass (d) They both can ext the same for all positive ion	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate as striking the photographic plate, [RPMT 1986]		
ο.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descrease (a) 2<i>x</i> Cathode rays are similed and the rays descrease (a) They both can be definite magnitude of the finite magnitude o	with same velocity <i>v</i> descri lt/metre. If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and ma f wavelength hise a gas through which the ment if the value of <i>q/m</i> is be (b) Parabolic	(b) Decreases (d) Increases upto s ibe an approximate cirular particular path (volt / metre) is (c) $4x$ hat agnetic fields by pass (d) They both can ext the same for all positive ion (c) Circular	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate ts striking the photographic plate, [RPMT 1986] (d) Elliptical		
9. o.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descrease (a) 2<i>x</i> Cathode rays are similation of the strength of the	with same velocity <i>v</i> descri lt/metre. If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and mathematic wavelength hise a gas through which the ment if the value of <i>q/m</i> is be (b) Parabolic e particle nature because of	(b) Decreases (d) Increases upto s ibe an approximate cirular participate cirular participate (volt / metre) is (c) $4x$ hat agnetic fields ey pass (d) They both can ext the same for all positive ion (c) Circular the fact that	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate as striking the photographic plate, [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986]		
9. 0. 1.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descrease (a) 2<i>x</i> Cathode rays are similed and the rays descrease (a) They both can be definite magnitude of the finite magnitude o	with same velocity <i>v</i> descri lt/metre. If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and mathing f wavelength hise a gas through which the ment if the value of <i>q/m</i> is be (b) Parabolic e particle nature because of the in vacuum c fields	(b) Decreases (d) Increases upto s ibe an approximate cirular particular path (volt / metre) is (c) $4x$ hat agnetic fields by pass (d) They both can ext the same for all positive ion (c) Circular	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate (b) They both have a pose a photographic plate [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986] They are deflected by		
9. 0. 1.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descrease (a) 2<i>x</i> Cathode rays are similation (a) They both can be definite magnitude of (c) They both can ion In Thomson's experiment then the trace would (a) Straight line The cathode rays have (a) They can propagate electric and magnetice (c) They produced flat 	with same velocity <i>v</i> descri <i>lt/metre</i> . If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and main f wavelength hise a gas through which the ment if the value of <i>q/m</i> is be (b) Parabolic the particle nature because of the in vacuum the fields horescence	(b) Decreases (d) Increases upto s ibe an approximate cirular participate cirular path (volt / metre) is (c) $4x$ hat agnetic fields ey pass (d) They both can ext the same for all positive ion (c) Circular the fact that (b)	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate (b) They both have a pose a photographic plate (d) Elliptical [CPMT 1986; MNR 1986] They are deflected by (d) They cast shadows		
8. 9. 0. 1. 2.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descrease (a) 2<i>x</i> Cathode rays are similed of a strength <i>x</i> and the second of the sec	with same velocity <i>v</i> descri <i>lt/metre.</i> If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and mathin f wavelength nise a gas through which the ment if the value of <i>q/m</i> is be (b) Parabolic te particle nature because of the in vacuum f fields lorescence nube voltage ~ 10 <i>kV</i>) collide	(b) Decreases (d) Increases upto s ibe an approximate cirular particular path (volt / metre) is (c) $4x$ hat agnetic fields by pass (d) They both can ext the same for all positive ion (c) Circular the fact that (b) with the anode of high atom	[SCRA 1994] (b) They both have a pose a photographic plate is striking the photographic plate, [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986] They are deflected by (d) They cast shadows ic weight then we get[MP PET 1985]		
29. 00. 11.	 (a) Increases (c) Remains unchanged decrease Cathode rays moving field of strength <i>x vol</i> so that the rays descrease (a) 2<i>x</i> Cathode rays are similation of the strength of the	with same velocity <i>v</i> descri <i>lt/metre</i> . If the speed of the ribe the same approximate of (b) 3 <i>x</i> ilar to visible light rays in the deflected by electric and main f wavelength hise a gas through which the ment if the value of <i>q/m</i> is be (b) Parabolic the particle nature because of the in vacuum the fields horescence	(b) Decreases (d) Increases upto s ibe an approximate cirular par cathode rays is doubled to 2v circular path (volt / metre) is (c) 4x hat agnetic fields ey pass (d) They both can ex the same for all positive ion (c) Circular the fact that (b) e with the anode of high atom (c) Gamma rays	some velocity and then begins to ath of radius <i>r</i> metre in an electric <i>r</i> , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate (b) They both have a pose a photographic plate (d) Elliptical [CPMT 1986; MNR 1986] They are deflected by (d) They cast shadows		

- (a) Total vacuum
 (b) 10⁻³ to 10⁻⁴ atmospheric pressure
 (c) One atmospheric pressure
 (d) 10⁻³ to 10⁻⁴ mm
 35. Cathode-ray tube is a part of [CPMT 1972]
 (a) Compound microscope (b) A radio receiver generator
 (c) A television set
 (d) A van de Graaf
- **36.** In a region of space cathode rays move along +*ve Z*-axis and a uniform magnetic field is applied along X-axis. If cathode rays pass undeviated, the direction of electric field will be along

V'

Cathode

- (a) *ve X*-axis
- (b) +ve Y-axis
- (c) ve Y-axis
- (d) +ve Z-axis
- **37.** A beam of electron whose kinetic energy is *E* emerges from a thin foil window at the end of an accelerator tube. There is a metal plate at a distance *d* from this window and at right angles to the direction of the emerging beam. The electron beam is prevented from hitting the plate *P*, if a magnetic field *B* is applied, which must be

(a)
$$B \ge \sqrt{\frac{2mE}{e^2d^2}}$$
, into the page (b) $B \ge \sqrt{\frac{2mE}{e^2d^2}}$, out of the page (c) $B \ge \sqrt{\frac{2mE}{ed}}$, into the page (d) $B \ge \left(\frac{2mE}{ed}\right)$, out of the page

- **38.** In Thomson's experiment for determining *e/m*, the potential difference between the cathode and the anode (in the accelerating column) is the same as that between the deflecting plates (in the region of crossed fields). If the potential difference is doubled, by what factor should the magnetic field be increased to ensure that the electron beam remains undeflected
 - (a) $\sqrt{2}$ (b) 2 (c) $2\sqrt{2}$ (d) 4
- **39.** In Thomson's experiment helium He^3 and He^4 exhibit parabolas. The equation of parabola for He^3 is $z^2 = 12Y$, then for He^4 the equation will be

(a)
$$Z^2 = 16Y$$
 (b) $Z^2 = 12Y$ (c) $Z^2 = 4Y$ (d) $Z^2 = 9Y$

Matter waves

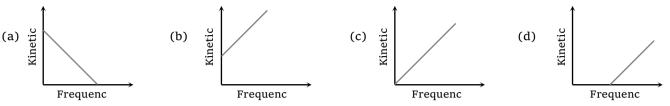
[J & K CET 2004]

- **40.** An electron and a proton are accelerated through the same potential difference. The ratio of their De-Broglie wavelength will be
 - (a) $(m_p / m_e)^{1/2}$ (b) m_t / m_p (c) m_p / m_t (d) 1
- 41. An electron and proton have the same de-Broglie wavelength. Then the kinetic energy of the electron is [Kerala PMT 2
 (a) Zero
 (b) Infinity
 - (c) Equal to the kinetic energy of the proton (d) Greater than the kinetic energy of the proton
- **42.** For moving ball of cricket, the correct statement about de-Broglie wavelength is [RPMT 2001]
 - (a) It is not applicable for such big particle (b) $\frac{h}{\sqrt{2mE}}$

	(c) $\sqrt{\frac{h}{2mE}}$		(d) $\frac{h}{2mE}$	
43.	Photon and electron are g and λ_{el} then correct state		Vavelength associated with	h photon and electron are λ _{Ph} [RPMT 2001]
	(a) $\lambda_{Ph} > \lambda_{el}$	(b) $\lambda_{Ph} < \lambda_{el}$	(c) $\lambda_{Ph} = \lambda_{el}$	(d) $\frac{\lambda_{el}}{\lambda_{Ph}} = C$
44.	Wavelength associated wi	ith an electron of kinetic energ	gy 54 <i>eV</i> is	[AMU (Engg.) 2000]
	(a) $1.66 \times 10^{-10} m$	(b) $2.6 \times 10^{-9} m$	(c) $3.5 \times 10^{-11} m$	(d) None of the above
45.	The energy that should be will be	added to an electron to reduc	ce its de-Broglie wavelengt	ths from $10^{-10} m$ to $0.5 \times 10^{-10} m$
				[KCET (Engg./Med.) 2000]
	(a) Four times the initial		(b)	Thrice the initial energy
	(c) Equal to the initial en		(d)	Twice the initial energy
46.	If the <i>K.E.</i> of an electrowavelength will be for	on, a proton a neutron and	an α -particle is identic	cal, the maximum de-Broglie
				[CBSE PMT 1999]
	(a) Electron	(b) Proton	(c) α -particle	(d) Neutron
47.	• •	rikes a photo-sensitive surfac reased to 2 <i>E</i> , the wavelength	-	d with kinetic energy <i>E</i> . If the ere [MP PET 1997]
	Z	(b) $\lambda' = 2\lambda$	(c) $\frac{\lambda}{2} < \lambda' < \lambda$	(d) $\lambda' > \lambda$
48.	The de-Brogile wavelengt	h of electron is 10Å, then its v	elocity in <i>m/sec</i> will be	[Manipal 1997]
		(b) 72×10^4	(c) 7.2×10^{-5}	(d) 7.2×10^{6}
	(a) 7.2×10^5			
49.	An electron of mass m , a			gile wavelength λ . De-Broglie al difference, will be [CBSE PMT 1995]
49.	An electron of mass m , a			
49. 50.	An electron of mass <i>m</i> , a wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$	rated through same potential (c) $\lambda \sqrt{\frac{m}{M}}$	al difference, will be[CBSE PMT 1995]
	An electron of mass <i>m</i> , a wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$	rated through same potential (c) $\lambda \sqrt{\frac{m}{M}}$	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$
	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 ve	rated through same potentian (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å	al difference, will be [CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be [RPMT 1995]
50.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 ve (b) 0.055 Å	rated through same potentian (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å	al difference, will be [CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be [RPMT 1995] (d) 0.095 Å
50.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (a) 6.63 × 10 ⁻²²	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å photon is 0.01 Å, then its mom	rated through same potentia (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å mentum in Kg m/s is (c) 6.63 × 10 ⁻⁴⁶	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³²
50. 51.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (a) 6.63 × 10 ⁻²²	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å photon is 0.01 Å, then its mom (b) 6.63 × 10 ⁻²⁴	rated through same potentia (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å mentum in Kg m/s is (c) 6.63 × 10 ⁻⁴⁶	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³²
50. 51.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (a) 6.63 × 10 ⁻²² An proton moving with the (a) 6×10 ⁻² Å	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å bhoton is 0.01 Å, then its mom (b) 6.63×10^{-24} we velocity of $6.6 \times 10^5 m/sec$ has (b) 6×10^{-3} Å	rated through same potentia (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å nentum in Kg m/s is (c) 6.63 × 10 ⁻⁴⁶ as a de-Broglie wavelength (c) 1 Å	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³² given by [CPMT 1993]
50. 51. 52.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (a) 6.63 × 10 ⁻²² An proton moving with the (a) 6×10 ⁻² Å	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å ohoton is 0.01 Å, then its mom (b) 6.63×10^{-24} e velocity of $6.6 \times 10^5 m/sec$ ha (b) 6×10^{-3} Å rest mass and non-zero energ	rated through same potentia (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å nentum in Kg m/s is (c) 6.63 × 10 ⁻⁴⁶ as a de-Broglie wavelength (c) 1 Å	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³² given by [CPMT 1993] (d) 2 Å
50. 51. 52.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (a) 6.63 × 10 ⁻²² An proton moving with the (a) 6 × 10 ⁻² Å A particle which has zero	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å ohoton is 0.01 Å, then its mom (b) 6.63×10^{-24} e velocity of $6.6 \times 10^5 m/sec$ ha (b) 6×10^{-3} Å rest mass and non-zero energ	rated through same potentian (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å mentum in <i>Kg m/s</i> is (c) 6.63 × 10 ⁻⁴⁶ as a de-Broglie wavelength (c) 1 Å sy and momentum must tra	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³² given by [CPMT 1993] (d) 2 Å
50. 51. 52.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (a) 6.63 × 10 ⁻²² An proton moving with the (a) 6 × 10 ⁻² Å A particle which has zero (a) Equal to <i>c</i> , the speed of (c) Less then <i>c</i>	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å ohoton is 0.01 Å, then its mom (b) 6.63×10^{-24} e velocity of $6.6 \times 10^5 m/sec$ ha (b) 6×10^{-3} Å rest mass and non-zero energy of light in vacuum	rated through same potentian (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å nentum in <i>Kg m/s</i> is (c) 6.63 × 10 ⁻⁴⁶ as a de-Broglie wavelength (c) 1 Å ty and momentum must transition (d) Tending to infinity	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³² given by [CPMT 1993] (d) 2 Å
50. 51. 52. 53.	An electron of mass <i>m</i> , as wavelength associated with (a) $\lambda \left(\frac{m}{M}\right)$ The accelerating voltage of (a) 0.55Å The wavelength of <i>x</i> -ray product (b) $(a) -55^{A}$ The wavelength of <i>x</i> -ray product (c) λ^{-22} An proton moving with the (a) 6×10^{-2} Å A particle which has zero (a) Equal to <i>c</i> , the speed of (c) Less then <i>c</i> The wavelengths of a phone	th a proton of mass <i>M</i> acceler (b) $\lambda \left(\frac{M}{m}\right)$ of an electron gun is 50,000 v (b) 0.055 Å ohoton is 0.01 Å, then its mom (b) 6.63×10^{-24} e velocity of $6.6 \times 10^5 m/sec$ ha (b) 6×10^{-3} Å rest mass and non-zero energy of light in vacuum	rated through same potentian (c) $\lambda \sqrt{\frac{m}{M}}$ olts. de-Broglie wavelength (c) 0.077 Å nentum in <i>Kg m/s</i> is (c) 6.63 × 10 ⁻⁴⁶ as a de-Broglie wavelength (c) 1 Å ty and momentum must transition (d) Tending to infinity	al difference, will be[CBSE PMT 1995] (d) $\lambda \sqrt{Mm}$ h of the electron will be[RPMT 1995] (d) 0.095 Å [RPMT 1995] (d) 6.63 × 10 ⁻³² given by [CPMT 1993] (d) 2 Å avel with a speed [MP PMT 1992] hich of then will have highest

If E_1 , E_2 and E_3 are the respective kinetic energies of an electron, an alpha particle and a proton each having 55. the same De-Broglie wavelength then [CBSE 1991] (c) $E_1 > E_2 > E_3$ (d) $E_1 = E_2 = E_3$ (a) $E_1 > E_3 > E_2$ (b) $E_2 > E_3 > E_1$ Momentum of a photon of electro - magnetic radiation radiation is 3.3×10^{-29} kg-m-s⁻¹. Then frequency of related 56. waves is [MP PET 1990] (b) $6.0 \times 10^2 Hz$ (c) $7.5 \times 10^{12} Hz$ (d) $1.5 \times 10^{13} Hz$ (a) $3.0 \times 10^3 Hz$ The energy of electron with de-Broglie wavelength of 10^{-10} m, is (in eV) [RPMT 1988] 57. (a) 13.6 (b) 12.27 (c) 1.227 (d) 150.5 If there is an increase in linear dimensions of the object, the associated de-Broglie wavelength 58. [RPET 1986] (a) Increases (b) Decreases (c) Remains unchanged (d) Depends on the density of object Which of the following figure represents the variation of particle momentum and the associated De-Broglie 59. wavelength [AIIMS 1982] (c) ^p (b) (d) On applying a potential difference of V volt on a proton, a wave of λ wavelength is obtained. The voltage 60 applied to an α -particle to produce the same wavelength will be (in *volts*) (a) V (b) V/5 (c) V/8 (d) 2V 61. Matter waves are (a) Electromagnetic waves Longitudinal waves (c) Probability waves (b) (d) Two sand grains, one of diameter 0.5 mm and the other of diameter 1.0 mm are moving with the same 62. momentum, then the de-Broglie wavelength of the first is (a) Greater than that of the second (b) Less than that of the second (c) Equal to that of the second (d) Double incomparison to that of the second An atom when undergoing a transition from an excited state to the ground state emits a photon of wavelength 63. 1Å. Then, the recoil energy of the atom will be (assume mass of the atom = 40 amu) (b) $1.3 \times 10^{-20} J$ (c) $3.3 \times 10^{-22} I$ (a) $3.3 \times 10^{-20} J$ (d) $6.6 \times 10^{-24} I$ The electron micro-scope works on the principle of 64. (a) Particle theory (b) Matter wave concept (c) Uncertainty (d) All of the above The de-Broglie wavelength of an electron moving in the n^{th} Bohr orbit of radius r Å will be 65. (c) $\frac{2\pi r}{n}$ Å (b) $\frac{r}{n}$ Å (d) $2\pi n$ Å (a) *nr* Å If the energy of a particle is reduced to half then the percentage increase in the de-Broglie wavelength is about 66. (b) 50% (c) 29% (d) 100% (a) 41% The velocity of an electron in the ground state of hydrogen atom is 2.2×10^6 m/s. The De-Broglie wavelength 67. associated with a muon in the ground state of a muonic hydrogen will be $(m_{\mu} = 207 m_{e})$

			Electron, Photo	ton, Photoelectric Effect and X-			
	(a) 1.6 Å	(b) 0.16 Å	(c) 0.016 Å	(d) 0.0016 Å			
58.		an electron is changed by ∆p, then omentum of the electron will be	n the de-Broglie wavele	ength associated with it changes by			
	(a) $\frac{\Delta p}{200}$	(b) $\frac{\Delta p}{199}$	(c) 199 Δ <i>p</i>	(d) 400 ∆ <i>p</i>			
59.	An electron and a pho The magnitude of <i>p/E</i>		is the momentum of ele	ectron and <i>E</i> the energy of photon.			
	(a) 3.0×10^8	(b) 3.33×10^{-9}	(c) 9.1×10^{-31}	(d) 6.64×10^{-34}			
				Photon/Photoelectric effect			
0.	e	n's photoelectric equation, the p frequency, of the incident radiatio		gy of the emitted photo electrons whose slope [AIEEE 2004]			
	(a) Depends on the n	nature of the metal used					
	(b) Depends on the intensity of the radiation						
	(c) Depends both on the intensity of the radiation and the metal used						
	(d) Is the same for al	ll metals and independent of the i	intensity of the radiatio	n			
71.	The energy of incider	nt photons corresponding to maxim	mum wavelength of visi	ible light is [J & K CET 2004]			
	(a) 3.2 <i>eV</i>	(b) 7 <i>eV</i>	(c) 1.55 <i>eV</i>	(d) 1 <i>eV</i>			
2.	If the work function c	of potassium is 2 <i>eV</i> , then its photo	oelectric threshold wav	elength is			
	(a) 310 <i>nm</i>	(b) 620 <i>nm</i>	(c) 6200 nm	(d) 3100 nm			
3.	Threshold wavelengt	h for metal is 5200 Å. The photoe	electrons will be ejected	l if it is irradiated by light from [J &			
	(a) 50 watt infrared	lamp (b) 1 watt infrared lamp	(c) 50 watt ultraviol	let lamp (d)0.5 watt infrared lam			
'4 .	The dual nature of lig	ght is exhibited by		[BCECE 2004]			
	(a) Diffraction and pl	hotoelectric effect	(b) Diffraction and r	reflection			
	(c) Refraction and in	ıterference		(d) Photo electric effect			
75.	e	-	•	photo-sensitive surface for three the frequencies for the curves a , b			
	and <i>c</i> respectively.			[IIT-JEE (Screening) 2004]			
	(a) $f_a = f_b$ and $l_a \neq l_b$		Photo				
	(b) $f_a = f_c$ and $l_a = l_c$						
	(c) $f_a = f_b$ and $l_a = l_b$			\longrightarrow			
	(d) $f = f$ and $l = l$		0	Anode			


(d) $f_a = f_b$ and $l_b = l_c$

76.

Anode A photon of energy 4 eV is incident on a metal surface whose work function is 2 eV. The minimum reverse potential to be applied for stopping the emission of electrons is [Similar to DCE 2000; AIIMS 2004]

(a) 2 V (b) 4V (c) 6V (d) 8V

77. According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is [CBSE PMT 2004]

78. Consider the two following statements *A* and *B* and identify the correct choice given in the answers(A) In photovoltaic cells the photoelectric current produced is not proportional to the intensity of incident light.(B) In gas filled photoemissive cells the velocity of photoelectrons depends on the wavelength of the incident radiation

[EAMCET (Engg.) 2003]

[MP PET 2000, 2003]

(d) Green house effect

[UPSEAT 2003]

(d) h/v_{a}

(a) Both A and B are true
 (b) Both A and B are false
 (c) A is true but B is false
 (d) A is false B is true
 79. There are n₁ photons of frequency γ₁ in a beam of light. In an equally energetic beam, there are n₂ photons of frequency γ₂. Then the correct relation is

(a)
$$\frac{n_1}{n_2} = 1$$
 (b) $\frac{n_1}{n_2} = \frac{\gamma_1}{\gamma_2}$ (c) $\frac{n_1}{n_2} = \frac{\gamma_2}{\gamma_1}$ (d) $\frac{n_1}{n_2} = \frac{\gamma_1^2}{\gamma_2^2}$

80. Two identical photo-cathodes receive light of frequencies f_1 and f_2 . If the velocities of the photo electrons (of mass *m*) coming out are respectively v_1 and v_2 , then [AIEEE 2003]

(a)
$$v_1 - v_2 = \left[\frac{2h}{m}(f_1 - f_2)\right]^{1/2}$$
 (b) $v_1^2 - v_2^2 = \frac{2h}{m}(f_1 - f_2)$ (c) $v_1 + v_2 = \left[\frac{2h}{m}(f_1 + f_2)\right]^{1/2}$ (d) None of these

81. The frequency and work function of an incident photon are v and ϕ_0 . If v_0 is the threshold frequency then necessary condition for the emission of photo electron is **[RPET 2003]**

(a)
$$v < v_0$$
 (b) $v = \frac{v_0}{2}$ (c) $v \ge v_0$ (d) None of these

82. Light of frequency ν is incident on a substance of threshold frequency $\nu_0(\nu_0 < \nu)$. The energy of the emitted photoelectron will be

(a)
$$h(v-v_0)$$
 (b) h/v (c) $he(v-v_0)$

83. In a photoelectric effect experiment the slope of the graph between the stopping potential and the incident frequency will be

(a) 1 (b) 0.5 (c)
$$10^{-15}$$
 (d) 10^{-34}

84. Ultraviolet radiation of 6.2 *eV* falls on an aluminium surface (work function 4.2 *eV*). The kinetic energy in joules of the fastest electron emitted is approximately [MNR 1987; MP PET 1990; CBSE 1993; RPMT 2001; BVP 2003]

(a)
$$3.2 \times 10^{-21}$$
 (b) 3.2×10^{-19} (c) 3.2×10^{-17} (d) 3.2×10^{-15}

85. In photoelectric emission the number of electrons ejected per second [MH CET 1999; MP PMT 2002; KCET 2003]

- (a) Is proportional to the intensity of light (b) Is proportional to the wavelength of light
- (c) Is proportional to the frequency of light (d) Is proportional to the work function of metal
- 86. When ultraviolet rays are incident on metal plate, then photoelectric effect does not occurs. It occurs by the incidence of [CBSE 2002]

87. The threshold wavelength for photoelectric effect of a metal is 6500Å. The work function of the metal is approximately [MP PET 2002]

			Electron, Photon,	Photoelectric Eff	ect and X-			
	(a) 2 <i>eV</i>	(b) 1 <i>eV</i>	(c) 0.1 <i>eV</i>	(d) 3 eV				
88.	Which of the following	ng statements is correct		[JIPMEI	R 2001, 2002]			
	(a) The stopping pot	ential increases with increas	ing intensity of incident light					
	(b) The photocurrent increases with increasing intensity of light							
	(c) The photocurrent is proportional to applied voltage							
	(d) The current in a	photocell increases with incr	easing frequency of light					
89.			rence of 60 V across is illumina I <i>m</i> away the photoelectrons emi		nt source of [KCET 2002]			
	(a) Are one quarter a	as numerous	(b)	Are half as num	ierous			
	(c) Each carry one q	uarter of their previous mom	entum (d) Each carry one quart	er of their previou	is energy			
90.	A radio transmitter r	adiates 1 <i>kW</i> power at a wav	elength 198.6 <i>m</i> . How many pho	tons does it emit p	er second [Kerala			
	(a) 10 ¹⁰	(b) 10 ²⁰	(c) 10 ³⁰	(d) 10 ⁴⁰				
91.		rgy fall on the surface of the age required for these electr	metal emitting photoelectrons o ons are		c energy 4.0 Engg.) 2002]			
	(a) 5.5 V	(b) 1.5 V	(c) 9.5 V	(d) 4.0 V				
92.	Energy of photon wh	ose frequency is $10^{12} MHz$ wil	ll be	[M	IH CET 2002]			
	(a) $4.14 \times 10^3 keV$	(b) $4.14 \times 10^2 eV$	(c) $4.14 \times 10^{3} MeV$	(d) $4.14 \times 10^3 eV$				
93.	If a photon has veloc	ity c and frequency v, then w	hich of following represents its	wavelength [AIEEE 2002]			
	(a) $\frac{hc}{E}$	(b) $\frac{hv}{c}$	(c) $\frac{hv}{c^2}$	(d) <i>hv</i>				
94.		$4v_0$ is incident on the meted photoelectrons is	tal of the threshold frequenc		um kinetic 1P PET 2002]			
	(a) $3hv_0$	(b) $2hv_0$	(c) $\frac{3}{2}hv_0$	(d) $\frac{1}{2}hv_0$				
95.	difference required the light of wavele	l to stop the ejection of el ngth 2λ , then the potentia	nonochromatic light of wavel ectrons is $3V_0$. When the san al difference required to stop old wavelength for the metal	ne surface is illu the ejection of e	minated by electrons is			
	(a) 6λ	(b) $\frac{4\lambda}{3}$	(c) 4λ	(d)	8λ			
96.		theory of light which of the f collides with an electron in	following physical quantities ass vacuum	_	ton do not / [Engg.) 2001]			
	(a) Energy and mom	entum (b)	Speed and momentum	(c) Speed only	(d)			
97.	Which of the following	ng is incorrect statement rega	arding photon	[MH CET	(Med.) 2001]			
	(a) Photon exerts no zero	pressure (b) (d) None of these	Photon energy is <i>hv</i>	(c) Photon res	st mass is			
98.	Light of frequency v function for the subs	_	otoelectric substance with three) . The work IP PMT 2001]			
	(a) <i>hv</i>	(b) hv_0	(c) $h(v - v_0)$	(d) $h(v+v_0)$				
99.		<i>eV</i> are incident on a metal l photoelectrons will be	surface whose work function		num kinetic IP PET 2001]			
	(a) 0 <i>eV</i>	(b) 1 <i>eV</i>	(c) 2 <i>eV</i>	(d) 10 <i>eV</i>				
			ic energy E_k of the emitted photon		tted against			

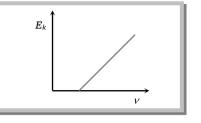
100. For the photoelectric effect, the maximum kinetic energy E_k of the emitted photoelectrons is plotted against the frequency v of the incident photons as shown in the figure. The slope of the curve gives **[CPMT 1987; MP PET 2001]**

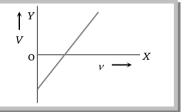
- (a) Charge of the electron
- (b) Work function of the metal
- (c) Planck's constant
- (d) Ratio of the Planck's constant to electronic charge
- **101.** If intensity of incident light is increased in PEE then which of the following is true [AIIMS 1998; RPET 2001]
 - (a) Maximum *K*. *E*. of ejected electron will increase (b) Work function will remain unchanged
 - (c) Stopping potential will decrease(d)Maximum K.E. of ejectedelectron will decrease
- **102.** Consider the following statements

Assertion (A): The number of electrons emitted in the photoelectric effect depend upon the intensity of incident photon.

Reason (R) : The ejection of electrons from a metallic surface is not possible until frequency of incident
photons is not more than threshold frequency. Of these statements[AIIMS 2001]

- (a) Both A and B are true and the R is a correct explanation of the A
- (b) Both A and R are true but the R is not a correct explanation of the A
- (c) A is true but the R is false
- (d) Both A and R are false
- (e) A is false but the R is true
- 103. The stopping potential V for photoelectric emission from a metal surface is plotted along Y-axis and frequency v of incident light along X-axis. A straight line is obtained as shown. Planck's constant is given by [Similar to MP PMT 20]
 - (a) Slope of the line(b) Product of slope on the line and charge on the electron
 - (c) Product of intercept along Y-axis and mass of the electron
 - (d) Product of Slope and mass of electron
- **104.** Which of the following shows particle nature of light
 - (a) Refraction (b) Interference
- 105. With the increase in the no. of incident photons


(c) Polarization


(a) Photoelectric current increases	(b)	Kinetic	energy	of
photoelectrons increases				
(c) Photoelectric current decreases photoelectrons decreases	(d)	Kinetic	energy	of

106. The frequency of a photon having energy 100 eV is $(h = 6.610^{-34} J - sec)$

(a) $2.42 \times 10^{26} Hz$ (b) $2.42 \times 10^{16} Hz$ (c) $2.42 \times 10^{12} Hz$ (d) $2.42 \times 10^{9} Hz$

107. Consider the following statements

[CBSE 2001; AFMC 2003]

[AFMC 2000]

(d) Photoelectric effect

			Electron, Photon, P	hotoelectric Effect and X-
	Assertion (<i>A</i>) : Photo emi frequency above threshold	-	e surface is possible only if	the incident radiation has a
	Reason (<i>R</i>) : Unless $hv > W$	W, the work function (W) of	photo-sensitive surface, no j	photo emission is possible.
	Of these statements			[AIIMS 2000]
	(a) Both A and B are true a	and the <i>R</i> is a correct explana	ation of the A	
	(b) Both A and R are true l	but the R is not a correct exp	lanation of the A	
	(c) A is true but the R is fa	alse		
	(d) Both A and R are false			
	(e) A is false but the R is t	rue		
08.	Which light when falling o	n a metal will emit photo ele	ectrons	[DCE 2000]
	(a) Ultra-violet radiation	(b) Infrared radiation	(c) Radiowaves	(d) Microwaves
09.	•			tion of a metal are incident ed electrons in the two cases [KCET 2000]
	(a) 1:4	(b) 1:3	(c) 1:1	(d) 1 : 2
10.	-	ight of wavelength 4000 Å a ely then which will be better		cathode whose work function [RPET 1999]
	(a) <i>Na</i>	(b) <i>Cu</i>	(c) Both	(d) None of these
11.	••••••	e an electron from an alumir y of fastest electron ejected f	•	ht of wavelength 2000Å falls [AMU 1999]
	(a) $2.5 \times 10^7 m/s$	(b) $8.4 \times 10^5 m/s$	(c) $6.7 \times 10^6 m/s$	(d) $8.4 \times 10^4 m/s$
12.	If in a photoelectric experi	iment, the wavelength of inci	dent radiation is reduced fr	om 6000 Å to 4000 Å, then 🏼
	(a) Stopping potential will increase	l decrease	(b)	Stopping potential will
	(c) Kinetic energy of emit	ted electrons will decrease	(d) The value of work fun	ction will decrease
13.	-		•	on the surface of a metal of ed of light [MP PET/PMT 1998]
	(a) $\left[\frac{2(hc+\lambda\phi)}{m\lambda}\right]^{1/2}$	(b) $\frac{2(hc - \lambda\phi)}{m}$	(c) $\left[\frac{2(hc-\lambda\phi)}{m\lambda}\right]^{1/2}$	(d) $\left[\frac{2(h\lambda-\phi)}{m}\right]^{1/2}$
	Light of wavelength 5000	Å falls on a sensitive plate	with photoelectric work fu	nction of 1.9 eV. The kinetic
14.	energy of the photoelectro			[CBSE 1998]
	energy of the photoelectro (a) 0.58 <i>eV</i>	(b) 2.48 <i>eV</i>	(c) 1.24 <i>eV</i>	(d) 1.16 <i>eV</i>
	energy of the photoelectro (a) 0.58 <i>eV</i> If mean wavelength of ligh	(b) 2.48 eV at radiated by 100 W lamp is	5000 Å, then number of pho	(d) 1.16 <i>eV</i> otons radiated per second are [RPET 1997]
5.	energy of the photoelectro (a) $0.58 eV$ If mean wavelength of light (a) 3×10^{23}	(b) 2.48 eV at radiated by 100 W lamp is (b) 2.5×10^{22}	5000 Å, then number of photon (c) 2.5×10^{20}	(d) 1.16 eV otons radiated per second are [RPET 1997] (d) 5×10^{17}
5.	energy of the photoelectro (a) $0.58 \ eV$ If mean wavelength of light (a) 3×10^{23} When an inert gas is filled	(b) 2.48 eV at radiated by 100 W lamp is (b) 2.5×10^{22} in the place vacuum in a pho	5000 Å, then number of photon (c) 2.5×10^{20}	(d) 1.16 <i>eV</i> otons radiated per second are [RPET 1997]
5.	energy of the photoelectro (a) $0.58 \ eV$ If mean wavelength of light (a) 3×10^{23} When an inert gas is filled (a) Photoelectric current i	(b) 2.48 eV at radiated by 100 W lamp is (b) 2.5×10^{22} in the place vacuum in a pho s decreased	5000 Å, then number of photon (c) 2.5×10^{20}	(d) 1.16 eV otons radiated per second are [RPET 1997] (d) 5×10^{17}
15.	energy of the photoelectro (a) $0.58 \ eV$ If mean wavelength of light (a) 3×10^{23} When an inert gas is filled (a) Photoelectric current is (b) Photoelectric current is	(b) 2.48 eV at radiated by 100 W lamp is (b) 2.5×10^{22} in the place vacuum in a pho s decreased s increased	5000 Å, then number of photon (c) 2.5×10^{20}	(d) 1.16 eV otons radiated per second are [RPET 1997] (d) 5×10^{17}
15.	energy of the photoelectro (a) $0.58 \ eV$ If mean wavelength of light (a) 3×10^{23} When an inert gas is filled (a) Photoelectric current is (b) Photoelectric current is (c) Photoelectric current is	(b) 2.48 eV at radiated by 100 W lamp is (b) 2.5×10^{22} in the place vacuum in a pho s decreased s increased	5000 Å, then number of pho (c) 2.5×10^{20} ptocell, then	 (d) 1.16 eV botons radiated per second are [RPET 1997] (d) 5×10¹⁷ [MP PMT 1997]

(a) Chemical to electrical (b) Magnetic to electrical (c) Optical to electrical (d) Mechanical to electrical

118. When light of wavelength is 2537Å made incident on the copper surface, then the stopping potential is 0.24 volt. The threshold frequency of copper [RPET 1996]

(a) $1.124 \times 10^{15} Hz$ (b) $1.414 \times 10^{14} Hz$ (c) $2.248 \times 10^{15} Hz$ (d) None of the above

119. An image of the sun is formed by a lens of focal length of 30 *cm* on the metal surface of a photoelectric cell and a photoelectric current *i* is produced. The lens forming the image is then replaced by another of the same diameter but of focal length 15 *cm*. The photoelectric current in this case is [Manipal MEE 1995]

(a)
$$\frac{i}{2}$$
 (b) *i* (c) 2*i* (d) 4*i*

- 120. Work function of a metal is 2.1 eV. Which of the waves of the following wavelengths will be able to emit photoelectrons from its surface [Bihar MEE 1995]
 - (a) 4000 Å, 7500 Å (b) 5500 Å, 6000 Å (c) 4000 Å, 6000 Å (d) None of these
- **121.** Stopping potential for photoelectrons
 - (a) Does not depend on the frequency of the incident light
 - (b) Does not depend upon the nature of the cathode material
 - (c) Depends on both the frequency of the incident light and nature of the cathode material
 - (d) Depends upon the intensity of the incident light
- **122.** If the frequency of light in a photoelectric experiment is doubled the stopping potential will **[CPMT 1994]**
 - (a) Be doubled (b) Be halved (c) Become more than double (d) Become less then double

123. Two identical metal plates show photoelectric effect. Light of wavelength λ_A falls on plate A and λ_B falls on plate B. $\lambda_A = 2\lambda_B$. The maximum *K.E.* of the photoelectron is K_A and K_B respectively. Which one of the following statements is true [CBSE 1993]

- (a) $2K_A = K_B$ (b) $K_A = 2K_B$ (c) $K_A < K_B/2$ (d) $K_A > 2K_B$
- **124.** When light of wavelength 300 *nm* (nanometer) falls on a photoelectric emitter, photoelctrons are liberated. For another emitter, however light of 600 *nm* wavelength is sufficient for creating photoemission. What is the ratio of the work functions of the two emitters

[CBSE 1993]

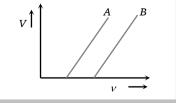
[MP PET 1993]

[MP PET 1994]

(a) 1:2 (b) 2:1

125. The kinetic energy of most energetic electrons emitted from a metallic surface is doubled when the wavelength λ of the incident radiation is changed from 400 nm to 310 nm. The work function of the metal is **[CBSE 1993]**

(c) 4:1


(b) Measure light intensity

- (a) 0.9 *eV* (b) 1.7 *eV* (c) 2.2 *eV*
- **126.** Photo cell is a device to

(a) Store photons

(c) Convert photon energy into mechanical energy (d) Store electrical energy for replacing storage batteries

- **127.** The stopping potential as a function of the frequency of the incident radiation is plotted for two different photoelectric surfaces *A* and *B*. The graphs show that work function of *A* is **[DPMT 1992]**
 - (a) Greater than that of *B*
 - (b) Smaller than that of B

(d) 1:4

(d) 3.1 eV

128. The UV photon is incident on a metal of photoelectric work function 2 eV and produces a photoelectron of energy 2 eV. The wavelength associated with the photon is [CBSE 1991] (d) 4900 Å (a) 3100 Å (b) 6200 Å (c) 9300 Å 129. Photoelectric work function of a metal is 1 eV. Light of wavelength 3000 Å falls on it. The photoelectrons come out with velocity [CBSE 1990] (c) $10^4 ms^{-1}$ (b) $10^3 ms^{-1}$ (d) $10^6 ms^{-1}$ (a) 10 ms^{-1} **130.** Threshold frequency for a metal is 10^{15} Hz, when the light of 4000 Å wavelength incident on it, then choose the correct statement [MP PMT 1990] (a) Photoelectric effect will not happen (b) Photoelectrons will be emitted with zero velocity (c) Photoelectrons will be emitted with the velocity of 10^{3} m/sec. (d) Photoelectrons will be emitted with the velocity of 10^{5} m/sec. 131. The work function for tungsten and sodium are 4.5 eV and 2.3 eV respectively. If the threshold wavelength λ for sodium is 5460 Å, the value of λ for tungsten is [MP PET 1990] (b) 10683 Å (c) 2791 Å (d) 528 Å (a) 5893 Å **132.** A radio transmitter operates at a frequency of 880 *kHz* and a power of 10 *kW*. The number of photons emitted per second are [CBSE 1990; MP PET 1990] (b) 1327×10^{34} (a) 1.72×10^{31} (c) 13.27×10^{34} (d) 0.075×10^{-34} 133. A and B are two light sources. Intensity of source A is more than that of B and frequency of source B is more than that of *A*. The current obtained for the photocell is [MP PET 1988] (a) More for source A (b) More for source B (c) Same for both the sources (d) Nothing can be said 134. Which of the following statement is not related to photon [MP PET 1988] (a) Its energy does not depends on frequency (b) Its energy depends on frequency (c) It moves always with the velocity of light (d) Its wave is electromagnetic 135. In an experiment on photoelectric effect the frequency f of the incident light is plotted against the stopping potential V_0 . The work function of the photoelectric surface is g [CPMT 1987] $\uparrow Y$ $V_{\rm o}$ (a) $OB \times e$ in eV0 v_0

(d) No inference can be drawn about their work functions from the given graphs

(b) OB in volt

(c) Equal to that of B

- (c) OA in eV
- (d) The slope of the line AB
- **136.** When the photons of energy hv fall on a photo-sensitive surface (work function hv_0) electrons are emitted from the metallic surface. This is known as photoelectric effect. The electron coming out of the surface have a kinetic energy. Then it is possible to state that

В

[NCERT 1983]

(a) All ejected electrons have the same *K*.*E*. equal to $hv - hv_0$

 44 Electron, Photon, Photoelectric Effect and (b) The ejected electrons have a distribution of kinetic energy, the most energetic one have equal to hν-hν₀ (c) The most energetic ejected electrons have kinetic energy equal to hν (d) The kinetic energy of the most energetic ejected electrons is hν₀ 137. Monochromatic light, incident on a metal surface emits photoelectrons whose energies range eV. What will be the minimum energy of incident photon if the energy required to release electron is 4.2eV (a) 1.6 eV (b) 1.6 eV to 6.8 eV (c) 6.8 eV (d) > 6.8 138. The eye can detect 5×10⁴ Photons/m² - sec of green light (λ = 5000 Å), while ear can detect power electron, which is more sensitive and by what factor (a) Eye is more sensitive and by a factor of 5.00 (b) Ear is more sensitive by a factor of 10⁻¹ 	ge from zero to 2.5 e the tightly bound 8 eV 10^{-13} watt/ m^2 . As a
(d) The kinetic energy of the most energetic ejected electrons is hv_0 137. Monochromatic light, incident on a metal surface emits photoelectrons whose energies range eV . What will be the minimum energy of incident photon if the energy required to release electron is $4.2eV$ (a) $1.6 \ eV$ (b) $1.6 \ eV$ to $6.8 \ eV$ (c) $6.8 \ eV$ (d) > 6.8 138. The eye can detect $5 \times 10^4 \ Photons/m^2 - \sec$ of green light ($\lambda = 5000 \ Å$), while ear can detect power electron, which is more sensitive and by what factor (a) Eye is more sensitive and by a factor of 5.00 (b) Ear is more sensitive by a factor of C (c) Both are equally sensitive (d) Eye is more sensitive electron) (d) (d) (d) (d) (d) (d)	the tightly bound 8 eV 10^{-13} watt/m ² . As a
137. Monochromatic light, incident on a metal surface emits photoelectrons whose energies range eV. What will be the minimum energy of incident photon if the energy required to release electron is $4.2eV$ (a) $1.6 \ eV$ (b) $1.6 \ eV$ to $6.8 \ eV$ (c) $6.8 \ eV$ (d) > 6.8 138. The eye can detect $5 \times 10^4 \ Photons/m^2 - \sec$ of green light ($\lambda = 5000 \ Å$), while ear can detect power electron, which is more sensitive and by what factor (a) Eye is more sensitive and by a factor of 5.00 (b) Ear is more sensitive by a factor (c) Both are equally sensitive(d)Eye is more	the tightly bound 8 eV 10^{-13} watt/m ² . As a
eV. What will be the minimum energy of incident photon if the energy required to release electron is $4.2eV$ (a) $1.6 \ eV$ (b) $1.6 \ eV$ to $6.8 \ eV$ (c) $6.8 \ eV$ (d) > 6.8 138. The eye can detect $5 \times 10^4 \ Photons/m^2 - \sec$ of green light ($\lambda = 5000 \ Å$), while ear can detect power electron, which is more sensitive and by what factor (a) Eye is more sensitive and by a factor of 5.00 (b) Ear is more sensitive by a factor (c) Both are equally sensitive(d)Eye is more	the tightly bound B eV 10^{-13} watt/ m^2 . As a
138. The eye can detect 5×10^4 Photons/ m^2 – sec of green light ($\lambda = 5000$ Å), while ear can detect power electron, which is more sensitive and by what factor (a) Eye is more sensitive and by a factor of 5.00 (b) Ear is more sensitive by a factor (c) Both are equally sensitive (d) Eye is more sensitive for the factor factor (c) both are equally sensitive (d) (d) (b) Ear is more sensitive for the factor	10^{-13} watt/m ² . As a
power electron, which is more sensitive and by what factor(a) Eye is more sensitive and by a factor of 5.00(b) Ear is more sensitive by a factor(c) Both are equally sensitive(d)Eye is more	
(c) Both are equally sensitive (d) Eye is m	of 5.00
	ore sensitive by a
139. When light of intensity 1 W/m^2 and wave length 5×10^{-7} m is incident on a surface, it is co	mpletely absorbed
by the surface. If 100 photons emit one electron and area of the surface is $1cm^2$, then the ph will be	
(a) 2 mA (b) 0.4 μ A (c) 4.0 mA (d) 4 μ A	
	X-rays
140. The X-ray can not be diffracted by means of an ordinary grating due to	
(a) Large wavelength (b) High speed (c) Short wavelength (d) All of	f these
141. X-ray will travel minimum distance in	[MP PET 2003]
(a) Air (b) Iron (c) Wood (d) Wate	
142. The minimum wavelength of X-ray emitted by X-rays tube is 0.4125 Å. The accelerating voltage	ge is
(a) $30 kV$ (b) $50 kV$ (c) $80 kV$ (d) $60 kV$	-
143. Characteristic <i>X</i> -rays are produced due to	[AIIMS 2003]
(a) Transfer of momentum in collision of electrons with target atoms	
(b) Transition of electrons from higher to lower electronic orbits in an atom	
(c) Heating of the target	
(d) Transfer of energy in collision of electrons with atoms in the target	
(d) Transfer of energy in collision of electrons with atoms in the target 144. <i>X</i> -rays when incident on a metal	
	f the above
 144. X-rays when incident on a metal (a) Exert a force on it (b) Transfer energy to it (c) Transfer pressure to it (d) All of 145. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference 	
 144. X-rays when incident on a metal (a) Exert a force on it (b) Transfer energy to it (c) Transfer pressure to it (d) All of 145. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference equal to 	rence of V volts is
 144. X-rays when incident on a metal (a) Exert a force on it (b) Transfer energy to it (c) Transfer pressure to it (d) All of 145. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference 	rence of V volts is
 144. X-rays when incident on a metal (a) Exert a force on it (b) Transfer energy to it (c) Transfer pressure to it (d) All of the minimum wavelength of X-rays produced by electrons accelerated by a potential difference equal to [CPMT 1986; 88, 91; RPMT 1997; MP PET 1997; MP PMT/PET 1998; D 	rence of V volts is
144. X-rays when incident on a metal(a) Exert a force on it(b) Transfer energy to it(c) Transfer pressure to it(d) All of145. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference[CPMT 1986; 88, 91; RPMT 1997; MP PET 1997; MP PMT/PET 1998; II(a) $\frac{eV}{hc}$ (b) $\frac{eh}{cV}$ (c) $\frac{hc}{eV}$ (d) $\frac{cV}{eh}$	rence of V volts is
144. X-rays when incident on a metal(a) Exert a force on it(b) Transfer energy to it(c) Transfer pressure to it(d) All of145. The minimum wavelength of X-rays produced by electrons accelerated by a potential differenceICPMT 1986; 88, 91; RPMT 1997; MP PET 1997; MP PMT/PET 1998; I(a) $\frac{eV}{hc}$ (b) $\frac{eh}{cV}$ (c) $\frac{hc}{eV}$ (d) $\frac{cV}{eh}$ 146. An X-ray machine is working at a high voltage. The spectrum of the X-rays emitted will	rence of <i>V volts</i> is MP PMT 1996, 2003]
144. X-rays when incident on a metal(a) Exert a force on it(b) Transfer energy to it(c) Transfer pressure to it(d) All of145. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference[CPMT 1986; 88, 91; RPMT 1997; MP PET 1997; MP PMT/PET 1998; I(a) $\frac{eV}{hc}$ (b) $\frac{eh}{cV}$ (c) $\frac{hc}{eV}$ (d) $\frac{cV}{eh}$ 146. An X-ray machine is working at a high voltage. The spectrum of the X-rays emitted will(a) Be a single wavelength(b) Extend from 0 to ∞ wavelength	rence of <i>V volts</i> is MP PMT 1996, 2003]

			Electron, Photon,	Photoelectric Effect and X-
	(a) Velocity	(b) Intensity	(c) Frequency	(d) Polarization
48.	X-rays are produced due	to		
	(a) Break up of molecule	es	(b) Change in atomic en	ergy level
	(c) Change in nuclear en	ergy level	(d)	Radioactive disintegration
49.	The essential distincti	on between X-rays and γ -ray	ys is that	
	(a) γ -rays have smalle	r wavelength than X-rays		
	(b) γ -rays emanate from	om nucleus while X-rays em	anate from outer part of	f the atom
	(c) γ -rays have grater	ionizing power than X-rays	5	
	(d) γ -rays are more pe	enetrating than X-rays		
50.	X-ray beam can be defled	cted by		
	(a) Magnetic field	(b) Electric field	(c) Both (a) and (b)	(d) None of these
51.	For the production of ch	haracteristic K_{γ}, X -ray, the elec	ctron transition is	
	(a) $n = 2$ to $n = 1$	(b) $n = 3$ to $n = 2$	(c) $n=3$ to $n=1$	(d) $n = 4$ to $n = 1$
;2.	When X rays pass through	gh a strong uniform magnetic	field, then they	
	(a) Do not get deflected direction of the field	at all	(b)	Get deflected in th
	(c) Get deflected in the of field	lirection opposite to the field	(d) Get deflected in the	direction perpendicular to the
3.	If the potential difference emitted X-rays will be	e applied across X-ray tube is	V volts, then approximate	ly minimum wavelength of th
				[CBSE 1996; MP PET 2002
	(a) $\frac{1227}{\sqrt{V}} Å$	(b) $\frac{1240}{V}$ Å	(c) $\frac{2400}{V}$ Å	(d) $\frac{12400}{V}$ Å
54.	If V be the accelerating v	oltage, then the maximum free		
				91; MP PET 2000; MP PMT 2002
	(a) $\frac{eh}{V}$	(b) $\frac{hV}{e}$	(c) $\frac{eV}{h}$	(d) $\frac{h}{eV}$
	V	c		ev
55.	A metal block is exposed	to beams of X-ray of different	wavelength x-rays of white	INCERT 1980; JIPMER 2002
	(a) 2Å	(b) 4Å	(c) 6Å	(d) 8Å
;6 .	An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 1$	on 30 kV . What is the minim $0^8 m s^{-1}$)	num wavelength emitted	? $(h = 6.6 \times 10^{-34} Js, e = 1.6 \times 10^{-34} Js)$
	(a) 0.133 Å	(b) 0.4 Å	(c) 1.2 Å	(d) 6.6 Å
57.	Bragg's law for X-rays is			[UPSEAT 2001
	(a) $d\sin\theta = 2n\lambda$	(b) $2d\sin\theta = n\lambda$	(c) $n\sin\theta = 2\lambda d$	(d) None of these
;8.	Intensity of X-rays depen	nds upon the number of	[SCR	A 1998; DPMT 2000; AFMC 2001
	(a) Electrons	(b) Protons	(c) Neutrons	(d) Positrons
59 .	In an X-ray tube electron energy of bombarding el	is bombarding the target produ ectrons	ice X-rays of minimum way	velength 1 Å. What must be th
	(a) 13375 <i>eV</i>	(b) 12375 <i>eV</i>	(c) 14375 <i>eV</i>	(d) 15375 <i>eV</i>
50 .	For production of charac	teristic K_{β} X-rays, the electro	n transition is	
	(a) $n = 2$ to $n = 1$	(b) $n = 3$ to $n = 2$	(c) $n = 3$ to $n = 1$	(d) $n = 4$ to $n = 2$
51.	Penetrating power of X-r	ays does not depend on		[MP PET 2001
	(a) Wavelength	(b) Energy	(c) Potential difference	(d) Current in the filament

162. The intensity of X-rays from a coolidge tube is plotted against wavelength as shown in the figure. The minimum wavelength found is λ_c and the wavelength of the K_{α} line is λ_k . As the accelerating voltage is increased

τÎ (a) $(\lambda_K - \lambda_C)$ increases (b) $(\lambda_K - \lambda_C)$ decreases (c) λ_{κ} increases λν 2 (d) λ_{K} decreases **163.** Penetrating power of X-rays can be increased by [MP PMT 1997, 2000] (a) Increasing the potential difference between anode and cathode (b) Decreasing the potential difference between anode and cathode (c) Increasing the cathode filament current (d) Decreasing the cathode filament current **164.** In an X-ray tube the intensity of the emitted X-ray beam is increased by (a) Increasing the filament current (b) Decreasing filament the current (c) Increasing the target potential (d) Decreasing the target potential [CPMT 1975; EAMCET 1995; RPET 2000] 165. X-rays are (a) Stream of electrons (b) Stream of positively charged particles (c) Electromagnetic radiations (d) Stream uncharged of particles **166.** For the structural analysis of crystals, X-rays are used because (a) X-rays have wavelength of the order of interatomic spacing (b) X-rays highly are penetrating radiations (c) Wavelength of X-rays is of the order of nuclear size (d) X-rays are coherent radiations 167. Electrons with energy 80 keV are incident on the tungsten target of an X-ray tube. K shell electrons of tungsten have - 72.5 keV energy. X-rays emitted by the tube contain only (a) A continuous X-ray spectrum (Bremsstrahlung) with a minimum wavelength of ~ 0.155 Å (b) A continuous X-ray spectrum (Bremsstrahlung] with all wavelengths (c) The characteristic X-rays spectrum of tungsten (d) A continuous X-ray spectrum (Bremsstrahlung) with a minimum wavelength of ~ 0.155Å and the characteristic Xray spectrum of tungsten 168. The wavelength of most energetic X-rays emitted when a metal target is bombarded by 40 keV electrons, is approximately $(h = 6.62 \times 10^{-34} J\text{-sec}; 1eV = 1.6 \times 10^{-19} J; c = 3 \times 10^8 m/s)$ (b) 10 Å (c) 4 Å (a) 300 Å (d) 0.31 Å 169. Consider the following two statements A and B and identify the correct choice in the given answer A : The characteristic X-ray spectrum depends on the nature of the material of the target.

B : The short wavelength limit of continuous X-ray spectrum varies inversely with the potential difference applied to the X-rays tube

[EAMCET (Med.) 2000]

		lse (b) A is false and B is true		re true (d) Both <i>A</i> and <i>B</i> are false	
170.	The energy of an X ray	photon of wavelength 1.65 Å i	s $(h = 6.6 \times 10^{-34} J\text{-sec}, c =$	$= 3 \times 10^8 ms^{-1}$, $1 eV = 1.6 \times 10^{-19} J$)	
				[EAMCET (Engg.) 2000]	
	(a) 3.5 <i>keV</i>	(b) 5.5 <i>keV</i>	(c) 7.5 <i>keV</i>	(d) 9.5 <i>keV</i>	
171.	The X-ray beam coming	from an X-ray tube will be	[]	IT-JEE 1985; SCRA 1996; MP PET 1999]	
	(a) Monochromatic				
	(b) Having all waveleng	ths smaller than a certain ma	ximum wavelength		
	(c) Having all waveleng	ths larger than a certain mini	mum wavelength		
	(d) Having all waveleng	ths lying between a minimum	and a maximum wave	length	
72.	Molybdenum is used as	a target element for productio	on of X-rays because it	is [CPMT 1980; RPET 1999]	
	(a) A heavy element and high melting point	d can easily absorb high veloci	ty electrons	(b) A heavy element with a	
	(c) An element having h	nigh thermal conductivity	(d) Heavy and can	easily deflect electrons	
73.	Ka characteristic X-ray r	refers to the transition		[MP PMT 1999]	
	(a) $n = 2$ to $n = 1$	(b) $n = 3$ to $n = 2$	(c) $n = 3$ to $n = 1$	(d) $n = 4$ to $n = 2$	
74.	What kV potential is to 6.625 × 10 ⁻³⁴ <i>J</i> -sec)	be applied on X-ray tube so th	at minimum waveleng	th of emitted X-rays may be 1Å (<i>h</i> =	
				[UPSEAT 1999]	
	(a) 12.42 <i>kV</i>	(b) 12.84 <i>kV</i>	(c) 11.98 <i>kV</i>	(d) 10.78 <i>kV</i>	
75.	X-rays are not obtainable	le from <i>H</i> -atom because		[RPET 1999]	
	(a) It is a gas		(b) It is very light		
	(c) The difference in en levels of <i>H</i> -atoms is ver	lergy levels of <i>H</i> -atom is very s y large	small (d)	The difference in energy	
76.	Energy of X-rays is abou	ıt		[MP PMT 1999]	
	(a) 8 <i>eV</i>	(b) 80 <i>eV</i>	(c) 800 <i>eV</i>	(d) 8000 <i>eV</i>	
77.	The continuous X-rays s	pectrum produced by an X-ray	v machine at constant v	voltage has	
	(a) A maximum waveler	ngth (b)	A minimum wavele	ngth (c) A single wavelength (d)	
78.		y <i>I</i> ^o passes through an abso ne correct statement regarding	1 I	ness <i>d</i> . If absorption coefficient of sity <i>I</i> of <i>X</i> -ray is	
	(a) $I = I_0(1 - e^{-\mu d})$	(b) $I = I_0 e^{-\mu d}$	(c) $I = I_0(1 - e^{-\mu/d})$	(d) $I = I_0 e^{-\mu/d}$	
79.	X-rays are produced in X-ray tube operating at a given accelerating voltage. The wavelength of the continuous X-rays has values from				
	(a) 0 to ∞		(b) λ_{\min} to ∞ , wher	[IIT-JEE 1998] e $\lambda_{\min} > 0$	
	(c) 0 to λ_{\max} , where λ_{\max}	< 90	(d)	λ_{\min} to λ_{\max} , where	
	$0 < \lambda_{\min} < \lambda_{\max} < \infty$	ax		min co max, core	
80.	The emission of K_a X-r and <i>L</i> energy levels will		elength of 0.021nm. T	he energy difference between the K	
	(a) 0.51 <i>MeV</i>	(b) 1.2 <i>MeV</i>	(c) 59 <i>KeV</i>	(d) 13.6 <i>eV</i>	
81.	Compton effect shows the	hat		[DPMT 1995]	
	(a) X-rays are waves	(b) X-rays have high energy	gy (c) X-rays can pen	etrate matter (d)	
82.	The wavelength of $K_{\alpha} X$ the tube is	-rays produced by an X-ray tu	ıbe is 0.76Å. The atom	ic number of the anode material of	
				[IIT-JEE 1996]	

48	Electron, Photon, Photoe	lectric Effect and											
	(a) 20	(b) 60	(c) 40	(d) 80									
183.	X-ray astronomy			[Haryana CEE 1996]									
	(a) Orbiting the earth because X-rays are almost completely absorbed by the atmosphere												
	(b) Is very much possible through the use of appropriate telescopes kept on the earth because the atmosphere is almost completely transparant to X-rays												
	(c) Is possible both with satellites and on the earth because the atmosphere does not affect X-rays at all												
	(d) Is not possible at all because X-rays have a very short wavelength												
184.	An X-ray tube with a copper target emits $Cu K_{\alpha}$ line of wavelength 1.50 Å. What should be the minimum voltage through which electrons are to be accelerated to produce this wavelength of X rays ($h = 6.63 \times 10^{-34}$ J-sec, $c = 3 \times 10^8$ m/s) [Orissa JEE 1996]												
	(a) 8280 V	(b) 828 V	(c) 82800 V	(d) 8.28 V									
185.	An X-ray tube is operating at 50 <i>kV</i> and 20 <i>mA</i> . The target material of the tube has a mass of 1.0 <i>kg</i> and specific heat 495 <i>Jkg</i> ⁻¹ °C. One percent of the supplied electric power is converted into X-rays and the entire remaining energy goes into heating the target. Then												
				[IIT-JEE 1995]									
	(1) A suitable target material must have a high melting temperature												
	(2) A suitable target material must have low thermal conductivity												
	•	se of temperature of target w ngth of the X-rays emitted is a											
	(a) 1, 3, 4	(b) 1, 2, 3	(c) 2, 3, 4	(d) None of these									
186.		ngth λ of line K_{α} depends on a		[RPMT 1995]									
		(b) $\lambda \propto (Z-1)^2$		(d) $\lambda \propto \frac{1}{(Z-1)^2}$									
187.		characteristic X-ray from a C		[MP PET 1995]									
- , -	(a) The kinetic energy of the striking electron (b) The kinetic energy of the free electrons of the target												
	(c) The kinetic energy of	the ions of the target	(d) An electronic transitio	on of the target atom									
188.	The figure represents the The sharp peaks <i>A</i> and <i>B</i> d		s emitted by an X-ray tube	as a function of wavelength.									
	(a) Band spectrum		B B										
	(b) Continuous spectrum		Inter										
	(c) Characteristic radiation	ons		·→									
	(d) White radiations												
189.	When a beam of accelerated electron hits a target a continuous X-ray spectrum is emitted from the target. Which of the following wavelength is absent in the X-ray spectrum. If the X-ray in operating at 40,000 volts [NCE]												
	(a) 0.25 Å	(b) 0.5 Å	(c) 1.5 Å	(d) 1.0 Å									
190.		aximum in which of the follo		[RPMT 1995]									
	(a) Copper	(b) Gold	(c) Beryllium	(d) Lead									
191.		accompanied by the character	-	[MP PET 1993]									
	(a) α -particle emission	(b) Electron emission	(c) Positron emission	(d) K-electron capture									
102	-			-									
192.	of the X-radiations produc	ced is $(1 eV = 1.6 \times 10^{-19} J \text{ and})$	$h = 6.63 \times 10^{-34} J\text{-sec}$	ons. The maximum frequency									
	(a) $10^{19} Hz$	(b) $10^{18} Hz$	(c) $10^{16} Hz$	(d) 10^{20} Hz									
193.	A direct X-ray photograp	h of the intestines is not gen	erally taken by the radiolo	ogists because									

- (a) Intestines would burst on exposure to X-rays
- (b) The X-rays would not pass through the intestines
- (c) The X-rays will pass through the intestines without causing a good shadow for any useful diagnosis
- (d) A very small exposure of X-rays causes cancer in the intestines
- **194.** If λ_1 and λ_2 are the wavelengths of characteristic X-rays and gamma rays respectively, then the relation between them is

[MP PMT 1987]

[CPMT 1972]

[CPMT 1972]

[CPMT 1975, 80, 90; RPET 1999]

(a) $\lambda_1 = \frac{1}{\lambda_2}$ (b) $\lambda_1 = \lambda_2$ (c) $\lambda_1 > \lambda_2$ (d) $\lambda_1 < \lambda_2$

195. The binding energy of the innermost electron in tungsten is 40 keV. To produce characteristic X-rays using a tungsten target in an X-ray tube the potential difference V between the cathode and the anticathode should be [IIT-JEE 1985]

(a)
$$V < 40 \, kV$$
 (b) $V \le 40 \, kV$ (c) $V > 40 \, kV$ (d) $V > / < 40 \, kV$

196. The wavelength of K_{α} -line in copper is 1.54 Å. The ionisatin energy of K electron in copper in Joule is [EAMCET 198]

(d) 10×10^{-16} (a) 11.2×10^{-27} (b) 12.9×10^{-16} (c) 1.7×10^{-15}

197. The characteristic X-ray radiation is emitted when

- (a) The electrons are accelerated to a fixed energy
- (b) The source of electrons emits a monenergetic beam
- (c) The bombarding electrons knock out electrons from the inner shell of the target atoms and one of the outer electrons falls into this vacancy

(d) The valence electrons in the target atom are removed as a result of the collision

198. In radio-theraphy, X-rays are used to

- (a) Detect bone fractures (b) Treat cancer by controlled exposure (c) Detect heart diseases
 - (d) Detect fault in radio receiving circuits

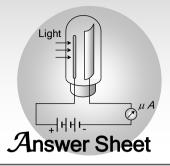
(d) Positive rays

199. In obtaining an X-ray photograph of our hand, we use the principle of

- (a) Shadow photography (b) Image formation by an optical system
- (c) Photoelectric effect
- **200.** X-rays are not used for radar purpose because
 - (a) They are not reflected by the target (b) They are not electromagnetic waves

(c) They are completely absorbed by the air (d) They sometimes damage the target

201. The wavelength of K_{α} line for an element of atomic number 43 is λ . Then the wavelength of K_{α} line for an element of atomic number 29 is


(a)
$$\frac{43}{29}\lambda$$
 (b) $\frac{42}{28}\lambda$ (c) $\frac{9}{4}\lambda$ (d) $\frac{4}{9}\lambda$

202. Let λ_{α} , λ_{β} and λ'_{α} denote the wavelengths of the X-rays of the K_{α} , K_{β} and L_{α} lines in the characteristic X-rays for a metal

(a)
$$\lambda'_{\alpha} > \lambda'_{\alpha} > \lambda_{\beta}$$
 (b) $\lambda'_{\alpha} > \lambda_{\beta} > \lambda_{\alpha}$ (c) $\frac{1}{\lambda_{\beta}} = \frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda'_{\alpha}}$ (d) $\frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\beta}} = \frac{1}{\lambda'_{\alpha}}$

203. In a Coolidge tube, the potential difference across the tube is 20 kV, and 10 mA current flows through the voltage supply. Only 0.5% of the energy carried by the electrons striking the target is converted into X-rays. The X-ray beam carries a power of

(a)
$$0.1 W$$
 (b) $1 W$ (c) $2 W$ (d) $10 W$

Assignments																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	b	а	С	b	С	d	d	а	С	а	b	а	С	d	а	b	d	b	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	а	С	b	С	d	b	b	с	d	b	b	b	d	С	С	b	а	d	а
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	b	а	а	а	а	С	а	с	b	а	а	а	d	а	d	d	с	d	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	с	С	b	с	а	С	С	b	d	С	b	С	а	а	а	d	d	с	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	а	С	b	а	а	а	b	а	с	b	d	а	а	с	b	а	b	а	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	b	d	а	b	а	а	d	а	b	b	С	а	с	b	с	а	b	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	с	С	b	С	b	b	а	d	а	С	а	а	а	а	b	с	а	b	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	а	а	d	С	С	С	b	b	d	d	а	d	С	а	b	b	а	b	С
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	а	а	а	С	а	d	d	с	С	с	b	а	а	с	d	b	b	b	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	С	а	а	а	d	d	С	а	d	d	а	С	С	С	С	С	b	а	а
201	202	203																	
С	С	b																	