CUET (UG)

Mathematics Sample Paper - 07

Solved

Time Allowed: 50 minutes

General Instructions:

- 1. There are 50 questions in this paper.
- 2. Section A has 15 questions. Attempt all of them.
- 3. Attempt any 25 questions out of 35 from section B.
- 4. Marking Scheme of the test:
- a. Correct answer or the most appropriate answer: Five marks (+5).
- b. Any incorrectly marked option will be given minus one mark (-1).
- c. Unanswered/Marked for Review will be given zero mark (0).

Section A

- 1. If A and B are square matrices of the same order, then (A + B) (A - B) is equal to [5]
 - b) $A^2 B^2 + BA AB$ a) ${}_{A}2 - {}_{B}2$
 - c) $A^2 BA + B^2 + AB$ d) $A^2 - BA - AB - B^2$
- 2. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then a) $A^2 = 0$ b) $_{A}2 = I$ d) $_{A}2 = _{A}$ c) $_{A}2 = _{-A}$
- 3. For any two matrices A and B,
 - a) AB = BA is always true
- b) Whenever AB exists, then BA exists
- c) Sometimes AB = BA and d) AB = BA is never true sometimes $AB \neq BA$
- The maximum value of $\frac{\log x}{x}$ in $0 < x < \infty$ is 4.
 - a) 0 b) none of these
 - $1) \frac{1}{2}$ c) - e
- $f(x) = (x + 1)^3 (x 3)^3$ is increasing in 5.

Maximum Marks: 200

[5]

[5]

[5]

d)
$$\frac{1}{e}$$

a)
$$(1, \infty)$$
 b) $(-1, 3)$

c) $(-\infty, 1)$ d) $(3,\infty)$

If the function $f(x) = x^2 - kx + 5$ is increasing on [2, 4], then 6.

- a) $k\in(-\infty,2)$ b) $k \in (2,\infty)$ c) $k \in (4,\infty)$ d) $k \in (-\infty, 4)$
- If $I_{10} = \int_0^{\pi/2} x^{10} \sin x dx$, then value of $I_{10} + 90I_8$ is 7.
 - a) $10(\frac{\pi}{2})^9$ b) $\left(\frac{\pi}{2}\right)^9$ d) $9\left(\frac{\pi}{2}\right)^9$ c) $9\left(\frac{\pi}{2}\right)^8$
- 8. $\int rac{3x^2}{\sqrt{9-16x^6}} dx =?$ [5] $^{a)}4\sin^{-1}\left(rac{x^{3}}{4}
 ight)+C$
 - c) None of these
- $\int (\sin(\log x) + \cos(\log x)) dx$ is equal to 9. a) log ($\sin x - \cos x$) + c b) x sin $(\log x) + C$ c) $\sin(\log x) - \cos(\log x) + C$ d) $x \cos(\log x) + C$
- The area bounded by the curve y = f(x), x-axis, and the ordinates x = 1 and x b is (b -10. [5] 1) $\sin(3b + 4)$. Then, f (x) is
 - b) $\sin(3x+4) + 3(x-1)\cos(3x+4)$ a) $\sin(3x + 4)$ 4)
 - c) None of these d) $(x - 1) \cos(3x + 4)$
- 11. The solution of the DE $\cos x(1 + \cos y)dx - \sin y(1 + \sin x)dy = 0$ is
 - b) $1 + \sin x \cos y = C$ a) none of these c) $\sin x \cos y + \cos x = C$ d) $(1 + \sin x)(1 + \cos y) = C$
- The solution of the differential equation $(1 + x^2) \frac{dy}{dx} + 1 + y^2 = 0$, is [5] 12.

b)
$$\frac{1}{4}\sin^{-1}\left(\frac{4x^3}{3}\right) + C$$

d) $\frac{1}{4}\sin^{-1}\left(\frac{x^3}{3}\right) + C$

b)
$$\frac{1}{4} \sin^{-1} \left(\frac{4x^3}{3} \right) + C$$

d) $\frac{1}{4} \sin^{-1} \left(\frac{x^3}{3} \right) + C$

51	
\mathbf{J}	

[5]

[5]

a) $\tan^{-1} y - \tan^{-1} x = \tan^{-1} C$	b) $\tan^{-1} y + \tan^{-1} x = \tan^{-1} C$
c) $\tan^{-1} x - \tan^{-1} y = \tan^{-1} C$	d) $\tan^{-1} y \pm \tan^{-1} x = \tan^{-1} C$

13. Minimize Z = 5x + 10 y subject to $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x, y \ge 0$ [5]

a) Minimum Z = 310 at (60, 0)	b) Minimum Z = 320 at (60, 0)
c) Minimum Z = 330 at (60, 0)	d) Minimum Z = 300 at (60, 0)

- 14. Two dice are thrown simultaneously. If X denotes the number of sixes, find the [5] expectation of X.
 - a) $\frac{1}{3}$ b) $\frac{1}{6}$ c) $\frac{1}{4}$ d) $\frac{1}{5}$
- 15. On a multiple choice examination with three possible answers for each of the five [5] questions, what is the probability that a candidate would get four or more correct answers just by guessing?

a)
$$\frac{13}{243}$$
 b) $\frac{17}{243}$
c) $\frac{9}{243}$ d) $\frac{11}{243}$

Section **B**

Attempt any 25 questions

- 16. The domain of function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt{x^2 3x + 2}$ is [5]
 - a) $[2,\infty]$ b) $(-\infty,1] \cup [2,\infty)$ c) $(-\infty,1]$ d) [1,2]

17. If $4 \cos^{-1} x + \sin^{-1} x = \pi$, then the value of x is

a) $\frac{2}{\sqrt{3}}$ b) $\frac{1}{\sqrt{2}}$

c)
$$\frac{\sqrt{3}}{2}$$
 d) $\frac{3}{2}$

18. The matrix P = $\begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$ is a

a) none

b) diagonal matrix

[5]

c) square matrix

d) unit matrix

$$\begin{array}{ll} \text{(5) of all of matrix} & \text{(5) with matrix} \\ \text{(5) of all of matrix} & \text{(5) with matrix} \\ \text{(6) of all of matrix} & \text{(5) with matrix} \\ \text{(6) B = 100 \\ -2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = -A \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = -A \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = -A \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(6) B = -A \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 2 & 4 & 2 \\ 0 & 4 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 4 & 4 & 2 \\ 0 & 4 & 4 & 2 \\ \text{(7) B = 0 \\ 0 & 4 & 4 & 2 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 & 4 \\ 0 & 4 & 4 & 4 & 4 & 4$$

22. If
$$y = \sin^{-1}x$$
 and $z = \cos^{-1}\sqrt{1 - x^2}$, then $\frac{dy}{dz}$ is equal to $(0 < x < 1)$
a) $\cos^{-1}x$
b) $\sqrt{1 - x^2}$
c) 1
d) $\frac{1}{\sqrt{1 - x^2}}$
[5]

23. If
$$f(x) = \left(\frac{x^l}{x^m}\right)^{l+m} \left(\frac{x^m}{x^n}\right)^{m+n} \left(\frac{x^n}{x^l}\right)^{n+l}$$
, then f(x) is equal to
a) $_{x}l+m+n$ b) 0
c) none of these d) 1
24. If f is derivable at x = a , then $\underset{x \to a}{Lt} \frac{xf(a)-af(x)}{x-a}$ is equal to [5]

a) af'(9a) - f(a) b) f(a) - a f'(a)

25. If $f(x) = \sqrt{x^2 - 10x + 25}$, then the derivative of f(x) in the interval [0, 7] is [5]

c) 1 d) none of these

26. If the function
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0 \\ k, x = 0 \end{cases}$$
 is continuous $x = 0$ then $k = ?$
(5)
(a) $\frac{-1}{2}$ (b) $\frac{1}{2}$
(c) 2 (

29. If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then its maximum value is a) 1 b) $\frac{4}{3}$ c) $\frac{3}{4}$ d) $\frac{2}{3}$

- 30. The equation of the normal to the curve y = sinx at (0, 0) is
 - a) x y = 0b) x = 0d) y = 0

31.
$$\int_0^a \frac{\sqrt{x}}{(\sqrt{x}+\sqrt{a-x})} dx = ?$$
 [5]

a)
$$\frac{\sqrt{a}}{2}$$
 b) $\frac{a}{2}$

c) 2a d)
$$\frac{2a}{3}$$

32. $\int \frac{1}{x^2} \sin(\frac{1}{x}) dx$ is equal to

[5]

[5]

a)
$$-\cos\left(\frac{1}{x^2}\right) + C$$

b) $\cos\left(\frac{1}{x^2}\right) + C$
c) $-\sin\left(\frac{1}{x}\right) + C$
d) $\cos\left(\frac{1}{x}\right) + C$

33.
$$\int \frac{(1+\tan x)}{(1-\tan x)} dx =?$$
(5)
a) $\log |\cos x - \sin x| + C$
b) $\log |\cos x + \sin x| + C$
c) none of these
d) $-\log |\cos x - \sin x| + C$

34. $\int \frac{x + \sin x}{1 + \cos x} dx \text{ is equal to}$ (5) (a) $x \cdot \tan \frac{x}{2} + C$ (b) $x - \tan \frac{x}{2} + C$ (c) $\log|1 + \cos x| + C$ (d) $\log|x + \sin x| + C$ 35. The area bounded by the curves $y = \sqrt{5 - x^2}$ and y = |x - 1| is (a) $\frac{5\pi - 5}{4}$ sq. units (b) $\frac{5\pi + 2}{4}$ sq. units (c) $\frac{5\pi - 2}{4}$ sq. un

36. The solution of the DE
$$x \frac{dy}{dx} = \cot y$$
 is [5]
a) x sec y = C b) x cos y = C

c) x tan y = C d) none of these

37. The solution of the differential equation $y_1 y_3 = y_2^2$ is

a) $2x = C_1 e^{C_2 y} + C_3$ b) $x = C_1 e^{C_2 y} + C_3$ c) $y = C_1 e^{C_2 x} + C_3$ d) None of these

38. Differential equation of the family of ellipses having foci on y-axis and centre at origin [5] is

[5]

a) $xyy'' + x(y')^2 yy' = 0$ b) $xyy'' - x(y')^2 + yy' = 0$ c) $xy'' + x(y')^2 yy' = 0$ d) $yy'' + x(y')^2 yy' = 0$

39. If $\vec{a} + \vec{b} + \vec{c} = 0$, then which of the following is/are correct? [5] I. $\vec{a}, \vec{b}, \vec{c}$ are coplanar. II. $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$. Select the correct answer using the code given

- a) Only II b) Only I
- c) Both I and II d) Neither I nor II

40. Find
$$|\vec{a}|$$
 and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$. [5]
a) $\frac{16\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{2}}{3\sqrt{7}}$ b) $\frac{19\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{5}}{3\sqrt{7}}$

c)
$$\frac{17\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{3}}{3\sqrt{7}}$$
 d) $\frac{21\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{6}}{3\sqrt{7}}$

41. If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2), respectively, [5] then find $\angle ABC$. [$\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC}]

[5]

[5]

a)
$$\cos^{-1}\left(\frac{13}{\sqrt{102}}\right)$$

b) $\cos^{-1}\left(\frac{11}{\sqrt{102}}\right)$
c) $\cos^{-1}\left(\frac{15}{\sqrt{102}}\right)$
d) $\cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$

42. The magnitude of the vector $6\hat{i} + 2\hat{j} + 3\hat{k}$ is

a) 7 b) 5

43. If $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} = 0$, then

a) $\vec{b} + \vec{c} = \overrightarrow{0}$ b) none of these c) $\vec{b} = \vec{c}$ d) $\vec{b} = \overrightarrow{0}$

44. The angle between the lines $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{2}$ and $\frac{x-1}{-\sqrt{3}-1} = \frac{y-1}{\sqrt{3}-1} = \frac{z-1}{4}$ is [5]

a)
$$\frac{\pi}{3}$$

b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\cos^{-1}(\frac{1}{65})$

45. The direction ratios of two lines are a, b, c and (b - c), (c - a), (a - b) respectively. The [5] angle between these lines is

a)
$$\frac{\pi}{2}$$
 b) $\frac{\pi}{4}$

c)
$$\frac{\pi}{3}$$
 d) $\frac{3\pi}{4}$

- 46. The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The [5] length and direction cosines of the line segment are
 - a) $11; \frac{12}{11}, \frac{14}{11}, \frac{3}{11}$ b) $13; \frac{12}{13}, \frac{4}{13}, \frac{3}{13}$ c) $19; \frac{12}{19}, \frac{4}{19}, \frac{3}{19}$ d) none of these
- 47. If $E_1, E_2,...,E_n$ are mutually exclusive and exhaustive events associated with a samplespace, and A is any event of non zero probability, then [5]

a) $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$ b) $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_{i-1})P(A|E_i)}$ c) $P(E_i|A) = \frac{P(E_i)P(E_i|A)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$ d) $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_{i-2})}$

48. In 4 throws of a pair of dice, what is the probability of throwing doublets at least twice? [5]

a) $\frac{19}{144}$ b) $\frac{7}{36}$ c) None of these d) $\frac{17}{144}$

49. An unbiased coin is tossed until the first head appears or until four tosses are completed, [5] whichever happens, earlier. Which of the following statement(s) is/are correct?

i. The probability that no head is observed is $\frac{1}{16}$.

ii. The probability that the experiment ends with three tosses is $\frac{1}{8}$.

Select the correct answer using the code given below.

- a) Only i b) Both i and ii
- c) Neither i nor ii d) Only ii
- 50. Two men hit at a target with probabilities $\frac{1}{2}$ and $\frac{1}{3}$, respectively. What is the probability [5] that exactly one of them hits the target?
 - a) $\frac{1}{6}$ b) $\frac{1}{2}$
 - c) $\frac{1}{3}$ d) $\frac{2}{3}$

Solutions

Section A

1.

(b) $A^2 - B^2 + BA - AB$ Explanation: $(A + B) (A - B) = A (A - B) + B (A - B) = A^2 - AB + BA - B^2$

2. (a) $A^2 = 0$

Explanation: $\therefore A = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}$, $A^{2} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0$ $\therefore A \text{ is a null matrix.}$

3.

(c) Sometimes AB = BA and sometimes $AB \neq BA$

Explanation: If the two matrices A and B are of same order it is not necessary that in every situation AB = BA

$$AB = BA = I \text{ only when } A = B^{-1}$$

 $B = A^{-1}$
Other time $AB \neq BA$

4.

(d)
$$\frac{-}{e}$$

1

Explanation: Consider $f(x) = \frac{logx}{x}$ Then, $f'(x) = = \frac{x \cdot \frac{1}{x} - logx \cdot 1}{x^2} = \frac{1 - logx}{x^2}$ For maximum or minimum values of x we have f'(x) = 0 $f'(x) = 0 \Rightarrow (1 - logx) = 0$ $\Rightarrow logx = 1 \Rightarrow x = e.$ Now, $f'(x) = \frac{x^2 \cdot \frac{-1}{x} - (1 - logx) 2x}{x^4} = \left[\frac{-3 + 2logx}{x^3}\right]$ f''(x) at $at \quad x = e = \frac{-3}{x^3} < 0$ Therefore f(x) is maximum at x = e and the max. value = $\frac{loge}{e} = \frac{1}{e}$

5. **(a)** (1,∞)

Explanation: Given, function $\Rightarrow f(x) = (x + 1)^3 \cdot (x - 3)^3$ $\Rightarrow f'(x) = 3(x + 1)^2 \cdot (x - 3)^3 + 3(x - 3)^3 \cdot (x + 1)^3$ Put f'(x) = 0 $\Rightarrow 3(x + 1)^2 \cdot (x - 3)^3 = -3(x - 3)^2 \cdot (x + 1)^3$ $\Rightarrow x - 3 = -(x + 1)$ $\Rightarrow 2x = 2$ $\Rightarrow x = 1$ When x > 1 the function is increasing x < 1 function is decreasing Therefore f(x) is increasing in (1, ∞).

(d) $k \in (-\infty, 4)$

Explanation: \therefore $f(x) = X^2 - kx + 5$ is increasing in $x \in [2, 4]$ f'(x) = 2x - kf'(x) > 0, for increasing function 2x - k > 0k < 2x (k should be less than minimum value of 2x) k < 4 $k \in (-\infty, 4)$

7. (a)
$$10\left(\frac{\pi}{2}\right)^9$$

Explanation: We have,

$$I_{10} = \int_{0}^{\pi} \frac{1}{2} x^{10} \sin x dx \}$$

= $\left[x^{10} (-\cos x) \right]_{\overline{\mathbf{a}}}^{\pi} - \int_{0}^{\pi} \frac{1}{2} \left[10x^{9} \int \sin x dx \right] dx$
= $\left[-x^{10} \cos x \right]_{\overline{\mathbf{a}}}^{\pi} - 10 \int_{0}^{\pi} \frac{1}{2} x^{9} (-\cos x) dx$
= $- \left[x^{10} \cos x \right]_{\overline{\mathbf{a}}}^{\pi} + 10 \int_{0}^{\pi} \frac{1}{2} x^{9} \cos x dx$
= $- \left[x^{10} \cos x \right]_{\overline{\mathbf{a}}}^{\pi} + 10 \left[x^{9} \sin x \right]_{\overline{\mathbf{a}}}^{\pi} - 10 \int_{0}^{\pi} \frac{1}{2} 9x^{8} \sin x dx$
= $- \left[\left(\frac{\pi}{2} \right)^{10} \times 0 - 0^{10} \cos 0 \right] + 10 \left[\left(\frac{\pi}{2} \right)^{9} \times 1 - 0^{9} \times 0 \right] 90 \int_{0}^{\pi} \frac{1}{2} x^{8} \sin x dx$

$$= 10 \left[\left(\frac{\pi}{2}\right)^9 \times 1 \right] - 90I_8$$
$$= 10 \left(\frac{\pi}{2}\right)^9 - 90I_8$$
$$\therefore I_{10} + 90I_8 = 10 \left(\frac{\pi}{2}\right)^9$$

(b)
$$\frac{1}{4}\sin^{-1}\left(\frac{4x^3}{3}\right) + C$$

Explanation: Put $x^3 = t$ and $3x^2 dx = dt$ $\therefore I = \int \frac{dt}{\sqrt{9 - 16t^2}} = \frac{1}{4} \int \frac{dt}{\sqrt{\frac{9}{16} - t^2}} = \frac{1}{4} \cdot \int \frac{dt}{\sqrt{\left(\frac{3}{4}\right)^2 - t^2}}$

$$= \frac{1}{4}\sin^{-1}\frac{t}{(3/4)} + C = \frac{1}{4}\sin^{-1}\left(\frac{4x^3}{3}\right) + C$$

0	
)	٠

(b) x sin (log x) +C Explanation: $\int (sin(log x) + cos(log x))dx$ (Use By Part, Take 1 as II function) $= \int sin(log x).1dx + \int cos(log x)dx$ $= (sin(log x)).x - \int cos(log x)\frac{1}{x}.xdx + \int cos(log x)dx.$ = xsin(log x) + C

10.

(b) $\sin(3x+4) + 3(x-1)\cos(3x+4)$

Explanation: Given that area bounded by the curve x-axis,

$$x = 1 \text{ and } x = b$$

$$b \qquad b$$

$$\Rightarrow \int y dx = \int f(x) dx$$

$$1 \qquad 1$$

$$b \qquad b$$

$$\Rightarrow \int y dx - [A]_{1}^{b}$$

$$\frac{b}{1} \int f(x) dx = (b-1)\sin(3b+4)$$

$$\frac{b}{1} \int f(x) dx = (b-1)\sin(3x+4)$$

$$\Rightarrow f(x) - \frac{d}{dx} [(x-1)\sin(3x+4)]$$

$$\Rightarrow 3(x-1)\cos(3x+4) + \sin(3x+4)$$
11.
(d) (1 + sin x)(1 + cos y) = C
Explanation: Given cos x (1+cos y) dx - sin y (1+sin x) dy = 0
Let 1 + cos y = t and 1 + sin x = u
On differentiating both equations, we obtain
-sin y dy = dt and cos x dx = du
Put this in the first equation
t du + u dt = 0

$$-\frac{du}{u} = \frac{dt}{t}$$

$$-\log u = \log t + C$$

$$\log u + \log t = C$$

$$\log u + \log t = C$$

$$U = C$$
(1 + sin x)(1 + cos y) = C
12.
(b) tan⁻¹ y + tan⁻¹ x = tan⁻¹ C
Explanation: we have,
 $\left(1 + x^2\right) \frac{dy}{dx} = -\left(1 + y^2\right)$

$$\frac{dy}{1 + y^2} = -\int \frac{dx}{1 + x^2}$$

$$\int \frac{dy}{1 + y^2} = -\int \int \frac{dx}{1 + x^2}$$

$$tan-1 y = tan-1 x + tan-1 C
13.
(d) Minimum Z - 300 at (60, 0)
Explanation: Objective function is Z = 5x + 10 y(1).
The given constraints are : x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x + y = 60$$
and x-2y =
0. The points are obtained by drawing the lines x+2y = 120, x + y = 60 and x-2y = 0.

Corner points	Z = 5x + 10y	
D(60 ,30)	600	
A(120,0)	600	
B(60,0)	300(Min.)	
C(40,20)	400	

Here, Z = 300 is minimum at (60, 0).

14. (a) $\frac{1}{3}$

Explanation: Let A = event of getting 6 on the dice.

A = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6)} Let X is the random variable of "number of sixes ". Therefore, X = 0, 1, 2.

$$P(X = 0) = 1 - \frac{11}{36} = \frac{25}{36}; P(X = 1) = \frac{10}{36}; P(X = 2) = \frac{1}{36}$$

Therefore, the probability distribution is :

X	0	1	2
P(X)	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$

Therefore, Expectations of X :

$$E(X) = \sum_{i=1}^{n} X_{i} P(X_{i}) = 0 \times \frac{25}{36} + 1 \times \frac{10}{36} + 2 \times \frac{1}{36} = \frac{12}{36} = \frac{1}{36}$$

15.

(d) $\frac{11}{243}$

Explanation: Let x be the number of correct answers, then x has the binomial distribution with n = 5, $p = \frac{1}{2}$ and $q = \frac{2}{2}$.

$$f(n = 5, p = \frac{1}{3})$$
 and $q = \frac{1}{3}$.

Therefore , required probability = P ($x \ge 4$).= P (x = 4) + P (x = 5).

$$= {}^{5}C_{4}\left(\frac{2}{3}\right)^{5-4}\left(\frac{1}{3}\right)^{4} + {}^{5}C_{5}\left(\frac{2}{3}\right)^{5-5}\left(\frac{1}{3}\right)^{5} = \frac{11}{243}$$

Section B

16.

(b) $(-\infty, 1] \cup [2, \infty)$ Explanation: \therefore f: R \rightarrow R defined by $f(x) = \sqrt{x^2 - 3x + 2}$ Here, $x^2 - 3x + 2 \ge 0$ $(x - 1) (x - 2) \ge 0$ $x \le 1 \text{ or } x \ge 2$ $\therefore \text{ Domain of } f = (-\infty, 1] \cup [2, \infty)$ 17. (c) $\frac{\sqrt{3}}{2}$ Explanation: $4 \cos^{-1} x + \sin^{-1} x = \pi$ $\Rightarrow 3\cos^{-1} x + \cos^{-1} x + \sin^{-1} = \pi$ $\Rightarrow 3\cos^{-1} x + \frac{\pi}{2} = \pi$ $\Rightarrow \cos^{-1} x = \frac{\pi}{6}$ $\Rightarrow x = \cos \frac{\pi}{6}$ $\Rightarrow x = \frac{\sqrt{3}}{2}$

18.

(c) square matrix

Explanation: We know that as matrix is said to be square matrix if the number of rows is equal to the number of columns.

Therefore, the given matrix $P = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$ is a square matrix.

19.

(b) B = -4A

Explanation: $\begin{vmatrix} -2 & 4 & 2 \\ 6 & 2 & 0 \\ -2 & 4 & 8 \end{vmatrix} = -2(16) - 4(48) + 2(56) = -168$

$$\begin{vmatrix} -1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2 \end{vmatrix} = -1(2) - 2(6) + 4(14) = 42$$

$$\Rightarrow |B| = -168 = -4(42) = -4|A|.$$
Which is the required solution.

(**d**) *k* ≠ 0

20.

Explanation: In the given question the system of linear equation has unique solution if:

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & -k \end{vmatrix} \neq 0 \Rightarrow 1(-k+2) - 1(-2k+3) + 1(4-3) \neq 0 \Rightarrow k \neq 0$$

21.

(d) 1

Explanation: Applying $R_2 \rightarrow (R_2 - 2R_1)$ and $R_3 \rightarrow (R_3 - 3R_1)$ and expanding by C_1 , we get $\Delta = 1$.

22.

(c) 1
Explanation:
$$y = \sin^{-1}x, 0 < x < 1, 0 < x < 1$$

 $z = \cos^{-1}\sqrt{1-x^2}$
 $= \cos^{-1}(\sqrt{1-\sin^2 y})$
 $\left(\because y = \sin^{-1}x \Rightarrow (x = \sin y) \right)$
 $\Rightarrow y = z \Rightarrow \frac{dy}{dz} = 1$

23.

(b) 0

Explanation:
$$f(x) = \left(\frac{x^l}{x^m}\right)' + m \left(\frac{x^m}{x^n}\right)^{m+n} \left(\frac{x^n}{x^l}\right)^{n+l}$$
$$f(x) = \left(x^{l-m}\right)^{l+m} \left(x^{m-n}\right)^{m+n} \left(x^{n-l}\right)^{n+l}$$
$$f(x) = x^{l^2 - m^2 + m^2 - n^2 + n^2 - R^2}$$
$$f(x) = x^0$$
$$f(x) = 1$$
$$f'(x) = 0$$

24.

(b)
$$f(a) - a f'(a)$$

Explanation: $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$
 $= \lim_{h \to 0} \frac{(a+h)f(a) - af(a+h)}{h} = \lim_{h \to 0} \left\{ \frac{hf(a)}{h} - \frac{af(a+h) - af(a)}{h} \right\} = f(a) - af'(a)$

25.

(d) none of these

Explanation: $f(x) = \sqrt{x^2 - 10x + 25}$ $f(x) = \sqrt{(x-5)^2} = |x-5|$ $f(x) = x - 5 x \ge 5$ = -(x - 5) x < 5 $f'(x) = x \ge 5$ = -1 x < 5

Hence, we can not define derivative of the function on [0, 7].

0

26.

(d) 1

Explanation: Here, given

$$\Rightarrow f(x) = \frac{1 - \cos 4x}{8x^2} \text{ is continuous at } x =$$

$$\Rightarrow f(x) = \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2}$$

$$\Rightarrow f(x) = \lim_{x \to 0} \frac{2\sin^2 2x}{2 \times 4x^2}$$

$$\Rightarrow f(x) = \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)^2$$

$$\Rightarrow f(x) = 1$$

$$\therefore \text{ k} = 1$$

27.
(d) $-\frac{1}{e}$
Explanation: $f(x) = x \log_e x$

$$\Rightarrow f(x) = 1 + \log_e x$$

to find maxima or minima
 $f(x) = 0$

$$\Rightarrow 1 + \log_e x = 0$$

$$\Rightarrow x = \frac{1}{e}$$

$$f''(x) = -\frac{1}{x}$$
$$f''\left(\frac{1}{e}\right) = e > 0$$

1

 $x = \frac{1}{e}$ is a local minima. \Rightarrow Minimum value of the function is $f\left(\frac{1}{e}\right) = \frac{1}{e}\log_e\left(\frac{1}{e}\right) = \frac{-1}{e}$ 28. **(b)** ab $\geq \frac{c^2}{4}$ **Explanation:** $f(x) = ax + \frac{b}{x}$ \Rightarrow f(x) = a - $\frac{b}{r^2}$ f'(x) = 0a - $\frac{b}{r^2} = 0$ $\Rightarrow x = \pm \sqrt{\frac{b}{a}}$ $f''(x) = \frac{2b}{x^3}$ $f''(\sqrt{\frac{b}{a}}) = \frac{2b}{(\sqrt{\frac{b}{a}})^3} > 0$ \Rightarrow x = $\sqrt{\frac{b}{a}}$ has a minima. $f(\sqrt{\frac{b}{a}}) = 2\sqrt{ab} \ge c$ $\frac{c}{2} \le \sqrt{ab}$ $\Rightarrow \frac{c^2}{4} \le ab$ 29. (b) $\frac{4}{2}$

Explanation: $f(x) = \frac{1}{4x^2 + 2x + 1}$ \Rightarrow f(x) = 8x + 2 For local minima or maxima we have f(x) = 8x + 2 = 0 $\Rightarrow x = \frac{-1}{\varDelta}$ f''(x) = 8 > 0 \Rightarrow function has maxima at $x = \frac{-1}{4}$ $f\left(\frac{-1}{4}\right) = \frac{4}{3}$ 30. (c) x + y = 0**Explanation:** Since , $\frac{dy}{dx} = \cos x$, therefore , slope of tangent at (0, 0) = cos 0 = 1 and hence slope of normal at (0, 0) is - 1. Equation of normal at (0,0) is, $y - 0 = slope of normal \times (x - 0)$ y = -1(x) $\mathbf{x} + \mathbf{y} = \mathbf{0}$ 31. **(b)** $\frac{a}{2}$ Explanation: Here, $f(x) = \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}}$ $f(a-x) = \frac{\sqrt{a-x}}{\sqrt{x} + \sqrt{a-x}}$ We know that, $\therefore \int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I$ $2I = \int_0^\infty \frac{\sqrt{x} + \sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} dx$

$$= \int a dx$$
$$I = \frac{a}{2}$$

(d) $\cos\left(\frac{1}{x}\right) + C$ Explanation: Let $\frac{1}{x} = t$, $-\frac{1}{x^2}dx = dt = \int \sin t(-dt) = \int (-\sin t)dt = \cos t + C$.

Which is the required solution.

33.

(d) - log
$$|\cos x - \sin x| + C$$

Explanation:
The integral is $\int \frac{(1 + \tan x)}{(1 - \tan x)} dx$
since we know that, $\int x^n dx = \frac{x^{n+1}}{n+1} + c$
sin $(a + b) = \sin a \cos b + \cos a \sin b$
 $\int \cot x = \log (\sin x) + c$
Therefore,
 $\Rightarrow \int \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} dx$ (Rationalizing the denominator)
 $\Rightarrow \int \frac{\cos x + \sin x}{\cos x - \sin x} dx$
Put $\cos x - \sin x = t$
($-\sin x - \cos x$) $dx = dt$
($\sin x + \cos x$) $dx = -dt$
 $\int \frac{-dt}{t} = -\log t + c$
 $\Rightarrow -\log |\cos x - \sin x| + c$
34. (a) $x.\tan \frac{x}{2} + C$
Explanation: Given: $\int \frac{x + \sin x}{1 + \cos x} dx$
As we know
 $\therefore \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$, $1 + \tan^2 x = \sec^2 x$ and $\cos 2x = \frac{1 + \tan^2 x}{1 - \tan^2 x}$

32.

$$\Rightarrow \frac{x + \sin x}{1 + \cos x} = \frac{1 + \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$$

$$\Rightarrow \frac{x + \sin x}{1 + \cos x} = \frac{1 + \tan^2\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)}$$

$$= \frac{x + x\tan^2\left(\frac{x}{2}\right) + 2\tan\left(\frac{x}{2}\right)}{2}$$

$$\Rightarrow \int \frac{x + \sin x}{1 + \cos x} dx = \int \frac{x + x\tan^2\left(\frac{x}{2}\right) + 2\tan\left(\frac{x}{2}\right)}{2} dx$$
Let $\frac{x}{2} = t$

$$\Rightarrow \frac{dx}{2} = dt$$

$$\Rightarrow \int (2t + 2t\tan^2 t + 2\tan t) dt = 2\int (t + t\tan 2t + \tan t) dt$$

$$= 2\int tdt + 2\int t\sec^2 tdt - 2\int tdt + 2\int tatt dt$$

$$= 2\int tdt + 2\int t\sec^2 tdt - 2\int tdt + 2\int tatt dt$$

$$= 2\int tdt + 2\int t\sec^2 tdt - 2\int tdt + 2\int tatt dt$$

$$= 2\int t\sec^2 tdt + 2\int tatt dt$$

$$= 2\int tdt + 2\int tatt dt$$

$$\Rightarrow 2(t \tan t - \int \tan t dt) + 2\int \tan t dt = 2t \tan t + c = x \tan\left(\frac{x}{2}\right) + C$$

$$\Rightarrow \int \frac{x + \sin x}{1 + \cos x} dx = x \tan\left(\frac{x}{2}\right) + C$$

35.

(c)
$$\frac{5\pi-2}{4}$$
 sq. units

Explanation: Required area :

$$\int_{-1}^{2} \sqrt{5 - x^{2}} dx - \int_{-1}^{1} (1 - x) dx - \int_{1}^{2} (x - 1) dx$$
$$= \left[\frac{x \sqrt{5 - x^{2}}}{2} + \frac{5}{2} \sin^{-1} \frac{x}{\sqrt{5}} \right]_{-1}^{2}$$
$$- \left[x - \frac{x^{2}}{2} \right]_{-1}^{1} - \left[\frac{x^{2}}{2} - x \right]_{1}^{2}$$
$$= \left(\frac{5\pi - 2}{4} \right) sq. \ units$$

36.

(b) $x \cos y = C$

Explanation: Given: $x\frac{dy}{dx} = \cot y$

Separating the variable, we obtain $\frac{dy}{coty} = \frac{dx}{x}$ $\tan y \, dy = \frac{dx}{x}$ Integrating both sides, we obtain $\int \tan y \, dy = \int \frac{dx}{x}$ $\log \sec y = \log x + \log c$ $C = x\cos y$ 37. (c) $y = C_1 e^C 2^x + C_3$

Explanation: We have,

$$y_{1}y_{3} = y_{2}^{2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{d^{2}y}{dx^{2}}$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{d^{3}y}{dx^{3}}$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{d^{3}y}{dx^{3}}$$

$$\Rightarrow \frac{d^{2}y}{dx} = \frac{d^{3}y}{dx^{2}}$$

$$\Rightarrow \frac{d^{2}y}{dx} = \int \frac{d^{3}y}{dx^{2}}$$

$$\Rightarrow \log \frac{dy}{dx} = \log \frac{d^{2}y}{dx^{2}} + \log C$$

$$\Rightarrow C \frac{dy}{dx} = \frac{d^{2}y}{dx^{2}}$$

$$\Rightarrow \int C dx = \int \frac{d^{2}y}{dx}$$

38. (a)
$$xyy'' + x(y')^2 yy' = 0$$

Explanation: $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$
 $\frac{2x}{b^2} + \frac{2yy}{a^2} = 0$
 $\frac{x}{b^2} = -\frac{yy'}{a^2}$
 $\frac{yy'}{x} = -\frac{a^2}{b^2}$

Differentiating both sides again,

$$\frac{x(yy', +y'^2 - yy')}{x^2} = 0$$

xyy', +xy'^2 - yy' = 0

39.

40.

(c) Both I and II

Explanation: Given, $\vec{a} + \vec{b} + \vec{c} = 0$...(i)

I. Consider
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

$$= -(\vec{b} + \vec{c}) \cdot (\vec{b} \times \vec{c}) \dots [\text{using Eq.}(i)]$$

$$= -(\vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{c} \cdot (\vec{b} \times \vec{c}))$$

$$= -([\vec{b}\vec{b}\vec{c}] + [\vec{c}\vec{b}\vec{c}])$$

$$= -(0 + 0) = 0$$

Thus, the vectors are coplanar.

II. Consider,

$$\vec{a} \times \vec{b} = \vec{a} \times (-\vec{a} - \vec{c})$$

$$= -(\vec{a} \times \vec{a} + \vec{c}) \text{ [using Eq. (i)]}$$

$$= -(\vec{a} \times \vec{a} + \vec{a} \times \vec{c})$$

$$= -(\vec{0} + \vec{a} \times \vec{c}) = -(\vec{a} \times \vec{c})$$

$$= \vec{c} \times \vec{a} \dots \text{(ii)}$$
[using Eq.] Similarly,

$$\vec{b} \times \vec{c} = \vec{a} \times \vec{b}$$
From Eqs. (ii) and (iii), we get

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

$$\frac{16\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{2}}{3\sqrt{7}}$$

Explanation: $(\vec{a} + \vec{b})$. $(\vec{a} - \vec{b}) = 8$

$$\Rightarrow |\vec{a}|^2 - |\vec{b}|^2 = 8$$

$$\Rightarrow 64 |\vec{b}|^2 - |\vec{b}|^2 = 8 \Rightarrow 63 |\vec{b}|^2 = 8 \Rightarrow |\vec{b}| = \sqrt{\frac{8}{63}} = \frac{2\sqrt{2}}{3\sqrt{7}}$$

$$\Rightarrow |\vec{a}| = 8 |\vec{b}| \Rightarrow |\vec{a}| = \frac{16\sqrt{2}}{3\sqrt{7}}$$

41.

$$(\mathbf{d})\cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$$

Explanation: Position vectors of the points A, B and C are $\hat{i} + 2\hat{j} + 3\hat{k}$, $-\hat{i}$, and $\hat{j} + 2\hat{k}$ respectively. Then;

42. **(a)** 7

Explanation: 7

43.

(c) $\vec{b} = \vec{c}$ Explanation: $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ $\Rightarrow \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c} = 0$ and $\vec{a} \times \vec{b} - \vec{a} \times \vec{c} = 0$ $\Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = 0$ and $\vec{a} \times (\vec{b} - \vec{c}) = 0$ $\Rightarrow \vec{b} - \vec{c} = 0 \Rightarrow \vec{b} = \vec{c}$ Also, $\Rightarrow |\vec{a}| |\vec{b} - \vec{c}| \cos\theta = 0$ and $|\vec{a}| |\vec{b} - \vec{c}| \sin\theta = 0$ $\Rightarrow \text{ If } \theta = \frac{\pi}{2} \Rightarrow \sin\theta = 1 \Rightarrow \vec{b} - \vec{c} = 0 \Rightarrow \vec{b} = \vec{c}$ 44. (a) $\frac{\pi}{3}$

Explanation: We have,

$$\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{2}$$
$$\frac{x-1}{-\sqrt{3}-1} = \frac{y-1}{\sqrt{3}-1} = \frac{z-1}{4}$$

The direction ratios of the given lines are proportional to 1, 1, 2 and $-\sqrt{3} - 1$, $\sqrt{3} - 1$, 4.

So, The given lines are parallel to vectors $\vec{b}_1 = \hat{i} + \hat{j} + 2\hat{k}$ and

$$\vec{b}_2 = (-\sqrt{3} - 1)\hat{i} + (\sqrt{3} - 1)\hat{j} + 4\hat{k}.$$

Let θ be the angle between the given lines. Now,

$$\cos\theta = \frac{\vec{b}_1 \cdot \vec{b}_2}{\left|\vec{b}_1\right| \left|\vec{b}_2\right|}$$

$$= \frac{(\hat{i} + \hat{j} + 2\hat{k}) \cdot \{(-\sqrt{3} - 1)\hat{i} + (\sqrt{3} - 1)\hat{j} + 4\hat{k}\}}{\sqrt{1^2 + 1^2 + 2^2}\sqrt{(-\sqrt{3} - 1)^2 + (\sqrt{3} - 1)^2 + 4^2}}$$

$$= \frac{-\sqrt{3} - 1 + \sqrt{3} - 1 + 8}{\sqrt{6}\sqrt{24}}$$

$$= \frac{6}{6 \times 2}$$

$$= \frac{1}{2}$$

$$\Rightarrow \theta = \frac{\pi}{3}$$
(c) π

45. (a) $\frac{\pi}{2}$

Explanation: Let's consider the first parallel vector to be $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$ and second parallel vector be $\vec{b} = (b - c)\hat{i} + (c - a)\hat{j} + (a - b)\hat{k}$ For the angle, we can use the formula $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times |\vec{b}|}$ For that, we need to find the magnitude of these vectors

$$\begin{aligned} |\vec{a}| &= \sqrt{a^2 + b^2 + (c)^2} \\ &= \sqrt{a^2 + b^2 + c^2} \\ |\vec{b}| &= \sqrt{(b-c)^2 + (c-a)^2 + (a-b)^2} \\ &= \sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \\ \Rightarrow \cos \alpha &= \frac{(a\hat{i} + b\hat{j} + c\hat{k}) \cdot ((b-c)\hat{i} + (c-a)\hat{j} + (a-b)\hat{k})}{\sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \times \sqrt{a^2 + b^2 + c^2}} \\ \Rightarrow \cos \alpha &= \frac{ab - ac + bc - ba + ca - cb}{\sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \times \sqrt{a^2 + b^2 + c^2}} \\ \Rightarrow \cos \alpha &= \frac{0}{\sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \times \sqrt{a^2 + b^2 + c^2}} \\ \Rightarrow \alpha &= \cos^{-1}(0) \\ \therefore \alpha &= \frac{\pi}{2} \end{aligned}$$
(b) 13; $\frac{12}{13}, \frac{4}{13}, \frac{3}{13}$

Explanation: 13; $\frac{12}{13}$, $\frac{4}{13}$, $\frac{3}{13}$

46.

If a line makes angles α , β and γ with the axis, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (i) Let r be the length of the line segment. Then,

$$r\cos\alpha = 12, r\cos\beta = 4, r\cos\gamma = 3 \dots(ii)$$

$$\Rightarrow (r\cos\alpha)^{2} + (r\cos\beta)^{2} + (r\cos\gamma)^{2} = 12^{2} + 4^{2} + 3^{2}$$

$$\Rightarrow r^{2} (\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma) = 169$$

$$\Rightarrow r^{2} (1) = 169 [From (i)]$$

$$\Rightarrow r = \sqrt{169}$$

$$\Rightarrow r = \pm 13$$

$$\Rightarrow r = 13 (since length cannot be negative)$$

Substituting r = 13 in (ii)
We get,

$$\cos\alpha = \frac{12}{13}, \cos\beta = \frac{4}{13}, \cos\gamma = \frac{1}{13}$$

Thus, the direction cosines of the line are

$$\frac{12}{13}, \frac{4}{13}, \frac{1}{13}$$
47. (a) $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$

Explanation: If E_1 , E_2 ,...., E_n are mutually exclusive and exhaustive events associated with a sample space, and A is any event of non zero probability, then According to Bay's theorem:

$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$$
19

48. (a) $\frac{15}{144}$

Explanation: In a single throw of a pair of dice, we have $n(S) = (6 \times 6) = 36$.

Let
$$E = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}.$$

Then, $P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}, P(\text{ not } E) = \left(1 - \frac{1}{6}\right) = \frac{5}{6}$
 $\therefore p = \frac{1}{6}, q = \frac{5}{6} \text{ and } n = 4.$

Required probability = P(2 or 3 or 4 successes)

$$={}^{4}C_{2} \cdot \left(\frac{1}{6}\right)^{2} \cdot \left(\frac{5}{6}\right)^{2} + {}^{4}C_{3} \cdot \left(\frac{1}{6}\right)^{3} \cdot \left(\frac{5}{6}\right) + {}^{4}C_{4} \cdot \left(\frac{1}{6}\right)^{4}$$
$$= \left(\frac{25}{216} + \frac{5}{324} + \frac{1}{1296}\right)$$
$$= \frac{171}{1296}$$
$$= \frac{19}{144}.$$

49.

(b) Both i and ii

Explanation: \therefore Probability of no head $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ The probability of the experiments end with three tosses, if TTH comes. $\therefore \text{ Required probability} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

Hence, both statements are correct.

50.

(b) $\frac{1}{2}$

Explanation: Let A be the event that Mr. A hit the target and B be the event that Mr. B hit the target

 $\therefore P(A) = \frac{1}{2} \text{ and } P(B) = \frac{1}{3}$ Now, P (exactly one o f them hits the target) $= P(A \cap \overline{B} \text{ or } \overline{A} \cap B)$ $= P(A \cap \overline{B}) + P(\overline{A} \cap B)$ $= P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B)$ $= \frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3} = \frac{3}{6} = \frac{1}{2}$