


and

# **Rene' Descartes** $G_{eometry is one of the most ancient branch of}$ mathematics. A Systematic study of geometry by the use of algebra was first carried out by celebrated French philosopher

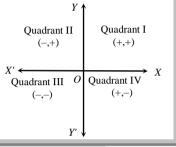
## **Rectangular Cartesian Co-ordinates**



mathematician Rene' Descartes (1596-1650), in his book 'La Geometrie' which was published in

Leibnitz used the terms 'abscissa', ordinate and 'coordinate'. L' Hospital wrote (about 1700 A.D.) wrote an important text book on analytic geometry.

|                                      | Contents                          |  |  |  |
|--------------------------------------|-----------------------------------|--|--|--|
|                                      |                                   |  |  |  |
| 1.1                                  | Introduction                      |  |  |  |
| 1.2                                  | Cartesian co-ordinates of a point |  |  |  |
| 1.3                                  | Polar co-ordinates                |  |  |  |
| 1.4                                  | Distance formulae                 |  |  |  |
| 1.5                                  | Geometrical conditions            |  |  |  |
| 1.6                                  | Section formulae                  |  |  |  |
| 1.7                                  | Some points of a triangle         |  |  |  |
| 1.8                                  | Area of some geometrical figures  |  |  |  |
| 1.9                                  | Transformation of axes            |  |  |  |
| 1.10                                 | Locus                             |  |  |  |
| Assignment (Basic and Advance Level) |                                   |  |  |  |
|                                      | Answer Sheet of Assignment        |  |  |  |
|                                      |                                   |  |  |  |


co-

## **1.1 Introduction**

Co-ordinates of a point are the real variables associated in an order to a point to describe its location in some space. Here the space is the two dimensional plane. The work of describing the position of a  $Y \uparrow$ 

point in a plane by an ordered pair of real numbers can be done in different ways. The two lines *XOX'* and *YOY'* divide the plane in four quadrants. *XOY, YOX', X' OY', Y'OX* are respectively called the first, the second, the third and the fourth

OY', Y'OX are respectively called the first, the second, the third and the fourth quadrants. We assume the directions of OX, OY as positive while the directions of OX', OY' as negative.



| Quadrant        | x-coordinate | y-coordinate | point |
|-----------------|--------------|--------------|-------|
| First quadrant  | +            | +            | (+,+) |
| Second quadrant | -            | +            | (-,+) |
| Third quadrant  | -            | -            | (-,-) |
| Fourth quadrant | +            | _            | (+,-) |

## **1.2 Cartesian Co-ordinates of a Point**

This is the most popular co-ordinate system.

Let us consider two intersecting lines *XOX'* and *YOY'*, which are perpendicular to each other. Let *P* be any point in the plane of lines. Draw the rectangle *OLPM* with its adjacent sides *OL,OM* along the

lines XOX', YOY' respectively. The position of the point P can be fixed in the plane provided the locations as well as the magnitudes of OL, OM are known.

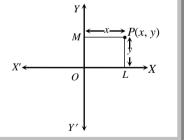
Axis of x : The line XOX' is called axis of x.

Axis of y : The line YOY is called axis of y.

**Co-ordinate axes :** *x* axis and *y* axis together are called axis of ordinates or axis of reference.

**Origin :** The point 'O' is called the origin of co-ordinates or the origin.

**Oblique axes :** If both the axes are not perpendicular then they are called as oblique axes.


Let OL = x and OM = y which are respectively called the abscissa (or x-coordinate) and the ordinate (or y-coordinate). The co-ordinate of P are (x, y).

Mote :  $\Box$  Co-ordinates of the origin is (0, 0).

 $\Box$  The *y* co-ordinate of every point on *x*-axis is zero.

 $\Box$  The *x* co-ordinate of every point on *y*-axis is zero.

## **1.3 Polar Co-ordinates**



Let *OX* be any fixed line which is usually called the initial line and *O* be a fixed point on it. If distance of any point *P* from the *O* is 'r' and  $\angle XOP = \theta$ , then  $(r, \theta)$  are called the polar co-ordinates of a point *P*.

If (x, y) are the cartesian co-ordinates of a point P, then

$$x = r\cos\theta$$
;  $y = r\sin\theta$  and  $r = \sqrt{x^2 + y^2}$   
 $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ 

### 1.4 Distance Formula

The distance between two points  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  is given by

$$PQ = \sqrt{(PR)^{2} + (QR)^{2}} = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Note :  $\Box$  The distance of a point  $M(x_0, y_0)$  from origin O(0, 0)

$$OM = \sqrt{(x_0^2 + y_0^2)}.$$

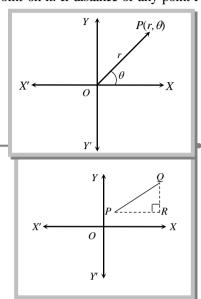
 $\Box$  If distance between two points is given then use  $\pm$  sign.

- □ When the line *PQ* is parallel to the *y*-axis, the abscissa of point *P* and *Q* will be equal *i.e*,  $x_1 = x_2$ ;  $\therefore PQ = |y_2 - y_1|$
- □ When the segment *PQ* is parallel to the *x*-axis, the ordinate of the points *P* and *Q* will be equal *i.e.*,  $y_1 = y_2$ . Therefore  $PQ = |x_2 - x_1|$

(1) Distance between two points in polar co-ordinates : Let *O* be the pole and *OX* be the initial line. Let *P* and *Q* be two given points whose polar co-ordinates are  $(r_1, \theta_1)$  and  $(r_2, \theta_2)$  respectively.

Then 
$$OP = r_1, OQ = r_2$$
  
 $\angle POX = \theta_1 \text{ and } \angle QOX = \theta_2$   
then  $\angle POQ = (\theta_1 - \theta_2)$ 

In  $\Delta POQ$ , from cosine rule  $\cos(\theta_1 - \theta_2) = \frac{(OP)^2 + (OQ)^2 - (PQ)^2}{2OP.OQ}$ 


$$\therefore (PQ)^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)$$
  
$$\therefore PQ = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)}$$

 $O \xrightarrow{P(r_1, \theta_1)} Q(r_2, \theta_2)$   $O \xrightarrow{\theta_1} Q(r_2, \theta_2)$   $M \xrightarrow{Q(r_2, \theta_2)} X$ 

**Note** :  $\Box$  Always taking  $\theta_1$  and  $\theta_2$  in radians.

Example: 1 If the point 
$$(x, y)$$
 be equidistant from the points  $(a + b, b - a)$  and  $(a - b, a + b)$ , then [MP PET 1983, 94]  
(a)  $ax + by = 0$  (b)  $ax - by = 0$  (c)  $bx + ay = 0$  (d)  $bx - ay = 0$   
Solution: (d) Let points  $P(x, y)$ ,  $A(a + b, b - a)$ ,  $B(a - b, a + b)$ .  
According to Question,  $PA = PB$ , *i.e.*,  $PA^2 = PB^2$   
 $\Rightarrow (a + b - x)^2 + (b - a - y)^2 = (a - b - x)^2 + (a + b - y)^2$   
 $\Rightarrow (a + b)^2 + x^2 - 2x(a + b) + (b - a)^2 + y^2 - 2y(b - a) = (a - b)^2 + x^2 - 2x(a - b) + (a + b)^2 + y^2 - 2y(a + b)$   
 $\Rightarrow 2x(a - b - a - b) = 2y(b - a - a - b) \Rightarrow -4bx = -4ay \Rightarrow bx - ay = 0$ 

**Example: 2** If cartesian co-ordinates of any point are  $(\sqrt{3},1)$ , then its polar co-ordinates is



(a) 
$$(2, \pi/3)$$
 (b)  $(\sqrt{2}, \pi/6)$ 

We know that 
$$x = r \cos \theta$$
,  $y = r \sin \theta$   
 $\therefore \sqrt{3} = r \cos \theta$ ,  $1 = r \sin \theta$   
 $r = \sqrt{(\sqrt{3})^2 + (1)^2} = 2$ ,  $\theta = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)^2$ 

Polar co-ordinates =  $(2, \pi/6)$ .

## **1.5 Geometrical Conditions**

## (1) Properties of triangles

(i) In any triangle ABC, AB + BC > AC and |AB - BC| < AC.

(ii) The  $\triangle ABC$  is equilateral  $\Leftrightarrow AB = BC = CA$ .

(iii) The  $\triangle ABC$  is a right angled triangle  $\Leftrightarrow AB^2 = AC^2 + BC^2$  or  $AC^2 = AB^2 + BC^2$  or  $BC^2 = AB^2 + AC^2$ . (iv) The  $\triangle ABC$  is isosceles  $\Leftrightarrow AB = BC$  or BC = CA or AB = AC.

 $=\pi/6$ 

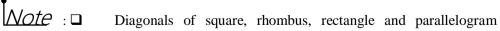
(c)  $(2, \pi/6)$ 

### (2) Properties of quadrilaterals

(i) The quadrilateral ABCD is a parallelogram if and only if

(a) AB = DC, AD = BC, or (b) the middle points of BD and AC are the same,

In a parallelogram diagonals AC and BD are not equal and  $\theta \neq \frac{\pi}{2}$ .


(ii) The quadrilateral *ABCD* is a rectangle if and only if

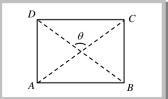
(a) AB = CD, AD = BC and  $AC^2 = AB^2 + BC^2$  or, (b) AB = CD, AD = BC, AC = BD or, (c) the middle points of AC and BD are the same and AC=BD. ( $\theta \neq \pi/2$ )

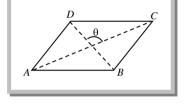
(iii) The quadrilateral ABCD is a rhombus (but not a square) if and only if (a) AB = BC = CD = DA and

(iv) The quadrilateral ABCD is a square if and only if

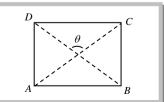
(a) AB = BC = CD = DA and AC = BD or (b) the middle points of AC and BD are the same and AC = BD,  $(\theta = \pi / 2), AB = AD$ .

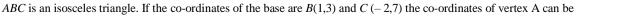



 $AC \neq BD$  or, (b) the middle points of AC and BD are the same and AB = AD but  $AC \neq BD$ . ( $\theta = \pi/2$ )


always bisect each other.

Diagonals of rhombus and square bisect each other at right angle.


□ Four given points are collinear, if area of quadrilateral is zero.


Example: 3





(d) None of these

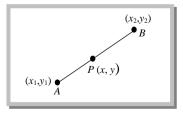




|               | (a) (1, 6) (b) $\left(-\frac{1}{2}, 5\right)$                                                                      | (c) $\left(\frac{5}{6}, 6\right)$               | (d) None of these                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|
| Solution: (c) | Let the vertex of triangle be $A(x,y)$ .                                                                           |                                                 |                                                                          |
|               | Then the vertex $A(x, y)$ is equidistant from B and C beca                                                         | use ABC is an isosceles t                       | riangle, therefore                                                       |
|               | $(x-1)^{2} + (y-3)^{2} = (x+2)^{2} + (y-7)^{2} \implies 6x - 8y + 4$                                               | 3 = 0                                           |                                                                          |
|               | Thus, any point lying on this line can be the vertex A exce                                                        | ept the mid point $\left(-\frac{1}{2}\right)$ . | 5) of <i>BC</i> . Hence vertex <i>A</i> is $\left(\frac{5}{6}, 6\right)$ |
| Example: 4    | The extremities of diagonal of parallelogram are the point                                                         | ts (3, – 4) and (– 6,5) if t                    | hird vertex is $(-2,1)$ , then fourth vertex is                          |
|               |                                                                                                                    |                                                 | [Rajasthan PET 1987]                                                     |
|               | (a) $(1,0)$ (b) $(-1,0)$                                                                                           | (c) (1,1)                                       | (d) None of these                                                        |
| Solution: (b) | Let $A(3,-4)$ and $C(-6,5)$ be the ends of diagonal of p                                                           | arallelogram ABCD. Le                           | At $B(-2,1)$ and D be $(x, y)$ , then mid points of                      |
|               | diagonal AC and BD coincide. So, $\frac{x-2}{2} = \frac{-6+3}{2}$ and                                              | $\frac{y+1}{2} = \frac{5-4}{2}$                 |                                                                          |
|               | $x = -1, y = 0$ . $\therefore$ Coordinates of <i>D</i> are $(-1, 0)$                                               |                                                 |                                                                          |
| Example: 5    | The vertices <i>A</i> and <i>D</i> of square <i>ABCD</i> lie on positive sid the coordinate of vertex <i>B</i> are | e of x and y-axis respect                       | tively. If the vertex $C$ is the point (12, 17), then                    |
|               | (a) (14, 16)                                                                                                       | (b) (15, 3)                                     | Y 1                                                                      |
|               | (c) (17, 5)                                                                                                        | (d) (17, 12)                                    | $\frac{M}{2}$                                                            |
| Solution: (c) | Let the co-ordinate of $B$ be $(h, k)$                                                                             |                                                 | $5 \qquad \theta \qquad a \qquad a$                                      |
|               | Draw <i>BL</i> and <i>CM</i> perpendicular to <i>x</i> -axis and <i>y</i> -axis.                                   |                                                 |                                                                          |
|               | $\therefore \ a\cos\theta = CM = OD = AL = 12$                                                                     |                                                 | $12 \overrightarrow{\theta} a \qquad a \qquad B$                         |
|               | and $a\sin\theta = DM = OA = BL = 5$                                                                               |                                                 | 5                                                                        |
|               | $\therefore  k = BL = DM = OM - OD = 17 - 12 = 5$                                                                  |                                                 | $0 \xrightarrow{5} A \xrightarrow{12} L \xrightarrow{X}$                 |
|               | $\therefore  h = OL = OA + AL = 5 + 12 = 17$                                                                       |                                                 |                                                                          |
|               | Hence, Point <i>B</i> is (17, 5).                                                                                  |                                                 |                                                                          |
| Example: 6    | A triangle with vertices $(4, 0); (-1, -1); (3, 5)$ is                                                             |                                                 | [AIEEE 2002]                                                             |
|               | (a) Isosceles and right angled                                                                                     | (b) Isosceles but n                             | not right angled                                                         |
|               | (c) Right angled but not isosceles(d)                                                                              | Neither right angled                            | d nor isosceles                                                          |
| Solution: (a) | Let A (4,0); B(-1,-1); C(3,5) then                                                                                 |                                                 |                                                                          |
|               | $AB = \sqrt{26},  AC = \sqrt{26},  BC = \sqrt{52}$ ; <i>i.e.</i> $AB = AC$                                         |                                                 |                                                                          |
|               | So triangle is isosceles and also $(BC)^2 = (AB)^2 + (AC)^2$                                                       | . Hence $\triangle ABC$ is right                | angled isosceles triangle.                                               |

## **1.6 Section Formulae**

If P(x, y) divides the join of  $A(x_1, y_1)$  and  $B(x_2, y_2)$  in the ratio  $m_1 : m_2(m_1, m_2 > 0)$ 


(1) Internal division : If P(x, y) divides the segment AB internally in the ratio of  $m_1 : m_2$ 

$$\Rightarrow \frac{PA}{PB} = \frac{m_1}{m_2}$$

The co-ordinates of P(x, y) are

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$
 and  $y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$ 

(2) **External division :** If P(x, y) divides the segment *AB* externally in the ratio of  $m_1 : m_2$ 



$$\Rightarrow \frac{PA}{PB} = \frac{m_1}{m_2}$$
The co-ordinates of  $P(x, y)$  are  $x = \frac{m_1 x_2 - m_2 x_1}{m_1 - m_2}$  and  $y = \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2}$ 

$$\boxed{Note} : \square \text{ If } P(x, y) \text{ divides the join of } A(x_1, y_1) \text{ and } B(x_2, y_2) \text{ in the ratio } \lambda : 1(\lambda > 0), \text{ then } x = \frac{\lambda x_2 \pm x_1}{\lambda \pm 1}; y = \frac{\lambda y_2 \pm y_1}{\lambda \pm 1}.$$
 Positive sign is taken for internal division and negative sign is taken for external division.
$$\square \text{ The mid point of } AB \text{ is } \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \text{ [Here } m_1 : m_2 :: 1:1]$$

□ For finding ratio, use ratio  $\lambda$ : 1. If  $\lambda$  is positive, then divides internally and if  $\lambda$  is negative, then divides externally.

□ Straight line ax + by + c = 0 divides the join of points  $A(x_1, y_1)$  and  $B(x_2, y_2)$  in the ratio  $\left(-\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}\right)$ .

If ratio is *-ve* then divides externally and if ratio is *+ve* then divides internally.

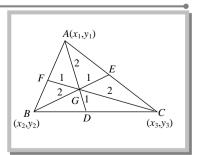
**Example: 7** The co-ordinate of the point dividing internally the line joining the points (4, -2) and (8, 6) in the ratio 7:5 will be

[AMU 1979; MP PET 1984]

(a) (16, 18) (b) (18, 16) (c)  $\left(\frac{19}{3}, \frac{8}{3}\right)$  (d)  $\left(\frac{8}{3}, \frac{19}{3}\right)$ 

**Solution:** (c) Let point (x, y) divides the line internally.

|               | Then $x = \frac{m_1 x_2 + m_2 x_3}{m_1 + m_2}$ | $\frac{1}{12} = \frac{7(8) + 5(4)}{12} = \frac{19}{3},  y = \frac{m_1 y_2 + m_1 + m_1 + m_2}{m_1 + m_1 + m_2}$ | $\frac{m_2 y_1}{m_2} = \frac{7(6) + 5(-2)}{12} = \frac{8}{3} \; .$ |                   |                    |
|---------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|--------------------|
| Example: 8    | The line $x + y = 4$ div                       | ides the line joining the points (-1,                                                                          | 1) and (5, 7) in the ratio                                         | <b>[IIT</b> ]     | 1965, UPSEAT 1999] |
|               | (a) 2:1                                        | (b) 1:2 Internally                                                                                             | (c) 1:2 Externally                                                 | (d) None of these |                    |
| Solution: (b) | Required ratio = $-\left(\frac{a}{a}\right)$   | $\binom{x_1 + by_1 + c}{c_2 + by_2 + c} = -\left(\frac{-1 + 1 - 4}{5 + 7 - 4}\right) = \frac{4}{8}$            | $\frac{1}{3} = \frac{1}{2}$ (Internally)                           |                   |                    |
| Example: 9    | The line joining points                        | (2, -3) and $(-5, 6)$ is divided by y-a                                                                        | axis in the ratio                                                  |                   | [MP PET 1999]      |
|               | (a) 2:5                                        | (b) 2:3                                                                                                        | (c) 3:5                                                            | (d) 1 : 2         |                    |
| Solution: (a) | Let ratio be $k : 1$ and $c$                   | coordinate of y-axis are $(0, b)$ . There                                                                      | efore, $0 = \frac{k(-5) + 1(2)}{k+1} \Longrightarrow k$            | $=\frac{2}{5}$    |                    |


**1.7 Some points of a Triangle** 

(1) **Centroid of a triangle :** The centroid of a triangle is the point of intersection of its medians. The centroid divides the medians in the ratio 2:1 (Vertex : base)

If  $A(x_1, y_1)$ ,  $B(x_2, y_2)$  and  $C(x_3, y_3)$  are the vertices of a triangle. If G be the centroid upon one of the median (say) AD, then AG : GD = 2 : 1

$$\Rightarrow \text{ Co-ordinate of } G \text{ are } \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

Example: 10The centroid of a triangle is (2,7) and two of its vertices are (4, 8) and (-2, 6) the third vertex is(a) (0, 0)(b) (4, 7)(c) (7, 4)(d) (7, 7)



[Kerala (Engg.) 2002]

Solution: (b)

Let the third vertex 
$$(x, y)$$
  

$$2 = \frac{x+4-2}{3}, 7 = \frac{y+8+6}{3}, i.e. \ x = 4, \ y = 7$$
Hence third vertex is (4, 7).

(2) **Circumcentre :** The circumcentre of a triangle is the point of intersection of the perpendicular bisectors of the sides of a triangle. It is the centre of the circle which passes through the vertices of the

triangle and so its distance from the vertices of the triangle is the same and this distance is known as the circum-radius of the triangle.

Let vertices *A*, *B*, *C* of the triangle *ABC* be  $(x_1, y_1), (x_2, y_2)$  and  $(x_3, y_3)$  and let circumcentre be O(x, y) and then (x, y) can be found by solving

$$(OA)^2 = (OB)^2 = (OC)^2$$
  
i.e.,  $(x - x_1)^2 + (y - y_1)^2 = (x - x_2)^2 + (y - y_2)^2 = (x - x_3)^2 + (y - y_3)^2$ 

$$A(x_1,y_1)$$

$$F$$

$$E$$

$$D$$

$$C(x_3,y_3)$$

*Note* :  $\Box$  If a triangle is right angle, then its circumcentre is the mid point of hypotenuse.

□ If angles of triangle *i.e.*, *A*, *B*, *C* and vertices of triangle  $A(x_1, y_1), B(x_2, y_2)$  and  $C(x_3, y_3)$  are given, then circumcentre of the triangle *ABC* is

$$\left(\frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}, \frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}\right)$$

**Example: 11** If the vertices of a triangle be (2, 1); (5, 2) and (3, 4) then its circumcentre is

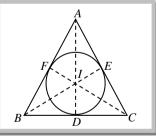
(a) 
$$\left(\frac{13}{2}, \frac{9}{2}\right)$$
 (b)  $\left(\frac{13}{4}, \frac{9}{4}\right)$  (c)  $\left(\frac{9}{4}, \frac{13}{4}\right)$  (d) None of these

**Solution:** (b) Let circumcentre be O(x, y) and given points are A(2,1); B(5,2); C(3,4) and  $OA^2 = OB^2 = OC^2$ 

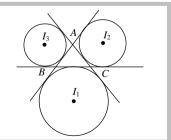
 $\therefore (x-2)^2 + (y-1)^2 = (x-5)^2 + (y-2)^2 \qquad \dots (i)$ and  $(x-2)^2 + (y-1)^2 = (x-3)^2 + (y-4)^2 \qquad \dots (ii)$ On solving (i) and (ii), we get  $x = \frac{13}{4}, y = \frac{9}{4}$ 

(3) **Incentre :** The incentre of a triangle is the point of intersection of internal bisector of the angles. Also it is a centre of a circle touching all the sides of a triangle.

Co-ordinates of incentre 
$$\left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$


Where *a*, *b*, *c* are the sides of triangle *ABC*.

(4) **Excircle**: A circle touches one side outside the triangle and other two extended sides then circle is known as excircle. Let ABC be a triangle then there are three excircles with three excentres. Let


 $I_1, I_2, I_3$  opposite to vertices A, B and C respectively. If vertices of triangle are  $A(x_1, y_1), B(x_2, y_2)$  and  $C(x_3, y_3)$  then

$$I_{1} = \left(\frac{-ax_{1} + bx_{2} + cx_{3}}{-a + b + c}, \frac{-ay_{1} + by_{2} + cy_{3}}{-a + b + c}\right)$$
$$I_{2} = \left(\frac{ax_{1} - bx_{2} + cx_{3}}{a - b + c}, \frac{ay_{1} - by_{2} + cy_{3}}{a - b + c}\right), I_{3} = \left(\frac{ax_{1} + bx_{2} - cx_{3}}{a + b - c}, \frac{ay_{1} + by_{2} - cy_{3}}{a + b - c}\right)$$

**Note** :  $\Box$  Angle bisector divides the opposite sides in the ratio of remaining sides *e.g.*  $\frac{BD}{DC} = \frac{AB}{AC} = \frac{c}{b}$ 

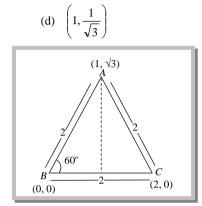


[IIT 1964]



- $\Box$  Incentre divides the angle bisectors in the ratio (b + c): a, (c + a): b and (a + b): c
- **Excentre :** Point of intersection of one internal angle bisector and other two external angle bisector is called as excentre. There are three excentres in a triangle. Co-ordinate of each can be obtained by changing the sign of a, b, c respectively in the formula of in-centre.

**Example: 12** The incentre of the triangle with vertices  $(1,\sqrt{3}),(0,0)$  and (2,0) is


(a) 
$$\left(1, \frac{\sqrt{3}}{2}\right)$$
 (b)  $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$  (c)  $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ 

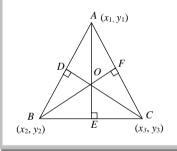
Solution: (d)

: Here AB = BC = CA: The triangle is equilateral.

So, the incentre is the same as the centroid.

$$\therefore \text{ Incentre} = \left(\frac{1+0+2}{3}, \frac{\sqrt{3}+0+0}{3}\right) = \left(1, \frac{1}{\sqrt{3}}\right).$$




[IIT Screening 2000]

(5) **Orthocentre :** It is the point of intersection of perpendiculars drawn from vertices on opposite sides (called altitudes) of a triangle and can be obtained by solving the equation of any two altitudes.

Here O is the orthocentre since  $AE \perp BC$ ,  $BF \perp AC$  and  $CD \perp AB$ 

then  $OE \perp BC$ ,  $OF \perp AC$ ,  $OD \perp AB$ 

Solving any two we can get coordinate of O.



Note : If a triangle is right angled triangle, then orthocentre is the

point where right angle is formed.

- □ If the triangle is equilateral then centroid, incentre, orthocentre, circum-centre coincides.
- □ Orthocentre, centroid and circum-centre are always collinear and centroid divides the line joining orthocentre and circum-centre in the ratio 2 : 1
- □ In an isosceles triangle centroid, orthocentre, incentre, circum-centre lie on the same line.

| Example: 13   | The vertices of triangl  | e are (0, 3) (- 3, 0) and (3, 0). | The co-ordinate of its orthocen       | tre are       | [AMU 1991; DCE 1994] |
|---------------|--------------------------|-----------------------------------|---------------------------------------|---------------|----------------------|
|               | (a) $(0, -2)$            | (b) (0, 2)                        | (c) (0, 3)                            | (d) $(0, -3)$ |                      |
| Solution: (c) | Here $AB \perp BC$ .     |                                   |                                       |               |                      |
|               | In a right angled trian  | gle, orthocentre is the point wl  | nere right angle is formed.           | L 1           |                      |
|               | ∴ Orthocentre is (0, 3   | 3)                                |                                       |               | A<br>(3, 0)          |
| Example: 14   | If the centroid and circ | cumcentre of triangle are (3, 3   | ); $(6, 2)$ , then the orthocentre is |               | [DCE 2000]           |
|               | (a) (9, 5)               | (b) (3, -1)                       | (c) (-3, 1)                           | (d) (-3, 5)   |                      |

**Solution:** (d) Let orthocentre be  $(\alpha, \beta)$ . We know that centroid divides the line joining orthocentre and circumcentre in the ratio 2 : 1

$$\therefore 3 = \frac{2(6) + 1(\alpha)}{2+1} \Longrightarrow \alpha = -3, \ 3 = \frac{2(2) + 1(\beta)}{2+1} \Longrightarrow \beta = 5$$

Hence orthocentre is (-3, 5).

## **1.8 Area of some Geometrical figures**

(1) Area of a triangle : The area of a triangle *ABC* with vertices  $A(x_1, y_1)$ ;  $B(x_2, y_2)$  and  $C(x_3, y_3)$ . The area of triangle *ABC* is denoted by ' $\Delta$ ' and is given as

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2} \left| (x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)) \right|$$

#### In equilateral triangle

(i) Having sides *a*, area is  $\frac{\sqrt{3}}{4}a^2$ .

(ii) Having length of perpendicular as 'p' area is  $\frac{(p^2)}{\sqrt{3}}$ .

*Note* :  $\Box$  If a triangle has polar co-ordinates  $(r_1, \theta_1), (r_2, \theta_2)$  and  $(r_3, \theta_3)$  then its area

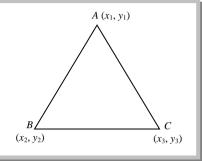
$$\Delta = \frac{1}{2} [r_1 r_2 \sin(\theta_2 - \theta_1) + r_2 r_3 \sin(\theta_3 - \theta_2) + r_3 r_1 \sin(\theta_1 - \theta_3)]$$

□ If area is a rational number. Then the triangle cannot be equilateral.

(2) Collinear points : Three points  $A(x_1, y_1)$ ;  $B(x_2, y_2)$ ;  $C(x_3, y_3)$  are collinear. If area of triangle is zero,

*i.e.*, (i) 
$$\Delta = 0 \implies \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0 \implies \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

(ii) AB + BC = AC or AC + BC = AB or AC + AB = BC


(3) Area of a quadrilateral : If  $(x_1, y_1); (x_2, y_2); (x_3, y_3)$  and  $(x_4, y_4)$  are vertices of a quadrilateral, then its Area  $= \frac{1}{2} [(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + (x_3y_4 - x_4y_3) + (x_4y_1 - x_1y_4)]$ 

Note : If two opposite vertex of rectangle are  $(x_1, y_1)$  and  $(x_2, y_2)$ , then its area is  $|(y_2 - y_1)(x_2 - x_1)|$ .

 $\Box$  It two opposite vertex of a square are  $A(x_1, y_1)$  and  $C(x_2, y_2)$ , then its area is

$$= \frac{1}{2}AC^{2} = \frac{1}{2}[(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}]$$

(4) Area of polygon : The area of polygon whose vertices are  $(x_1, y_1); (x_2, y_2); (x_3, y_3); \dots, (x_n, y_n)$  is



$$= \frac{1}{2} | \{ (x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_ny_1 - x_1y_n) \} |$$

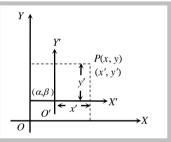
Or **Stair method :** Repeat first co-ordinates one time in last for down arrow use positive sign and for up arrow use negative sign.  $|\mathbf{r} - \mathbf{v}|$ 

$$\therefore \quad \text{Area of polygon} = \frac{1}{2} \left| \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_5 \\ \vdots \\ x_n \\ x_n$$

Solution: (b) The given points are collinear, if Area of 
$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & \sec^2 \theta & 1 \\ \csc^2 \theta & 0 & 1 \end{vmatrix} = 0 \implies 1(\sec^2 \theta) + 1(\csc^2 \theta) + 1(-\csc^2 \theta) \sec^2 \theta) = 0$$
  

$$\implies \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} - \frac{1}{\sin^2 \theta \cdot \cos^2 \theta} = 0 \implies \frac{1}{\sin^2 \theta \cdot \cos^2 \theta} - \frac{1}{\sin^2 \theta \cdot \cos^2 \theta} = 0 \implies 0 = 0$$
Therefore the points are collinear for all value of  $\theta$ , except only  $\theta = \frac{n\pi}{2}$  because at  $\theta = \frac{n\pi}{2}$ ,  $\sec^2 \theta = \infty$  (Not defined).  
Example: 20 The points (0, 8/3) (1, 3) and (82, 30) are the vertices of  
(a) An equilateral triangle (b) An isosceles triangle  
(c) A right angled triangle (d) None of these  
Solution: (d) Here  $A = (0, 8/3), B = (1,3)$  and  $C = (82, 30)$   
 $AB = \sqrt{1+1/9} = \sqrt{10/9}, BC = \sqrt{(81)^2 + (27)^2} = 27\sqrt{10} = 81\sqrt{\frac{10}{9}}, AC = \sqrt{(82)^2 + (30 - 8/3)^2} = 82\sqrt{\frac{10}{9}}$ 

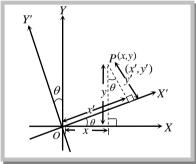
Since 
$$AB + BC = (1 + 81)\sqrt{\frac{10}{9}} = 82\sqrt{\frac{10}{9}} = AC$$
.  $\therefore$  Points A, B, C are collinear.


## **1.9 Transformation of Axes**

## (1) Shifting of origin without rotation of axes : Let $P \equiv (x, y)$ with respect to axes *OX* and *OY*.

Let  $O' \equiv (\alpha, \beta)$  with respect to axes *OX* and *OY* and let  $P \equiv (x', y')$  with respect to axes *O'X'* and *O'Y'*, where *OX* and *O'X'* are parallel and *OY* and *O'Y'* are parallel.

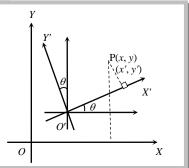
Then  $x = x' + \alpha$ ,  $y = y' + \beta$  or  $x' = x - \alpha$ ,  $y' = y - \beta$ 


Thus if origin is shifted to point  $(\alpha, \beta)$  without rotation of axes, then new equation of curve can be obtained by putting  $x + \alpha$  in place of x and  $y + \beta$  in place of y.



(2) Rotation of axes without changing the origin : Let *O* be the origin. Let  $P \equiv (x, y)$  with respect to axes

*OX* and *OY* and let  $P \equiv (x', y')$  with respect to axes *OX'* and *OY'* where  $\angle X'OX = \angle YOY' = \theta$ then  $x = x'\cos\theta - y'\sin\theta$ 


and  $y = x' \sin \theta + y' \cos \theta$  $x' = x \cos \theta + y \sin \theta$  $y' = -x \sin \theta + y \cos \theta$ 



The above relation between (x, y) and (x', y') can be easily obtained with the help of following table

|                  | $x\downarrow$ | $y\downarrow$ |
|------------------|---------------|---------------|
| $x' \rightarrow$ | $\cos \theta$ | $\sin 	heta$  |
| $y' \rightarrow$ | $-\sin\theta$ | $\cos \theta$ |

(3) Change of origin and rotation of axes : If origin is changed to  $O'(\alpha, \beta)$  and axes are rotated about the new origin O' by an angle  $\theta$  in the




anticlock-wise sense such that the new co-ordinates of P(x, y) become (x', y') then the equations of transformation will be  $x = \alpha + x' \cos \theta - y' \sin \theta$  and  $y = \beta + x' \sin \theta + y' \cos \theta$ 

#### (4) Reflection (Image of a point): Let (x, y) be any point, then its image with respect to

(i) 
$$x \text{ axis} \Rightarrow (x,-y)$$
 (ii)  $y \text{-axis} \Rightarrow (-x,y)$  (iii)  $\operatorname{origin} \Rightarrow (-x,-y)$  (iv) line  $y = x \Rightarrow (y,x)$ 

Example: 21 The point (2,3) undergoes the following three transformation successively, (i) Reflection about the line y = x. (ii) Transformation through a distance 2 units along the positive direction of y-axis. (iii) Rotation through an angle of 45° about the origin in the anticlockwise direction. The final coordinates of points are [Roorkee 2000] (b)  $\left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$  (c)  $\left(\frac{1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$  (d) None of these (a)  $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ Solution: (b) (i) The new position after reflection is (3,2) (ii) After transformation, it is (3, 2+2), *i.e.* (3, 4)(iii) Rotation makes it  $(3\cos 45^{\circ} - 4\sin 45^{\circ}, 3\sin 45^{\circ} + 4\cos 45^{\circ})$ , *i.e.*  $\left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ Example: 22 Reflecting the point (2, -1) about y-axis, coordinate axes are rotated at  $45^{\circ}$  angle in negative direction without shifting the origin. The new coordinates of the point are (a)  $\left(\frac{-1}{\sqrt{2}}, \frac{-3}{\sqrt{2}}\right)$  (b)  $\left(\frac{-3}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$  (c)  $\left(\frac{1}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$  (d) None of these The new position after reflection is (-2, -1)Solution: (a) Rotation makes it  $[(-2)\cos(-45^{\circ}) + (-1)\sin(-45^{\circ}), -(-2)\sin(-45^{\circ}) + (-1)\cos(-45^{\circ})]$ , *i.e.*,  $\left[\frac{-1}{\sqrt{2}}, \frac{-3}{\sqrt{2}}\right]$ Example: 23 The point (3, 2) is reflected in the y-axis and then moved a distance 5 units towards the negative side of y-axis. The co-ordinate of the point thus obtained are [DCE 1997] (a) (3, -3)(b) (-3, 3) (c) (3, 3) (d) (-3, -3)

Solution: (d) Reflection in the y-axis of the point (3,2) is (-3, 2) when it moves towards the negative side of y- axis through 5 units, then the new position is (-3, 2-5) = (-3, -3)



#### **1.10 Locus**

Locus : The curve described by a point which moves under given condition or conditions is called its locus.

**Equation to the locus of a point :** The equation to the locus of a point is the relation, which is satisfied by the coordinates of every point on the locus of the point.

#### Algorithm to find the locus of a point

Step I : Assume the coordinates of the point say (h, k) whose locus is to be found.

**Step II :** Write the given condition in mathematical form involving *h*, *k*.

**Step III :** Eliminate the variable (s), if any.

**Step IV :** Replace h by x and k by y in the result obtained in step III. The equation so obtained is the locus of the point which moves under some stated condition (s)

N<u>ote</u> :  $\Box$  Locus of a point P which is equidistant from the two point A and B is a straight line and is a perpendicular bisector of line AB.  $\Box$  In above case if PA = kPB where  $k \neq 1$ , then the locus of P is a circle.  $\Box$  Locus of *P* if *A* and *B* is fixed. (b) Circle with diameter AB, if  $\angle APB = \frac{\pi}{2}$ (a) Circle, if  $\angle APB = \text{constant}$ (c) Ellipse, if PA + PB = constant (d) Hyperbola, if PA - PB = constantLet A (2, -3) and B(-2, 1) be vertices of triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the Example: 24 locus of the vertex C is the line [AIEEE 2004] (c) 3x + 2y = 5 (d) 2x + 3y = 9(a) 3x - 2y = 3(b) 2x - 3y = 7Solution: (d) Let third vertex C be  $(\alpha, \beta)$  $\therefore \text{ Centroid} = \left(\frac{2-2+\alpha}{3}, \frac{-3+1+\beta}{3}\right), \text{ i.e. } \left(\frac{\alpha}{3}, \frac{\beta-2}{3}\right)$ According to question,  $2\left(\frac{\alpha}{3}\right) + 3\left(\frac{\beta-2}{3}\right) = 1 \implies 2\alpha + 3\beta - 6 = 3 \implies 2\alpha + 3\beta = 9$ Hence, locus of vertex C is 2x + 3y = 9. Example: 25 The ends of a rod of length l move on two mutually perpendicular lines. The locus of the point on the rod which divides it in the ratio 1 : 2 is [IIT 1987; Rajasthan PET 1997] (a)  $36x^2 + 9y^2 = 4l^2$  (b)  $36x^2 + 9y^2 = l^2$  (c)  $9x^2 + 36y^2 = 4l^2$ (d) None of these AP: PB = 1:2, then  $h = \frac{1 \times 0 + 2 \times a}{1+2} = \frac{2a}{3}$  or  $a = \frac{3h}{2}$ , Similarly b = 3kSolution: (c) B(0, b)Now we have  $OA^2 + OB^2 = AB^2 \implies \left(\frac{3h}{2}\right)^2 + (3k)^2 = l^2$ b P(h, k)Hence locus of P(h, k) is given by  $9x^2 + 36y^2 = 4l^2$ Example: 26 If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locus of P is a/an [IIT 1989; UPSEAT 2001] (c) Hyperbola (a) Parabola (b) Ellipse (d) None of these Solution: (b) We know that, PA + PB = constant. Then locus of P is an ellipse.

\*\*\*



| _  |                                      |                                                 |                                       | System of Co-           | ordinates |
|----|--------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------|-----------|
|    |                                      |                                                 | Basic Level                           |                         |           |
|    |                                      |                                                 |                                       |                         |           |
|    |                                      |                                                 |                                       |                         |           |
| 1. | The distance betweer                 | the points (17,105 $^{o}$ ) and (5 $\sqrt{2}$ , | 60°) is                               |                         |           |
|    | (a) 13                               | (b) 12                                          | (c) 11                                | (d) 10                  |           |
| 2. | In a plane, the co-ord               | linates ( $r, 	heta$ )of a point are equivale   | ent                                   |                         |           |
|    | (a) $(r, -\theta)$                   | (b) $(-r,\theta)$                               | (c) $(-r, \pi + \theta)$              | (d) $(r, \pi + \theta)$ |           |
| 3. | The system of coordir                | nates known as the cartesian syste              | m of coordinates was first introduced | by                      |           |
|    | (a) Euclid                           | (b) Euler                                       | (c) Descarte                          | (d) Bhasker             |           |
| 4. | Which of the following               | g polar coordinates are associated              | d to the same point                   |                         |           |
|    | 1 : (2,30°)                          | II: (3,150°)                                    |                                       |                         |           |
|    | III : (-2,45°)                       | IV : (−3,330 °)                                 |                                       |                         |           |
|    | V: (3,-210°)                         | VI: (-3,30°)                                    |                                       |                         |           |
|    | (a) I, III and IV                    | (b) II, IV and VI                               | (c) II, IV, V and VI                  | (d) IV and VI           |           |
| (  |                                      |                                                 |                                       |                         | (         |
|    |                                      |                                                 |                                       | Distance                | e Formula |
|    |                                      | $\langle$                                       | Basic Level                           |                         |           |
|    |                                      |                                                 |                                       |                         |           |
|    |                                      |                                                 |                                       |                         |           |
| 5. | If the distance betwee               | en the points ( <i>a</i> , 2) and (3, 4) be 8,  | then a =                              |                         | [MNR 1978 |
|    | (a) $2 + 3\sqrt{15}$                 | (b) $2 - 3\sqrt{15}$                            | (c) $2 \pm 3\sqrt{15}$                | (d) $3 \pm 2\sqrt{15}$  |           |
| 6. | The distance betweer                 | the points $(am_1^2, 2am_1)$ and $(am_2^2)$     | $(2, 2am_2)$ is                       |                         |           |
|    | (a) $a(m_1 - m_2)\sqrt{(m_1 + m_2)}$ | $(m_2)^2 + 4$                                   | (b) $(m_1 - m_2)\sqrt{(m_1 + m_2)^2}$ | + 4                     |           |
|    | (c) $a(m_1 - m_2)\sqrt{(m_1)^2}$     | $(1 - 1)^2 - 4$                                 | (d) $(m_1 - m_2)\sqrt{(m_1 + m_2)^2}$ |                         |           |

| 7.  | The distance of the point (b              | $p\cos\theta, b\sin\theta$ from origin is                           |                                                |                                    | [MP PET 1984] |
|-----|-------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------|---------------|
|     | (a) $b \cot \theta$                       | (b) <i>b</i>                                                        | (c) $b \tan \theta$                            | (d) $b\sqrt{2}$                    |               |
| 8.  | The distance between the p                | points $(a\cos\alpha, a\sin\alpha)$ and $(a\cos\beta, a\sin\alpha)$ | $\sin \beta$ ) is                              |                                    |               |
|     | (a) $a\cos\frac{\alpha-\beta}{2}$         | (b) $2a\cos\frac{\alpha-\beta}{2}$                                  | (c) $a\sin\frac{\alpha-\beta}{2}$              | (d) $2a\sin\frac{\alpha-\beta}{2}$ |               |
| 9.  | The point on <i>y</i> -axis equidist      | ant from the points (3, 2) and (–1, 3) i                            | is                                             |                                    |               |
|     | (a) (0, -3)                               | (b) $(0, -3/2)$                                                     | (c) (0,3/2)                                    | (d) (0, 3)                         |               |
| 10. | The point <i>P</i> is equidistant fr      | rom <i>A</i> (1, 3), <i>B</i> (– 3, 5) and <i>C</i> (5, –1). Ther   | n <i>PA</i> =                                  |                                    | [EAMCET 2003] |
|     | (a) 5                                     | (b) $5\sqrt{5}$                                                     | (c) 25                                         | (d) $5\sqrt{10}$                   |               |
| 11. | The point whose abscissa is               | equal to its ordinate and which is equ                              | uidistant from the points (1, 0) a             | nd (0, 3) is                       |               |
|     | (a) (1, 1)                                | (b) (2, 2)                                                          | (c) (3, 3)                                     | (d) (4, 4)                         |               |
| 12. | Mid-point of the sides AB a               | nd $AC$ of a $\triangle ABC$ are (3, 5) and (-3,                    | -3) respectively, then the length              | n of the side <i>BC</i> is         |               |
|     | (a) 10                                    | (b) 20                                                              | (c) 15                                         | (d) 30                             |               |
| 13. | The distance of the middle                | point of the line joining the points (a                             | $\sin\theta,0)$ and $(0,a\cos\theta)$ from the | e origin                           |               |
|     | (a) $\frac{a}{2}$                         | (b) $\frac{1}{2}a(\sin\theta + \cos\theta)$                         | (c) $a(\sin\theta + \cos\theta)$               | (d) <i>a</i>                       |               |
| 14. | A point on the line $y = x$ at            | a distance of 2 units from the origin                               | is                                             |                                    | [MP PET 1984] |
|     | (a) $(0,\sqrt{2})$                        | (b) $(\sqrt{2}, 0)$                                                 | (C) (2,2)                                      | (d) $(\sqrt{2}, \sqrt{2})$         |               |
| 15. | If the points (1, 1), (–1, –1) an         | Ind $(-\sqrt{3},k)$ are vertices of an equilate                     | eral triangle then the value of $k$ w          | vill be                            |               |
|     | (a) 1                                     | (b) –1                                                              | (c) $\sqrt{3}$                                 | (d) $-\sqrt{3}$                    |               |
|     |                                           | Advance                                                             | Level                                          |                                    |               |
|     |                                           |                                                                     |                                                |                                    |               |
| 16. | If $\mathcal{O}$ be the origin and if the | coordinates of any two points $\mathcal{Q}_1$ and                   | nd $Q_2$ be $(x_1, y_1)$ and $(x_2, y_2)$ re   | spectively, then                   |               |

16. If *O* be the origin and if the coordinates of any two points  $Q_1$  and  $Q_2$  be  $(x_1, y_1)$  and  $(x_2, y_2)$  respectively, then  $OQ_1 OQ_2 \cos Q_1 OQ_2 =$ 

- (a)  $x_1x_2 y_1y_2$  (b)  $x_1y_1 x_2y_2$  (c)  $x_1x_2 + y_1y_2$  (d)  $x_1y_1 + x_2y_2$
- 17. If the line segment joining the points A(a,b) and B(c, d) subtends an angle  $\theta$  at the origin, then  $\cos \theta$  is equal to [IIT 1961]

(a) 
$$\frac{ab+cd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$$
 (b)  $\frac{ac+bd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$  (c)  $\frac{ac-bd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$  (d) None of these

**18.** The vertices of a triangle ABC are (0, 0), (2, -1) and (9, 2) respectively, then  $\cos B =$ 

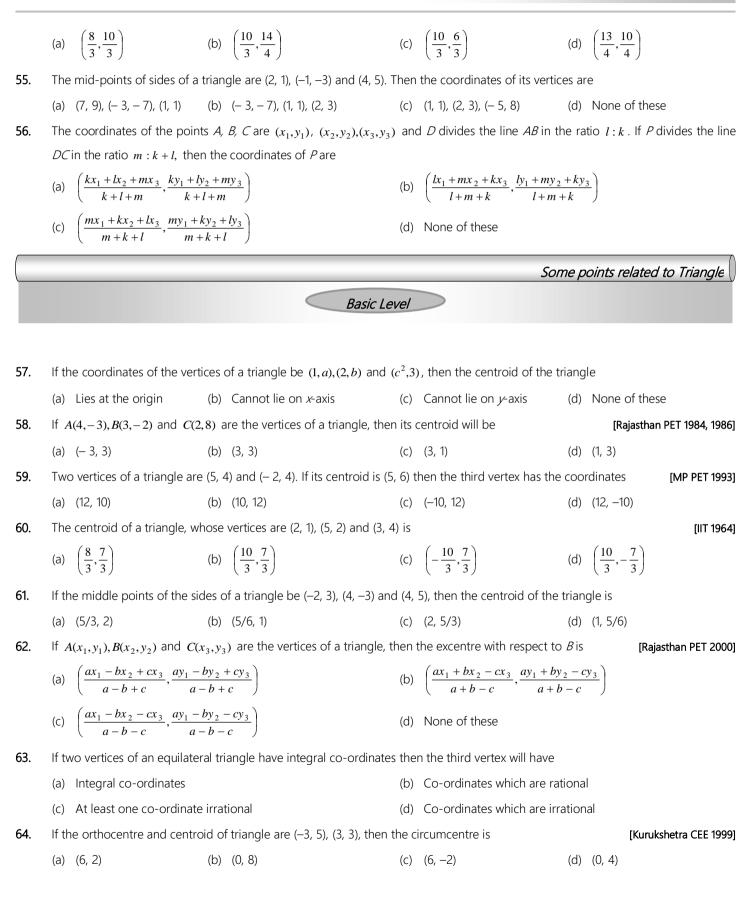
(a) 
$$\frac{11}{290}$$
 (b)  $\frac{\sqrt{11}}{290}$  (c)  $-\frac{11}{\sqrt{290}}$  (d)  $-\sqrt{\frac{11}{290}}$ 

19. If A(2,2), B(-4,-4), C(5,-8) are vertices of any triangle, then the length of median passes through C will be [Rajasthan PET 1988]

(a)  $\sqrt{65}$  (b)  $\sqrt{117}$  (c)  $\sqrt{85}$  (d)  $\sqrt{113}$ 

[AMU 1977]

[IIT 1961]


| 20. | If a vertex of an equilater             | al triangle is on origin and second                                             | vertex is (4, 0), then its third vertex          | is                                                            |
|-----|-----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
|     | (a) $(2, \pm \sqrt{3})$                 | (b) $(3, \pm \sqrt{2})$                                                         | (c) $(2,\pm 2\sqrt{3})$                          | (d) $(3,\pm 2\sqrt{2})$                                       |
| 21. | The locus of the point $Pe$             | equidistant from the points $(x_1, y_1)$                                        | and $(x_2, y_2)$ is $(x_1 - x_2)x + (y_1 - y_2)$ | )y + $c = 0$ , then the value of $c$ is                       |
|     | (a) $(x_1^2 - x_2^2) + (y_1^2 - y_2^2)$ | (b) $\frac{1}{2}(x_1^2 + x_2^2 + y_1^2 + y_2^2)$                                | (c) $\frac{1}{2}(x_2^2 - x_1^2 + y_2^2 - y_1^2)$ | (d) $\sqrt{x_1^2 - x_2^2 + y_1^2 - y_2^2}$                    |
| 22. |                                         | such that for each $n \ge 1$ , the lengt<br>hen for which of the following valu |                                                  | h of a diagonal of $S_{n+1}$ . If the length 1 sq. <i>cm.</i> |
|     | (a) 7                                   | (b) 8                                                                           | (c) 9                                            | (d) 10                                                        |
|     |                                         |                                                                                 | Problems concer                                  | rning to geometrical conditions                               |
|     |                                         | Bas                                                                             | sic Level                                        |                                                               |
|     |                                         |                                                                                 |                                                  |                                                               |
| 22  |                                         |                                                                                 | (                                                |                                                               |
| 23. |                                         | (8, -2) and $(-4, -3)$ are the vertice                                          |                                                  | [Rajasthan PET 1987]                                          |
| 24  | (a) An isosceles triangle               | (b) An equilateral triangle $(b) = C(4,0)$ and $D(2,2)$ are the                 | (c) A right angled triangle                      | (d) None of these                                             |
| 24. |                                         | (2,-4); $C(4,0)$ and $D(2,3)$ are the v                                         |                                                  |                                                               |
| 25  | (a) Parallelogram                       | (b) Rectangle                                                                   | (c) Rhombus                                      | (d) None of these                                             |
| 25. | I wo opposite vertices of $\lambda =$   | a rectangle are (1,3) and (5,1). If th                                          | e other two vertices of the rectang              | gle lie on the line $y - x + \lambda = 0$ , then              |
|     | (a) 1                                   | (b) – 1                                                                         | (c) 2                                            | (d) None of these                                             |
| 26. | Three vertices of a paralle             | elogram are (1, 3) (2, 0) and (5, 1). Tl                                        | hen its fourth vertex is                         | [Rajasthan PET 1988, 2001]                                    |
|     | (a) (3, 3)                              | (b) (4, 4)                                                                      | (c) (4, 0)                                       | (d) (0, – 4)                                                  |
| 27. | The quadrilateral formed                | by the vertices (- 1, 1), (0, - 3), (5, 2                                       | ) and (4, 6) will be                             | [Rajasthan PET 1986]                                          |
|     | (a) Square                              | (b) Parallelogram                                                               | (c) Rectangle                                    | (d) Rhombus                                                   |
| 28. | The triangle formed by the              | lines $x + y = 0$ , $3x + y - 4 = 0$ and                                        | x + 3y = 4 is <b>[IIT 1983; MNR 1992; R</b> a    | ajasthan PET 1995; UPSEAT 2001]                               |
|     | (a) Equilateral                         | (b) Isosceles                                                                   | (c) Right angled                                 | (d) None of these                                             |
| 29. | The following points $A(2)$             | $(a, 4a), B(2a, 6a)$ and $C(2a + \sqrt{3}a, 5a)$                                | ), $(a > 0)$ are the vertices of                 |                                                               |
|     | (a) An acute angled tria                | ngle (b)                                                                        | An right angled triangle                         | (c) An isosceles triangle (d)                                 |
| 30. | The triangle joining the p              | oints P(2,7),Q(4,-1),R(-2,6) is                                                 |                                                  | [MP PET 1997]                                                 |
|     | (a) Equilateral triangle                | (b) Right-angled triangle                                                       | (c) Isosceles triangle                           | (d) Scalene triangle                                          |
| 31. | The points (1, 3) and (5, 1             | ) are the opposite vertices of a rect                                           | angle. The other two vertices lie o              | In the line $y = 2x + c$ , then the value                     |
|     | of <i>c</i> will be                     |                                                                                 |                                                  | [IIT 1981]                                                    |
|     | (a) 4                                   | (b) – 4                                                                         | (c) 2                                            | (d) – 2                                                       |
| 32. | If the three vertices of a r            | ectangle taken in order are the poi                                             | nts (2, −2), (8, 4) and (5, 7). The co           | ordinates of fourth vertex are                                |

|     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        | [Kurukshetra CEE 1993]                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------|---------------------------------------|
|     | (a) (1, 1)                                                                                                                                                                       | (b) (1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) (-1, 1)                                                                | (d)                    | None of these                         |
| 33. | If vertices of a quadrilateral                                                                                                                                                   | are A(0,0), B(3,4), C(7,7) and D(4,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) then quadrilateral ABCD is a                                             |                        | [Rajasthan PET 1986]                  |
|     | (a) Parallelogram                                                                                                                                                                | (b) Rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) Square                                                                 | (d)                    | Rhombus                               |
| 34. | The coordinates of the third                                                                                                                                                     | d vertex of an equilateral triangle who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ose two vertices are at (3, 4) and                                         | (-2, 3                 | ) are                                 |
|     | (a) (1, 1) or (1, -1)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $\left(\frac{1+\sqrt{3}}{2}, \frac{7-5\sqrt{3}}{2}\right)$ or $\left($ | $\frac{1-\sqrt{3}}{2}$ | $\left(,\frac{7+5\sqrt{3}}{2}\right)$ |
|     | (c) $(-\sqrt{3},\sqrt{3})$ or $(\sqrt{3},-\sqrt{3})$                                                                                                                             | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) None of these                                                          |                        |                                       |
| 35. | The quadrilateral joining th                                                                                                                                                     | e points (1, –2); (3, 0); (1, 2) and (–1, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is                                                                         |                        | [Rajasthan PET 1999]                  |
|     | (a) Parallelogram                                                                                                                                                                | (b) Rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) Square                                                                 | (d)                    | Rhombus                               |
| 36. | $\left  \begin{array}{cccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right  = \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix}$ | , then the two triangle with vertices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(x_1, y_1); (x_2, y_2); (x_3, y_3)$ and $(a_1)$                           | ,b <sub>1</sub> ); (a  | $(a_2, b_2); (a_3, b_3)$ must be      |
|     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        | [IIT 1985]                            |
|     | (a) Similar                                                                                                                                                                      | (b) Congruent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) Never congruent                                                        | (d)                    | None of these                         |
| 37. | All points lying inside the tr                                                                                                                                                   | iangle formed by the points (1, 3), (5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                          | [IIT 19                | 986; Kurukshetra CEE 1998]            |
|     | (a) $3x + 2y \ge 0$                                                                                                                                                              | (b) $2x + y - 13 \le 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) $2x - 3y - 12 \le 0$                                                   | (d)                    | All of these                          |
| 38. | The common property of p                                                                                                                                                         | ooints lying on <i>x</i> -axis, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                        | [MP PET 1988]                         |
|     | (a) $x = 0$                                                                                                                                                                      | (b) $y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) $a = 0, y = 0$                                                         | (d)                    | y = 0, b = 0                          |
| 39. | -                                                                                                                                                                                | , 2); (– 2, – 1); (3, –1); (3, 2), it is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                        | [Karnataka CET 1998]                  |
|     | (a) Square                                                                                                                                                                       | (b) Rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) Rectangle                                                              |                        | Parallelogram                         |
| 40. |                                                                                                                                                                                  | if the mid point of consecutive side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es <i>AB, BC, CD</i> and <i>DA</i> are co                                  | mbine                  |                                       |
|     | quadrilateral <i>PQRS</i> is alway                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        | [Orissa JEE 2002]                     |
| 44  | (a) Square                                                                                                                                                                       | (b) Parallelogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) Rectangle                                                              |                        | Rhombus                               |
| 41. |                                                                                                                                                                                  | bgram taken in order are $(-1, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2, -6), (2$ |                                                                            |                        |                                       |
| 42  | (a) (1, 4)                                                                                                                                                                       | (b) (4, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) (1, 1)                                                                 | (a)                    | (4, 4)                                |
| 42. |                                                                                                                                                                                  | S(a,b) are the vertices of a parallelog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | ( )                    | [IIT 1998]                            |
| _   | (a) $a = 2, b = 4$                                                                                                                                                               | (b) $a = 3, b = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (c) $a = 2, b = 3$                                                         | (d)                    | a = 3, b = 5                          |
|     |                                                                                                                                                                                  | Advance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level                                                                      |                        |                                       |
|     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                        |                                       |
| 43. | The sides of a triangle are                                                                                                                                                      | 3x + 4y, 4x + 3y and $5x + 5y$ where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x, y > 0, then the triangle is                                             |                        | [AIEEE 2002]                          |
|     | (a) Right angled                                                                                                                                                                 | (b) Obtuse angled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) Equilateral                                                            | (d)                    | None of these                         |
| 44. | 0 0                                                                                                                                                                              | ave integral coordinates then the trian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | ()                     | [IIT 1975; MP PET 1983]               |
|     | 5                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                          |                        |                                       |

|     | (a) Equilateral                                                                       | (b) Never equilateral                                                               | (c) Isosceles                                                                                   | (d) None of these                                              |
|-----|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 45. |                                                                                       | ·                                                                                   | -1). Then the coordinates of other two                                                          | o vertices are [Roorkee 1985]                                  |
|     | (a) $D\left(\frac{1}{2}, \frac{9}{2}\right); B\left(-\frac{1}{2}, \frac{5}{2}\right)$ | (b) $D\left(-\frac{1}{2},\frac{9}{2}\right); B\left(\frac{1}{2},\frac{5}{2}\right)$ | (c) $D\left(\frac{9}{2},\frac{1}{2}\right); B\left(-\frac{1}{2},\frac{5}{2}\right)$             | (d) None of these                                              |
| 46. | The quadrilateral formed by                                                           | y the lines $ax \pm by \pm c = 0$ is                                                |                                                                                                 | [Rajasthan PET 1998]                                           |
|     | (a) Square                                                                            | (b) Rectangle                                                                       | (c) Rhombus                                                                                     | (d) Parallelogram                                              |
|     |                                                                                       |                                                                                     |                                                                                                 | Section Formulae                                               |
|     |                                                                                       | В                                                                                   | Basic Level                                                                                     |                                                                |
| 47. | Point $\left(\frac{1}{2}, \frac{-13}{4}\right)$ divides the                           | e line joining the points (3, – 5)                                                  | and (– 7, 2) in the ratio of                                                                    |                                                                |
|     | (a) 1:3 internally                                                                    | (b) 3:1 internally                                                                  | (c) 1:3 externally                                                                              | (d) 3 : 1 externally                                           |
| 48. | In what ratio does the <i>y</i> -axi                                                  | is divide the join of (–3, –4) and                                                  | d (1, –2)                                                                                       | [Rajasthan PET 1995]                                           |
|     | (a) 1:3                                                                               | (b) 2:3                                                                             | (c) 3:1                                                                                         | (d) None of these                                              |
| 49. | The points which trisect the                                                          | e line segment joining the point                                                    | ts (0, 0) and (9, 12) are                                                                       | [Rajasthan PET 1986]                                           |
|     | (a) (3, 4), (6, 8)                                                                    | (b) (4, 3), (6, 8)                                                                  | (c) (4, 3), (8, 6)                                                                              | (d) (3, 4), (8, 6)                                             |
| 50. | If the point dividing interna                                                         | Ily the line segment joining the                                                    | e points $(a,b)$ and $(5,7)$ in the ratio 2                                                     | 2 : 1 be (4, 6) then                                           |
|     | (a) $a = 1, b = 2$                                                                    | (b) $a = 2, b = -4$                                                                 | (c) $a = 2, b = 4$                                                                              | (d) $a = -2, b = 4$                                            |
| 51. | If $A$ and $B$ are the points (–                                                      | 3,4) and (2, 1). Then the co-or                                                     | dinates of point <i>C</i> on <i>AB</i> produced s                                               | uch that $AC = 2BC$ are                                        |
|     | (a) (2, 4)                                                                            | (b) (3, 7)                                                                          | (c) (7, -2)                                                                                     | (d) $\left(-\frac{1}{2},\frac{5}{2}\right)$                    |
| 52. | The line segment joining th                                                           | e points (1, 2) and (– 2, 1) is div                                                 | vided by the line $3x + 4y = 7$ in the r                                                        | atio                                                           |
|     | (a) 3:4                                                                               | (b) 4:3                                                                             | (c) 9:4                                                                                         | (d) 4:9                                                        |
|     |                                                                                       | Ad                                                                                  | vance Level                                                                                     |                                                                |
|     |                                                                                       |                                                                                     |                                                                                                 |                                                                |
| 53. | If the points $P_1, P_2, P_3, \dots$                                                  | are the middle points of                                                            | line segments <i>AB</i> , <i>P</i> <sub>1</sub> <i>B</i> , <i>P</i> <sub>2</sub> <i>B</i> , res | spectively and particles of masses                             |
|     | $m; \frac{m}{2}, \frac{m}{2^2}, \dots$ are placed re                                  | espectively on these points. If C                                                   | G is the mass-centre of so placed infir                                                         | ite particles and $\overline{BG} = p \overline{BA}$ , then $p$ |

is [MP PET 1998] (a) 0 (b)  $\frac{1}{2}$  (c)  $\frac{1}{3}$  (d)  $\frac{1}{4}$ 

54. If coordinates of the points *A* and *B* are (2, 4) and (4, 2) respectively and point *M* is such that *A*-*M*-*B* also *AB* = 3*AM*, then the coordinates of *M* are



65. The centroid and a vertex of an equilateral triangle are (1, 1) and (1, 2) respectively. Another vertex of the triangle can be (a)  $\left(\frac{2-\sqrt{3}}{2},\frac{1}{2}\right)$ (b)  $\left(\frac{2+3\sqrt{3}}{2}, \frac{1}{2}\right)$ (c)  $\left(\frac{2+\sqrt{3}}{2}, \frac{1}{2}\right)$ (d) None of these 66. The incentre of triangle formed by lines x = 0, y = 0 and 3x + 4y = 12 is [Rajasthan PET 1990] (d)  $\left(\frac{11}{2}, 1\right)$ (a)  $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c)  $\left(1, \frac{1}{2}\right)$ (b) (1, 1) 67. Orthocentre of triangle with vertices (0, 0), (3, 4), (4, 0) is [IIT Screening 2003] (c)  $\left(3,\frac{3}{4}\right)$ (a)  $\left(3,\frac{5}{4}\right)$ (b) (3, 12) (d) (3, 9) 68. Orthocentre of the triangle whose vertices are (0, 0), (2, -1) and (1, 3) is [ISM Dhanbad 1970; IIT 1967, 1974] (a)  $\left(\frac{4}{7}, \frac{1}{7}\right)$ (c) (- 4, - 1) (b)  $\left(-\frac{4}{7},-\frac{1}{7}\right)$ (d) (4, 1) The orthocentre of the triangle formed by the lines 4x - 7y + 10 = 0, x + y = 5 and 7x + 4y = 15 is 69. [IIT 1969, 1976] (c) (-1, -2) (a) (1, 2) (b) (1, −2) (d) (-1, 2) 70. Coordinates of the orthocentre of the triangle whose sides are x = 3, y = 4 and 3x + 4y = 6, will be [MNR 1989] (c) (0, 4) (a) (0, 0) (b) (3, 0) (d) (3, 4) 71. The orthocentre of the triangle formed by (0, 0), (8, 0), (4, 6) is [EAMCET 1991] (a)  $\left(4, \frac{8}{3}\right)$ (b) (3, 4) (c) (4, 3) (d) (-3, 4) 72. If the line 3x + 4y - 24 = 0 cuts the x-axis in A and y-axis in B, then incentre of  $\triangle OAB$  (where O is the origin) is (a) (1, 2) (b) (2, 2) (c) (12, 12) (d) (2, 12) 73. The distance between the orthocentre and circumcentre of the triangle with vertices (0, 0), (0, a) and (b, 0) is (a)  $\frac{\sqrt{a^2 - b^2}}{2}$ (d)  $\frac{\sqrt{a^2 + b^2}}{2}$ (b) a+b(c) a-b74. The incentre of the triangle formed by (0, 0); (5, 12); (16, 12) is [EAMCET 1984] (b) (7, 9) (c) (-9, 7) (d) (-7, 9) (a) (9,7) 75. If two vertices of a triangles are (6, 4); (2, 6) and its centroid is (4, 6), then the third vertex is [Rajasthan PET 1996] (d) None of these (a) (4, 8) (b) (8, 4) (c) (6, 4) 76. If the vertices of a triangle be (a, 1); (b, 3) and (4, c), then the centroid of the triangle will lie on x-axis if (d) b + c = -4(b) a+b = -4(a) a + c = -4(c) c = -4The vertices of a triangle are (0, 0), (3, 0) and (0, 4). Its orthocentre is at 77. [MNR 1982; Rajasthan PET 1997; DCE 1994] (b)  $\left(1, \frac{4}{3}\right)$ (c)  $\left(\frac{3}{2}, 2\right)$ (a) (0, 0) (d) None of these Advance Level

| 78. | The equations of the sides                                                     | of a triangle are $x+y-5=0$ ; $x-y+$                                                              | 1 = 0 and $y - 1 = 0$ , then the co                             | pordinates of the circumcentre are           |
|-----|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
|     |                                                                                |                                                                                                   |                                                                 | [MP PET 1996]                                |
|     | (a) (2, 1)                                                                     | (b) (1, 2)                                                                                        | (c) (2, −2)                                                     | (d) (1, – 2)                                 |
| 79. | The mid points of the sides                                                    | of a triangle are (5, 0); (5, 12) and (0,                                                         | 12). The orthocentre of this tria                               |                                              |
|     | (a) (0, 0)                                                                     | (b) (10, 0)                                                                                       | (c) (0, 24)                                                     | (d) $\left(\frac{13}{3}, 8\right)$           |
| 80. | The orthocentre of the triar                                                   | ngle with vertices $\left(2, \frac{\sqrt{3}-1}{2}\right); \left(\frac{1}{2}, -\frac{1}{2}\right)$ | $\left(\frac{1}{2}\right)$ and $\left(2,-\frac{1}{2}\right)$ is | [IIT 1993]                                   |
|     | (a) $\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$                           | (b) $\left(2, -\frac{1}{2}\right)$                                                                | (c) $\left(\frac{5}{4}, \frac{\sqrt{3}-2}{5}\right)$            | (d) $\left(\frac{1}{2}, -\frac{1}{2}\right)$ |
| 81. | If the coordinates of the ve                                                   | ertices of a triangle are rational num                                                            | bers then which of the followin                                 | ng points of the triangle will always        |
|     | have rational coordinates                                                      |                                                                                                   |                                                                 |                                              |
|     | (a) Centroid                                                                   | (b) Incentre                                                                                      | (c) Circumcentre                                                | (d) Orthocentre                              |
| 82. | In the $\Delta\!ABC$ , the coordin                                             | nates of <i>B</i> are (0, 0), $AB = 2, \angle ABC$                                                | $=\frac{\pi}{3}$ and the middle point of                        | BC has the coordinates (2, 0). The           |
|     | centroid of the triangle is                                                    |                                                                                                   |                                                                 |                                              |
|     | (a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$                             | (b) $\left(\frac{5}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$                                         | (c) $\left(\frac{4+\sqrt{3}}{3},\frac{1}{3}\right)$             | (d) None of these                            |
| 83. | The vertices of triangle are                                                   | (6, 0), (0, 6) and (6, 6). The distance b                                                         | between its circumcentre and ce                                 | ntroid is                                    |
|     | (a) $2\sqrt{2}$                                                                | (b) 2                                                                                             | (c) $\sqrt{2}$                                                  | (d) 1                                        |
| 84. | Two vertices of a triangle a                                                   | re (5, $-1$ ) and ( $-2$ , 3). If orthocentre is                                                  | the origin then co-ordinates of                                 | the third vertex are                         |
|     | (a) (7, 4)                                                                     | (b) (-4, 7)                                                                                       | (c) (4, -7)                                                     | (d) (- 4, - 7)                               |
| 85. | The orthocentre of the triar                                                   | ngle formed by the lines $x + y = 1$ , 2                                                          | x + 3y = 6 and $4x - y + 4 = 0$                                 | lies in quadrant [IIT 1985]                  |
|     | (a) First                                                                      | (b) Second                                                                                        | (c) Third                                                       | (d) Fourth                                   |
| 86. | Two vertices of a triangle a                                                   | re $(4, -3)$ and $(-2, 5)$ . If the orthocent                                                     | re of the triangle is at (1, 2) , the                           | n the third vertex is [Roorkee 1987]         |
|     | (a) (- 33, -26)                                                                | (b) (33, 26)                                                                                      | (c) (26, 33)                                                    | (d) None of these                            |
| 87. | The equations to the sides                                                     | of a triangle are $x - 3y = 0$ , $4x + 3y$                                                        | = 5 and $3x + y = 0$ . The line 3.                              |                                              |
|     |                                                                                |                                                                                                   |                                                                 | [EAMCET 1994]                                |
| 00  | (a) The incentre                                                               | (b) The centroid                                                                                  | (c) The circumcentre                                            | (d) The orthocentre of the triangle          |
| 88. | The vertices of a triangle ar                                                  | $e   at_1t_2; a(t_1 + t_2) ,   at_2t_3, a(t_2 + t_3)$                                             | $ ,  at_3t_1, a(t_3 + t_1) $ , then the co                      |                                              |
|     | (a) $  a, a(t_1 + t_2 + t_3 + t_1t_2)$                                         | <i>t</i> )                                                                                        | (b) $[-a, a(t_1 + t_2 + t_3 + t_1t_2t_3)]$                      | [IIT 1983]                                   |
|     | (c) $[-a, (t_1 + t_2 + t_3 + t_1t_2)$<br>(c) $[-a, (t_1 + t_2 + t_3 + t_1t_2)$ |                                                                                                   | (d) None of these                                               | 3 )]                                         |
| 90  |                                                                                |                                                                                                   |                                                                 | or of the circumcentre of the triangle       |
| 89. | are                                                                            | sides of a triangle are $x = 2, y + 1 = 0$                                                        | and $x + 2y = 4$ . The coordinate                               |                                              |
|     | (a) (4, 0)                                                                     | (b) (2, -1)                                                                                       | (c) (0, 4)                                                      | (d) None of these                            |
|     |                                                                                | (∼/ (⊏/ ')                                                                                        |                                                                 |                                              |

|     |                                               |                                                                 |                                                    | Area of Some geometrical figures                   |
|-----|-----------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|     |                                               |                                                                 | Basic Level                                        |                                                    |
|     |                                               |                                                                 |                                                    |                                                    |
| 90. | The area of the triang                        | gle with vertices at (-4, 1), (1, 2), (4                        | I, – 3) is                                         | [EAMCET 1980]                                      |
|     | (a) 14                                        | (b) 16                                                          | (c) 15                                             | (d) None of these                                  |
| 91. | If the coordinates of                         | the points <i>A, B, C</i> be (4, 4) (3, –2)                     | and $(3, -16)$ respectively, then the an           | ea of the triangle <i>ABC</i> is [MP PET 1982]     |
|     | (a) 27                                        | (b) 15                                                          | (c) 18                                             | (d) 7                                              |
| 92. |                                               | angle are (5, 2), (2/3, 2) and (–4, 3                           | 3), then the area of the triangle is               | [Kurukshetra CEE 2002]                             |
|     | (a) $\frac{28}{6}$                            | (b) $\frac{5}{2}$                                               | (c) 43                                             | (d) $\frac{13}{6}$                                 |
| 93. | The area of a triangle                        | e whose vertices are (1, -1), (-1, 1) a                         | and (–1, –1) is given by [AMU 1981;                | Rajasthan PET 1989; MP PET 1993]                   |
|     | (a) 2                                         | (b) $\frac{1}{2}$                                               | (c) 1                                              | (d) 3                                              |
| 94. | The vertices of a tria                        | ngle <i>ABC</i> are $(\lambda, 2-2\lambda)$ , $(-\lambda+1, 2)$ | $(-4 - \lambda, 6 - 2\lambda)$ . If its area be    | 70 units then number of integral values of         |
|     | $\lambda$ is                                  |                                                                 |                                                    |                                                    |
|     | (a) 1                                         | (b) 2                                                           | (c) 4                                              | (d) 0                                              |
| 95. | The area of the penta                         | agon whose vertices are (1, 2), (–3                             | , 2), (4, 5), (–3, 3) and (–3, 0) is               |                                                    |
|     | (a) 15/2 unit <sup>2</sup>                    | (b) 30 unit <sup>2</sup>                                        | (c) 45 unit <sup>2</sup>                           | (d) None of these                                  |
|     |                                               | 6                                                               | Advanceland                                        |                                                    |
|     |                                               |                                                                 | Advance Level                                      |                                                    |
|     |                                               |                                                                 |                                                    |                                                    |
| 96. |                                               | (4, -2) and $D(x, 3x)$ are four point                           | nts. If the ratio of area of $\triangle DBC$ and   | $\triangle ABC$ is 1 : 2, then the value of x will |
|     | be                                            | 0                                                               |                                                    | [IIT 1959]                                         |
|     | (a) $\frac{11}{8}$                            | (b) $\frac{8}{11}$                                              | (c) 3                                              | (d) None of these                                  |
| 97. | The point A divides t                         | he join of the points (– 5, 1) and (                            | 3, 5) in the ratio $k$ : 1 and the coordin         | ates of the points $B$ and $C$ are (1, 5) and      |
|     | (7, – 2) respectively. I                      | f the area of the triangle <i>ABC</i> be a                      | 2 units, then <i>k</i> =                           | [IIT 1967; Kurukshetra CEE 1998]                   |
|     | (a) 6, 7                                      | (b) 31/9, 9                                                     | (c) 7, 31/9                                        | (d) 7,9                                            |
| 98. | The area of a triangle                        | e is 5. If two of its vertices are (2,                          | 1), $(3, -2)$ and the third vertex lies on         | the line $y = x + 3$ , then the third vertex       |
|     | is                                            |                                                                 |                                                    |                                                    |
|     |                                               |                                                                 |                                                    | [IIT 1978; UPSEAT 1999]                            |
|     | (a) $\left(-\frac{7}{2},-\frac{13}{2}\right)$ | (b) $\left(-\frac{7}{2},\frac{13}{2}\right)$                    | (c) $\left(\frac{7}{2}, -\frac{13}{2}\right)$      | (d) $\left(\frac{7}{2}, \frac{13}{2}\right)$       |
| 99. |                                               |                                                                 | $(2 \ 2)$<br>10 = 0,7x + 2y - 10 = 0 and y + 2 = 0 |                                                    |
| JJ. |                                               | -                                                               |                                                    |                                                    |
|     | (a) 8 sq. units                               | (b) 12 sq. units                                                | (c) 14 sq. units                                   | (d) None of these                                  |
|     |                                               |                                                                 |                                                    |                                                    |

| 100.         | Area of the triangle with ve                                                                         | ertices (a, b), $(x_1, y_1)$ and $(x_2, y_2)$ wh                                     | nere <i>a</i> | $x_1, x_2$ are in G.P. with cor           | nmo               | n ratio ' $t'$ and $b, y_1, y_2$ are in              |
|--------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|-------------------------------------------|-------------------|------------------------------------------------------|
|              | G.P. with common ratio 's' is                                                                        |                                                                                      |               |                                           |                   |                                                      |
|              | (a) $ab(r-1)(s-1)(s-r)$                                                                              | (b) $\frac{1}{2}ab(r+1)(s+1)(s-r)$                                                   | (C)           | $\frac{1}{2}ab(r-1)(s-1)(s-r)$            | (d)               | ab(r+1)(s+1)(r-s)                                    |
| 101.         |                                                                                                      | e whose vertices are $(b, c), (c, a)$ a<br>$(c - a^2)$ and $(cb - a^2, ca - b^2)$ is | and (a        | $(a,b)$ is $\Delta$ , then the area       | of                | triangle whose vertices are                          |
|              | (a) $\Delta^2$                                                                                       | (b) $(a+b+c)^2 \Delta$                                                               | (C)           | $a\Delta + b\Delta^2$                     | (d)               | None of these                                        |
| 102.         | <i>P</i> (2, 1), <i>Q</i> (4, -1), <i>R</i> (3, 2) are<br>in <i>S</i> , then the area of <i>PQRS</i> | the vertices of a triangle and if thro<br>is                                         | ugh <i>P</i>  | and <i>R</i> lines parallel to opp        | osite             | e sides are drawn to intersect                       |
|              | (a) 6                                                                                                | (b) 4                                                                                | (C)           | 8                                         | (d)               | 12                                                   |
| 103.         | An equilateral triangle has e                                                                        | each side equal to <i>a</i> . If the coordinat                                       | es of i       | ts vertices are $(x_1, y_1); (x_2, y_1)$  | <sub>2</sub> );(x | $(y_3, y_3)$ , then the square of the                |
|              | determinant $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ e        | quals                                                                                |               |                                           |                   |                                                      |
|              | (a) 3 <i>a</i> <sup>4</sup>                                                                          | (b) $\frac{3a^4}{4}$                                                                 | (C)           | $4a^4$                                    | (d)               | None of these                                        |
| 104.         | Area of a $\triangle ABC = 20$ units<br><i>C</i> is                                                  | and its vertices $A$ and $B$ are (–5, 0) a                                           | and (3,       | 0) respectively. If its vertex            | <i>C</i> lie      | es on the line $x - y = 2$ , then<br>[IIT 1990]      |
|              | (a) (3, 5)                                                                                           | (b) (- 3, - 5)                                                                       | (C)           | (- 5, 7)                                  | (d)               | None of these                                        |
| 105.         | Point $P$ divides the line set                                                                       | egment joining $A(-5,1)$ and $B(3,5)$                                                | ) inte        | rnally in the ratio $ \lambda : 1  . $ lf | Q=                | =(1,5), R = (7,2) and area of                        |
|              | $\Delta PQR = 2$ , then $\lambda$ equals                                                             |                                                                                      |               |                                           |                   | [Kurukshetra CEE 1998]                               |
|              | (a) 23                                                                                               | (b) 31/9                                                                             | (C)           | 29/5                                      | (d)               | None of these                                        |
|              |                                                                                                      |                                                                                      |               |                                           |                   | Collinearity                                         |
|              |                                                                                                      | Basic L                                                                              | evel          | >                                         |                   |                                                      |
|              |                                                                                                      |                                                                                      |               |                                           |                   |                                                      |
| 106.         | Three points $(p+1,1),(2p+1)$                                                                        | 1,3) and $(2p+2,2p)$ are collinear if                                                | p =           |                                           |                   | [MP PET 1986]                                        |
|              | (a) – 1                                                                                              | (b) 1                                                                                | (C)           | 2                                         | (d)               | 0                                                    |
|              |                                                                                                      |                                                                                      |               |                                           |                   |                                                      |
| 107.         | If the points ( <i>a</i> , 0), (0, <i>b</i> ) and                                                    | d (1, 1) are collinear, then                                                         |               |                                           |                   |                                                      |
| 107.         | If the points ( <i>a</i> , 0), (0, <i>b</i> ) and                                                    | (1, 1) are collinear, then<br>(b) $\frac{1}{a^2} - \frac{1}{b^2} = 1$                | (C)           | $\frac{1}{a} + \frac{1}{b} = 1$           | (d)               | $\frac{1}{a} - \frac{1}{b} = 1$                      |
| 107.<br>108. | If the points ( <i>a</i> , 0), (0, <i>b</i> ) and<br>(a) $\frac{1}{a^2} + \frac{1}{b^2} = 1$         |                                                                                      | (c)           | $\frac{1}{a} + \frac{1}{b} = 1$           | (d)               | $\frac{1}{a} - \frac{1}{b} = 1$ [Rajasthan PET 1999] |

| 109. | If the points $(k, 2-2k)$ , $(1-k, 2k)$ and $(-k-4, 6-2k)$ be collinear, then the possible values of k are |                                                         |                |                             |         |                |                   |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|-----------------------------|---------|----------------|-------------------|--|--|--|--|
|      |                                                                                                            |                                                         |                |                             |         | [AMU 1978; Ra  | jasthan PET 1997] |  |  |  |  |
|      | (a) $\frac{1}{2}$ ,-1                                                                                      | (b) $1, -\frac{1}{2}$                                   | (C)            | 1,-2                        | (d)     | 2,-1           |                   |  |  |  |  |
| 110. | If the points (–5, 1), ( <i>p</i> , 5) an                                                                  | d (10, 7) are collinear, then the value                 | of <i>p</i> v  | will be                     |         |                | [MP PET 1984]     |  |  |  |  |
|      | (a) 5                                                                                                      | (b) 3                                                   | (C)            | 4                           | (d)     | 7              |                   |  |  |  |  |
| 111. | If the points (-2, -5), (2, -2)                                                                            | (8,a) are collinear, then the value c                   | of <i>a</i> is |                             |         |                | [MP PET 2002]     |  |  |  |  |
|      | (a) $-\frac{5}{2}$                                                                                         | (b) $\frac{5}{2}$                                       | (C)            | $\frac{3}{2}$               | (d)     | $\frac{1}{2}$  |                   |  |  |  |  |
| 112. | If the points (5, 5), (10, <i>K</i> ) an                                                                   | d (–5, 1) are collinear, then $K =$                     |                | [MP PET                     | 1994, 1 | 999; Rajasthan | PET 2003]         |  |  |  |  |
|      | (a) 3                                                                                                      | (b) 5                                                   | (C)            | 7                           | (d)     | 9              |                   |  |  |  |  |
| 113. | The points $(-a, -b), (a, b), (a^2)$                                                                       | ( <i>,ab</i> ) are                                      |                |                             |         |                |                   |  |  |  |  |
|      | (a) Vertices of an equilater                                                                               | al triangle                                             | (b)            | Vertices of a right angled  | l trian | gle            |                   |  |  |  |  |
|      | (c) Vertices of an isosceles                                                                               | triangle                                                | (d)            | Collinear                   |         |                |                   |  |  |  |  |
| 114. | The points (3 <i>a</i> ,0),(0,3 <i>b</i> ) an                                                              | d ( <i>a</i> ,2 <i>b</i> ) are                          |                |                             |         |                | [MP PET 1982]     |  |  |  |  |
|      | (a) Vertices of an equilate                                                                                | ral triangle                                            | (b)            | Vertices of an isosceles tr | riangle | <u>j</u>       |                   |  |  |  |  |
|      | (c) Vertices of a right angle                                                                              | ed isosceles triangle                                   | (d)            | Collinear                   |         |                |                   |  |  |  |  |
| 115. | The points ( <i>a, b</i> ), ( <i>c, d</i> ) and                                                            | $\left(\frac{kc+la}{k+l}, \frac{kd+lb}{k+l}\right)$ are |                |                             |         |                |                   |  |  |  |  |
|      | (a) Vertices of an equilater                                                                               | al triangle                                             | (b)            | Vertices of an isosceles th | riangle | <u>j</u>       |                   |  |  |  |  |
|      | (c) Vertices of a right angle                                                                              | ed triangle                                             | (d)            | Collinear                   |         |                |                   |  |  |  |  |
|      |                                                                                                            | Advance                                                 | Leve           |                             |         |                |                   |  |  |  |  |

- **116.** *A*, *B*, *C* are the points (*a*, *p*), (*b*, *q*) and (*c*, *r*) respectively such that *a*, *b*, *c* are in A.P. and *p*, *q*, *r* in G.P. If the points are collinear, then
  - (a) p = q = r (b)  $p^2 = q$  (c)  $q^2 = r$  (d)  $r^2 = p$

**117.** *A*, *B*, *C* are three collinear points such that *AB* = 2.5 and the co-ordinates of *A* and *C* are respectively (3, 4) and (11, 10), then the co-ordinates of the point *B* are

(a)  $\left(5,\frac{11}{2}\right)$  (b)  $\left(5,\frac{5}{2}\right)$  (c)  $\left(1,\frac{11}{2}\right)$  (d)  $\left(1,\frac{5}{2}\right)$ 

**118.** The points (x, 2x), (2y, y) and (3, 3) are collinear

- (a) For all values of (x, y) (b) 2 is A.M. of x, y (c) 2 is G.M. of x, y (d) 2 is H.M. of x, y
- **119.** If  $t_1, t_2$  and  $t_3$  are distinct, the points  $(t_1, 2at_1 + at_1^3), (t_2, 2at_2 + at_2^3)$  and  $(t_3, 2at_3 + at_3^3)$  are collinear if

|           | (a) $t_1 t_2 t_3 = -1$                                    | (b) $t_1 + t_2 + t_3 = t_1 t_2 t_3$                                          | (c) $t_1 + t_2 + t_3 = 0$                                   | (d) $t_1 + t_2 + t_3 = -1$                                 |
|-----------|-----------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| 120.      | The points $(-a, -b), (0, 0)$                             | )), $(a,b)$ and $(a^2,ab)$ are                                               | [IIT 1979; Kurukshetra CEE 1993; Jan                        | nia Millia Entrance Exam. 2001]                            |
|           | (a) Collinear                                             | (b) Vertices of a rectangle                                                  | (c) Vertices of a parallelo                                 | gram (d) None of these                                     |
|           |                                                           |                                                                              |                                                             | Transformation of Axes                                     |
|           |                                                           | Basi                                                                         | ic Level                                                    |                                                            |
|           |                                                           |                                                                              |                                                             |                                                            |
| 121.      | The new coordinates of                                    | a point (4, 5), when the origin is shift                                     | ted to the point (1, $-2$ ) are                             | [MNR 1988; IIT 1989; UPSEAT 2000                           |
|           | (a) (5, 3)                                                | (b) (3, 5)                                                                   | (c) (3, 7)                                                  | (d) None of these                                          |
| 122.      | The co-ordinate axes a                                    | are rotated through an angle 135°.                                           | If the co-ordinates of a point P                            | in the new system are known to b                           |
|           | (4, -3), then the co-or                                   | dinates of <i>P</i> in the original system are                               |                                                             | [EAMCET 200                                                |
|           | (a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ | (b) $\left(\frac{1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$                   | (c) $\left(\frac{-1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$ | (d) $\left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ |
| 123.      | If the axes be rotated th                                 | nrough an angle of $60^{o}$ in the clockw                                    | vise direction, the point (4, 2) in t                       | he new system was formally                                 |
|           | (a) $(2-\sqrt{3}, 2\sqrt{3}+1)$                           | (b) $(2+\sqrt{3}, -2\sqrt{3}+1)$                                             | (c) $(2-\sqrt{3},1-2\sqrt{3})$                              | (d) None of these                                          |
|           |                                                           | Advar                                                                        | nce Level                                                   |                                                            |
| 124.      |                                                           | direction of coordinate axes origin<br>6y - 7 = 0 are eliminated. Then the p |                                                             | the linear (one degree) terms in th                        |
|           | (a) (3, 2)                                                | (b) (- 3, 2)                                                                 | (c) (2, – 3)                                                | (d) None of these                                          |
| 125.      | The point (4, 1) undergo                                  | pes the following two successive trans                                       | formations                                                  |                                                            |
|           | (i) reflection about the                                  | ine $y = x$                                                                  |                                                             |                                                            |
|           | (ii) rotation through a c                                 | istance 2 units along the positive $x$ -ax                                   | kis                                                         |                                                            |
|           | Then the final coordina                                   | tes of the point are                                                         |                                                             |                                                            |
|           | (a) (4, 3)                                                | (b) (3, 4)                                                                   | (c) (1, 4)                                                  | (d) (7/2, 7/2)                                             |
|           |                                                           |                                                                              |                                                             |                                                            |
| $\square$ |                                                           |                                                                              |                                                             | Locus                                                      |

- **126.** Two points A and B have coordinates (1, 0) and (-1, 0) respectively and Q is a point which satisfies the relation  $AQ BQ = \pm 1$ . The<br/>locus of Q is**[MP PET 1986]** 
  - (a)  $12x^2 + 4y^2 = 3$  (b)  $12x^2 4y^2 = 3$  (c)  $12x^2 4y^2 + 3 = 0$  (d)  $12x^2 + 4y^2 + 3 = 0$
- 127. A point moves such that the sum of its distances from two fixed points (*ae*, 0) and (–*ae*, 0) is always 2*a*. Then equation of its locus is

#### [MNR 1981]

(a) 
$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$
 (b)  $\frac{x^2}{a^2} - \frac{y^2}{a^2(1-e^2)} = 1$  (c)  $\frac{x^2}{a^2(1-e^2)} + \frac{y^2}{a^2} = 1$  (d) None of these

- **128.** The locus of a point whose distance from the point (-g,-f) is always 'a', will be (where  $k = g^2 + f^2 a^2$ )
  - (a)  $x^2 + y^2 + 2gx + 2fy + k = 0$ (b)  $x^2 - y^2 + 2gx + 2fy + k = 0$ (c)  $x^2 + y^2 + 2xy + 2gx + 2fy + k = 0$ (d) None of these
- **129.** The coordinates of the points A and B are (a, 0) and (-a, 0) respectively. If a point *P* moves so that  $PA^2 PB^2 = 2k^2$ , when *k* is a constant, then the equation to the locus of the point *P* is
  - (a)  $2ax k^2 = 0$  (b)  $2ax + k^2 = 0$  (c)  $2ay k^2 = 0$  (d)  $2ay + k^2 = 0$
- 130. If the distance of any point P from the points A(a+b, a-b) and B(a-b, a+b) are equal, then the locus of P is

#### [Karnataka CET 2003]

|              | (a) $x - y = 0$                                                                       | (b) $ax + by = 0$                                                      | (C)                         | bx - ay = 0                                                               | (d)              | x + y = 0                           |
|--------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------|
| 131.         | The locus of a point whose of                                                         | difference of distance from points (3,                                 | 0) an                       | d (-3, 0) is 4, is                                                        |                  | [MP PET 2002]                       |
|              | (a) $\frac{x^2}{4} - \frac{y^2}{5} = 1$                                               | (b) $\frac{x^2}{5} - \frac{y^2}{4} = 1$                                | (c)                         | $\frac{x^2}{2} - \frac{y^2}{3} = 1$                                       | (d)              | $\frac{x^2}{3} - \frac{y^2}{2} = 1$ |
| 132.         | If A and B are two fixed poir                                                         | ts in a plane and $PA - PB = constant$                                 | int, th                     | en the locus of <i>P</i> is                                               |                  |                                     |
|              | (a) Hyperbola                                                                         | (b) Circle                                                             | (C)                         | Parabola                                                                  | (d)              | Ellipse                             |
| 133.         | If A and B are two points in                                                          | a plane, so that $PA + PB = constant$ ,                                | then                        | the locus of <i>P</i> is                                                  |                  | [MNR 1991]                          |
|              | (a) Hyperbola                                                                         | (b) Circle                                                             | (C)                         | Parabola                                                                  | (d)              | Ellipse                             |
| 134.         | The equation of the locus of                                                          | f all points equidistant from the point                                | (4, 2                       | ) and the <i>x</i> -axis, is                                              |                  | [Kurukshetra CEE 1993]              |
|              |                                                                                       |                                                                        |                             |                                                                           |                  |                                     |
|              | (a) $x^2 + 8x + 4y - 20 = 0$                                                          | (b) $x^2 - 8x - 4y + 20 = 0$                                           | (C)                         | $y^2 - 4y - 8x + 20 = 0$                                                  | (d)              | None of these                       |
| 135.         |                                                                                       | (b) $x^2 - 8x - 4y + 20 = 0$<br>noves so that it is always equidistant |                             |                                                                           |                  |                                     |
| 135.         |                                                                                       |                                                                        |                             |                                                                           | a, 0)            | is                                  |
| 135.         | The locus of a point which n                                                          |                                                                        | from                        | the points $A(a,0)$ and $B(\neg$                                          | a, 0)            | is                                  |
| 135.<br>136. | The locus of a point which n<br>(a) A circle<br>(c) A line parallel to <i>x</i> -axis |                                                                        | from<br>(b)<br>(d)          | the points $A(a, 0)$ and $B(-$<br>Perpendicular bisector of None of these | a, 0)<br>the lii | is<br>ne segment <i>AB</i>          |
|              | The locus of a point which n<br>(a) A circle<br>(c) A line parallel to <i>x</i> -axis | noves so that it is always equidistant                                 | from<br>(b)<br>(d)<br>is do | the points $A(a, 0)$ and $B(-$<br>Perpendicular bisector of None of these | a, 0)<br>the lin | is<br>ne segment <i>AB</i>          |

then the equation to the locus of P is

|              | (a) $4x - 3y = 0$                                                                                                                                                                                                                                                                     | (b) $4x + 3y = 0$                                                                                                                                                                                                                                                         | (C)                                                         | 3x + 4y = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d)  3x - 4y = 0                                                                                                                |                                                                                  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 138.         | If A and B are two fixed po<br>point <i>P</i> is                                                                                                                                                                                                                                      | pints in a plane and $P$ is another var                                                                                                                                                                                                                                   | riable p                                                    | point such that $PA^2 + PB^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = constant, then the                                                                                                            | ne locus of the                                                                  |
|              | (a) Hyperbola                                                                                                                                                                                                                                                                         | (b) Circle                                                                                                                                                                                                                                                                | (C)                                                         | Parabola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) Ellipse                                                                                                                     |                                                                                  |
| 139.         | If sum of distances of a poir                                                                                                                                                                                                                                                         | t from the origin and line $x = 2$ is 4                                                                                                                                                                                                                                   | 1, then                                                     | its locus is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [Raj                                                                                                                            | asthan PET 1997]                                                                 |
|              | (a) $x^2 - 12y = 36$                                                                                                                                                                                                                                                                  | (b) $y^2 + 12x = 36$                                                                                                                                                                                                                                                      | (C)                                                         | $y^2 - 12x = 36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) $x^2 + 12y = 36$                                                                                                            | 5                                                                                |
| 140.         | The coordinates of the poir                                                                                                                                                                                                                                                           | tts <i>A</i> and <i>B</i> are ( <i>ak</i> ,0) and $\left(\frac{a}{k}, 0\right)$ ,                                                                                                                                                                                         | $(k = \pm$                                                  | 1). If a point $P$ moves so the function of the point $P$ moves so the point $P$ moves be the point of the point $P$ moves be the point $P$ moves $P$ moves $P$ | hat $PA = k PB$ , the                                                                                                           | n the equation                                                                   |
|              | to the locus of Pis                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
|              | (a) $k^2(x^2+y^2)-a^2=0$                                                                                                                                                                                                                                                              | (b) $x^2 + y^2 - k^2 a^2 = 0$                                                                                                                                                                                                                                             | (C)                                                         | $x^2 + y^2 + a^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) $x^2 + y^2 - a^2 =$                                                                                                         | = 0                                                                              |
| 141.         |                                                                                                                                                                                                                                                                                       | f a point whose distance from ( <i>a</i> , 0) i                                                                                                                                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
|              | $(a)  y^2 - 2ax = a^2$                                                                                                                                                                                                                                                                | (b) $y^2 - 2ax + a^2 = 0$                                                                                                                                                                                                                                                 | (C)                                                         | $y^2 + 2ax + a^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(d)  y^2 + 2ax = a^2$                                                                                                          | 2                                                                                |
| 142.         |                                                                                                                                                                                                                                                                                       | tersection of lines $x \cos \alpha + y \sin \alpha = a$                                                                                                                                                                                                                   |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
|              |                                                                                                                                                                                                                                                                                       | (b) $x^2 - y^2 = a^2 - b^2$                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
| 143.         | Two points A and B move same. The locus of the mide                                                                                                                                                                                                                                   | on the <i>x</i> - axis and the <i>y</i> -axis respec<br>dle point of <i>AB</i> is                                                                                                                                                                                         | tively s:                                                   | uch that the distance betw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | veen the two point                                                                                                              | s is always the                                                                  |
|              | (a) A straight line                                                                                                                                                                                                                                                                   | (b) A circle                                                                                                                                                                                                                                                              | (C)                                                         | A parabola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) An ellipse                                                                                                                  |                                                                                  |
|              |                                                                                                                                                                                                                                                                                       | Advance                                                                                                                                                                                                                                                                   | e Level                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
|              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
| 144.         | The locus of <i>P</i> such that are                                                                                                                                                                                                                                                   | a of $\Delta PAB = 12 sq$ . units, where $A(2$                                                                                                                                                                                                                            | 2,3) an                                                     | d <i>B</i> (-4, 5) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                 | [EAMCET 1989]                                                                    |
|              | (a) $(x+3y-1)(x+3y-23)$                                                                                                                                                                                                                                                               | b) = 0                                                                                                                                                                                                                                                                    | (b)                                                         | (x+3y+1)(x+3y-23) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                               |                                                                                  |
|              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                  |
| 145          | (c) $(3x+y-1)(3x+y-23)$                                                                                                                                                                                                                                                               | 0 = 0                                                                                                                                                                                                                                                                     | (d)                                                         | (3x + y + 1)(3x + y + 23) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                               |                                                                                  |
| 145.         |                                                                                                                                                                                                                                                                                       | 0 = 0<br>ingle whose vertices are $(a\cos t, a\sin t)$                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 | s [AIEEE 2003]                                                                   |
| 145.         |                                                                                                                                                                                                                                                                                       | ngle whose vertices are $(a\cos t, a\sin t)$                                                                                                                                                                                                                              | <i>t</i> ),( <i>b</i> sin                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 | s [AIEEE 2003]                                                                   |
| 145.         | Locus of centroid of the tria                                                                                                                                                                                                                                                         | ngle whose vertices are $(a\cos t, a\sin t)$                                                                                                                                                                                                                              | <i>t</i> ),( <i>b</i> sin<br>(b)                            | $(t, -b\cos t)$ and (1, 0), where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 | 5 [AIEEE 2003]                                                                   |
| 145.         | Locus of centroid of the tria<br>(a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$<br>(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$                                                                                                                                                                           | ngle whose vertices are $(a\cos t, a\sin t)$                                                                                                                                                                                                                              | <i>t</i> ),( <i>b</i> sin<br>(b)<br>(d)                     | $at, -b\cos t$ and (1, 0), where<br>$(3x-1)^2 + (3y)^2 = a^2 + b^2$<br>$(3x+1)^2 + (3y)^2 = a^2 - b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e <i>t</i> is a parameter i                                                                                                     |                                                                                  |
|              | Locus of centroid of the tria<br>(a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$<br>(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$<br>If <i>A</i> is (2, 5), <i>B</i> is (4, -11) and                                                                                                                        | ingle whose vertices are $(a\cos t, a\sin t)$<br>$b^2$<br>$b^2$<br>d C lies on $9x + 7y + 4 = 0$ , then the                                                                                                                                                               | t),(b sin<br>(b)<br>(d)<br>Hocus d                          | $(3x - 1)^2 + (3y)^2 = a^2 + b^2$<br>$(3x + 1)^2 + (3y)^2 = a^2 - b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e <i>t</i> is a parameter i<br>C is a straight line                                                                             | parallel to the<br>[MP PET 1986]                                                 |
|              | Locus of centroid of the tria<br>(a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$<br>(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$<br>If <i>A</i> is (2, 5), <i>B</i> is (4, -11) and<br>straight line<br>(a) $7x - 9y + 4 = 0$                                                                              | ingle whose vertices are $(a\cos t, a\sin t)$<br>$b^2$<br>$b^2$<br>d C lies on $9x + 7y + 4 = 0$ , then the                                                                                                                                                               | <i>t</i> ),( <i>b</i> sin<br>(b)<br>(d)<br>+ locus (<br>(c) | at, $-b\cos t$ ) and (1, 0), where<br>$(3x-1)^2 + (3y)^2 = a^2 + b^2$<br>$(3x+1)^2 + (3y)^2 = a^2 - b^2$<br>of the centroid of the $\triangle ABc$<br>9x + 7y + 4 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e <i>t</i> is a parameter i<br><i>C</i> is a straight line<br>(d) $7x + 9y + 4 =$                                               | parallel to the<br>[MP PET 1986]                                                 |
| 146.         | Locus of centroid of the tria<br>(a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$<br>(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$<br>If <i>A</i> is (2, 5), <i>B</i> is (4, -11) and<br>straight line<br>(a) $7x - 9y + 4 = 0$<br>Two fixed points are <i>A</i> ( <i>a</i> , 0)                             | angle whose vertices are $(a\cos t, a\sin t)$<br>$b^2$<br>$b^2$<br>d C lies on $9x + 7y + 4 = 0$ , then the<br>(b) $9x - 7y - 4 = 0$                                                                                                                                      | t),(b sin<br>(b)<br>(d)<br>(c)<br>(c)                       | at, $-b \cos t$ ) and (1, 0), where<br>$(3x - 1)^2 + (3y)^2 = a^2 + b^2$<br>$(3x + 1)^2 + (3y)^2 = a^2 - b^2$<br>of the centroid of the $\triangle ABc$<br>9x + 7y + 4 = 0<br>cus of point <i>C</i> of triangle <i>A</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e <i>t</i> is a parameter i<br><i>C</i> is a straight line<br>(d) $7x + 9y + 4 =$<br><i>BC</i> will be                          | parallel to the<br>[MP PET 1986]<br>0<br>[Roorkee 1982]                          |
| 146.         | Locus of centroid of the tria<br>(a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$<br>(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$<br>If <i>A</i> is (2, 5), <i>B</i> is (4, -11) and<br>straight line<br>(a) $7x - 9y + 4 = 0$<br>Two fixed points are $A(a, 0)$<br>(a) $x^2 + y^2 + 2xy \tan \theta = a^2$ | angle whose vertices are $(a\cos t, a\sin t)$<br>$b^2$<br>$b^2$<br>d C lies on $9x + 7y + 4 = 0$ , then the<br>(b) $9x - 7y - 4 = 0$<br>and $B(-a, 0)$ . If $\angle A - \angle B = \theta$ , then                                                                         | t),(b sin<br>(b)<br>(d)<br>(c)<br>(c)<br>(c)                | at, $-b \cos t$ ) and (1, 0), where<br>$(3x - 1)^2 + (3y)^2 = a^2 + b^2$<br>$(3x + 1)^2 + (3y)^2 = a^2 - b^2$<br>of the centroid of the $\triangle ABd$<br>9x + 7y + 4 = 0<br>cus of point <i>C</i> of triangle <i>A</i><br>$x^2 + y^2 + 2xy \cot \theta = a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e <i>t</i> is a parameter i<br><i>C</i> is a straight line<br>(d) $7x + 9y + 4 =$<br><i>BC</i> will be<br>(d) $x^2 - y^2 + 2xy$ | parallel to the<br>[MP PET 1986]<br>0<br>[Roorkee 1982]<br>$r \cot \theta = a^2$ |
| 146.<br>147. | Locus of centroid of the tria<br>(a) $(3x-1)^2 + (3y)^2 = a^2 - b^2$<br>(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$<br>If <i>A</i> is (2, 5), <i>B</i> is (4, -11) and<br>straight line<br>(a) $7x - 9y + 4 = 0$<br>Two fixed points are $A(a, 0)$<br>(a) $x^2 + y^2 + 2xy \tan \theta = a^2$ | angle whose vertices are $(a\cos t, a\sin t)$<br>$b^{2}$<br>$b^{2}$<br>$d \in lies \text{ on } 9x + 7y + 4 = 0$ , then the<br>(b) $9x - 7y - 4 = 0$<br>and $B(-a, 0)$ . If $\angle A - \angle B = \theta$ , then<br>$a^{2}$ (b) $x^{2} - y^{2} + 2xy \tan \theta = a^{2}$ | t),(b sin<br>(b)<br>(d)<br>(c)<br>(c)<br>(c)                | at, $-b \cos t$ ) and (1, 0), where<br>$(3x - 1)^2 + (3y)^2 = a^2 + b^2$<br>$(3x + 1)^2 + (3y)^2 = a^2 - b^2$<br>of the centroid of the $\triangle ABd$<br>9x + 7y + 4 = 0<br>cus of point <i>C</i> of triangle <i>A</i><br>$x^2 + y^2 + 2xy \cot \theta = a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e <i>t</i> is a parameter i<br><i>C</i> is a straight line<br>(d) $7x + 9y + 4 =$<br><i>BC</i> will be<br>(d) $x^2 - y^2 + 2xy$ | parallel to the<br>[MP PET 1986]<br>0<br>[Roorkee 1982]<br>$r \cot \theta = a^2$ |

|      | (a) $x^2 + y^2 = 2a^2$                                       | (b) $x^2 - y^2 = a^2$                                       | (c) $x^2 + y^2 + a^2 = 0$               | (d) $x^2 + y^2 = a^2$                                       |
|------|--------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|
| 149. | The coordinates of the poi                                   | nts <i>O</i> , <i>A</i> and <i>B</i> are (0, 0), (0, 4) and | l (6, 0) respectively. If a point       | $P$ moves such that the area of $\Delta POA$ is             |
|      | always twice the area of $\Delta$                            | POB , then the equation to both p                           | arts of the locus of <i>P</i> is        | [IIT 1964]                                                  |
|      | (a) $(x-3y)(x+3y) = 0$                                       | (b) $(x-3y)(x+y) = 0$                                       | (c) $(3x-y)(3x+y) = 0$                  | ) (d) None of these                                         |
| 150. | A stick of length / rests ag<br>point is                     | ainst the floor and a wall of a roor                        | n. If the stick begins to slide         | on the floor, then the locus of its middle                  |
|      | (a) A straight line                                          | (b) Circle                                                  | (c) Parabola                            | (d) Ellipse                                                 |
| 151. | Given the points $A(0,4)$ a                                  | nd $B(0, -4)$ . Then the equation of                        | the locus of the point $P(x, y)$        | ) such that $ AP - BP  = 6$ , is                            |
|      |                                                              |                                                             |                                         | [IIT 1983; MP PET 1994]                                     |
|      | (a) $\frac{x^2}{7} + \frac{y^2}{9} = 1$                      | (b) $\frac{x^2}{9} + \frac{y^2}{7} = 1$                     | (c) $\frac{x^2}{7} - \frac{y^2}{9} = 1$ | (d) $\frac{y^2}{9} - \frac{x^2}{7} = 1$                     |
| 152. | If $P = (1, 0), Q = (-1, 0)$ and                             | R = (2,0) are three given points,                           | then the locus of a point $S$           | satisfying the relation $SQ^2 + SR^2 = 2SP^2$               |
|      | is                                                           |                                                             |                                         |                                                             |
|      |                                                              |                                                             |                                         | [IIT 1988]                                                  |
|      | (a) A straight line paralle                                  | to <i>x</i> -axis                                           | (b) A circle through o                  | rigin                                                       |
|      | (c) A circle with centre at                                  | the origin                                                  | (d) A straight line para                | allel to y-axis                                             |
| 153. | The locus of a point which                                   | moves in such a way that its distar                         | nce from (0, 0) is three times          | its distance from the <i>x</i> -axis, as given by           |
|      |                                                              |                                                             |                                         | [MP PET 1993]                                               |
|      | (a) $x^2 - 8y^2 = 0$                                         | (b) $x^2 + 8y^2 = 0$                                        | (c) $4x^2 - y^2 = 0$                    | (d) $x^2 - 4y^2 = 0$                                        |
| 154. | A(a,0) and $B(-a,0)$ are to                                  | vo fixed points of triangle ABC. T                          | he vertex <i>C</i> moves in such a      | way that $\cot A + \cot B = \lambda$ , where $\lambda$ is a |
|      | constant. Then the locus o                                   | f the point <i>C</i> is                                     |                                         | [MP PET 1981]                                               |
|      | (a) $y \lambda = 2a$                                         | (b) $ya = 2\lambda$                                         | (c) $y = \lambda a$                     | (d) None of these                                           |
| 155. | A line of fixed length (a +<br>divides this line into portio |                                                             | ways on two fixed perpendi              | cular lines. The locus of the point which                   |

divides this line into portions of lengths a and b is(a) A circle(b) An ellipse(c) A hyperbola(d) None of these

\*\*\*



Assianment (Basic and Advance Level)

| 1     | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| а     | С   | С   | С   | d   | а   | b   | d   | b   | d   | b   | b   | а   | d   | С   | С   | b   | С   | С   | С   |
| 21    | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| С     | С   | С   | b   | а   | b   | b   | b   | а   | b   | b   | С   | d   | b   | С   | d   | d   | b   | С   | b   |
| 41    | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| b     | С   | b   | b   | С   | С   | а   | С   | а   | С   | С   | d   | С   | а   | а   | а   | С   | С   | а   | b   |
| 61    | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| С     | а   | С   | а   | a,c | b   | С   | b   | а   | d   | а   | b   | b   | b   | а   | С   | а   | а   | а   | b   |
| 81    | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| a,c,d | b   | С   | d   | а   | b   | d   | b   | а   | а   | d   | d   | а   | а   | а   | а   | С   | d   | С   | С   |
| 101   | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| b     | b   | b   | b   | а   | С   | С   | а   | а   | а   | b   | С   | d   | d   | d   | а   | а   | d   | С   | а   |
| 121   | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| С     | d   | b   | С   | b   | b   | а   | а   | b   | а   | а   | а   | d   | b   | b   | b   | а   | b   | b   | d   |

## Indices and Surds 27

| 141 | 142 | 143 |   |   |   |   |   |   |   |   |   |   |   | 155 |
|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|-----|
| b   | С   | b   | b | b | С | d | d | а | b | d | d | а | а | b   |