HEAD LOSS

Darcy-weisbach Formula

 $H_L = \frac{fLV^2}{2gD}$

where, H₁ = Head loss in meters.

L = Length of pipe in metres.

d = Diameter of the pipe in metres

V = Mean velocity of flow through the pipe in m/sec.

g = Acceleration due to gravity (m/s².)

f = Friction factor.

= 0.02 for new smooth pipes

= 0.075 for old rough pipes.

$$f = 0.04 \left[1 + \frac{1}{35d} \right] \rightarrow \text{for old pipes.}$$

$$f = 0.02 \left[1 + \frac{1}{35d} \right] \rightarrow \text{ for new pipes.}$$

$$f = a + \frac{b}{R_e^m}$$

where a, b and m are constants depending upon R_a and δ .

Re = Revnolds number

and δ = Relative roughness.

For laminar flow $(R_e \le 2000)$

D = Dia of pipe (m)

For turbulent flow (R_e ≥ 4000)

(i)
$$\frac{1}{\sqrt{f}} = 2 \log_{10} R_e \sqrt{f} - 0.8$$
 \rightarrow for smooth pipe

(ii)
$$\frac{1}{\sqrt{f}} = 2 \log_{10} \left(\frac{R}{k} \right) + 1.74 \rightarrow \text{for rough pipe}$$

where,
$$R = Radius of pipe = \frac{D}{2}$$

HAZEN-WILLIAM'S FORMULA

$$V = 0.85C_{H} \cdot R^{0.63} \cdot S^{0.54}$$

where, $C_H = Coefficient of hydraulic capacity$

R = Hydraulic mean depth of pipes in metres

 $=\frac{d}{d}$ for circular pipes flowing full

S = Slope of the energy lines.

V = Flow velocity through the pipe in m/sec.

Pipe material	Value of C _H Depending upon the smoothness of the pipe material
Concrete (regardless of age) Cast Iron	130
New	130
5 years old	120 sien
20 years old	100
Welded steel (New)	120
Riveted steel (New)	110
Vitrified clay	110
Brick Sewers	100
Asbestos-Cement	140

MODIFIED HAZEN-WILLIAM'S FORMULA

$$V = \frac{3.83C_{R}[d^{0.6575}(g.s)^{0.5525}]}{v^{0.105}}$$

where, C_R = Dimensionless coefficient of roughness.

d = Pipe diameter.

g = Acceleration due to gravity.

 $= 9.81 \text{ m/s}^2$.

 $s = Friction slope = \frac{H_L}{I}$.

v = Viscosity of liquid.

 $V = 143.534C_R \cdot R^{0.6575} \cdot S^{0.5525}$

R = Hydraulic radius or hydraulic mean depth = $\frac{A}{R}$

MANNINGS FORMULA

$$H_L = \frac{n^2 \cdot V^2 \cdot L}{(R)^{4/3}}$$

where, η =Mannings rugosity coefficient.

L = Length of pipe in metres.

V = Flow velocity (m/s).

 $R = \frac{A}{P} = \frac{d}{H}$ for circular pipe.

FORCES ACTING ON PRESSURE CONDUITS

(i) Hoop tension or circumferential tension (σ)

$$\sigma = \frac{PD}{2t}$$

PD where, P = Total internal pressure including the full static water pressure and water hammer pressure

d = Diameter of the pipe in metres

t = Thickness of the pipe in metres.

(ii) Water Hammer Pressure

$$P_{h(maximum)} = \delta_w U_P \cdot V$$

where,

 $P_{h(maximum)} = Maximum$ water hammer pressure developed in N/m².

U_P = Velocity of the pressure wave generated.

 $\delta_{w} = \text{Density of water } \begin{pmatrix} \gamma_{w}/g \end{pmatrix}$.

 γ_w = Unit wt. of water = 9.81 kN/m³.

V = Velocity of water in the pipe.

$$U_{P} = \sqrt{\frac{E_{w}}{\delta_{w}}} \cdot \frac{1}{\sqrt{1 + \frac{E_{w}}{E_{P}} \cdot \frac{d}{t}}}$$

where, E_w = Modulus of elasticity of water or Bulk modulus of compression of water

E_p=Modulus of elasticity of pipe material.

d = Diameter of pipe

t = Thickness of the pipe shell

 $\delta_{\rm w}$ = Density of water.

$$P_{h(\text{maximum})} = \frac{1433V}{\sqrt{1 + \frac{k \cdot d}{t}}} kN/m^2$$

where,
$$k = \frac{E_W}{E_P}$$

$$P_h = (P_h)_{maximum} \cdot \left(\frac{T_C}{T}\right)$$
 where, $T_C = Critical time$
 $T = Actual time of closure.$

• $T_C = \frac{2\delta}{U_P}$ where, s = Distance of the value from the reservoir.