

Equation of Pair of Straight lines

Basic Level

1.	The values of <i>h</i> for wh	sich the equation $3x^2 + 2hxy - 3$	$3y^2 - 40x + 30y - 75 = 0$ represent	s a pair of straight lir	nes, are[MP PI					
	(a) 4, 4	(b) 4, 6	(c) 4, -4	(d) 0, 4						
2.	Which of the followin	g second degree equation rep	resents a pair of straight lines	[MP P	ET 1990]					
	(a) $x^2 - xy - y^2 = 1$	(b) $-x^2 + xy - y^2 = 1$	(c) $4x^2 - 4xy + y^2 = 4$	(d) $x^2 + y^2 = 4$						
3.	The equation $2y^2 - xy$	$-x^2 + 6x - 8 = 0$ represents		[MP P	ET 1992]					
	(a) A pair of straight	lines (b)	A circle	(c) An ellipse	(d)					
4.	One of the lines represented by the equation $x^2 + 6xy = 0$ is									
	(a) Parallel to x -axis	(b) Parallel to y -axis	(c) <i>x</i> -axis	(d) y-axis						
5.	The equation $x^2 - 7xy$	$+12y^2 = 0$ represents a		[Ranchi I	BIT 1991]					
	(a) Circle		(b) Pair of parallel straig	ht lines						
	(c) Pair of perpendicularity	ılar straight lines	(d) Pair of non-perpend	(d) Pair of non-perpendicular intersecting straight						
6.	The equation $y^2 - x^2 +$	2x-1=0 represents		[M	NR 1991]					
	(a) A pair of straight	lines (b)	A circle	(c) A parabola	(d)					
7.	If the equation $\lambda x^2 + 2y^2 - 5xy + 5x - 7y + 3 = 0$ represents two straight lines, then the value of λ will be									
	(a) 3	(b) 2	(c) 8	(d) - 8						
8.	The joint equation of t	the straight lines $x + y = 1$ and	x - y = 4 is							
	(a) $x^2 - y^2 = -4$	(b) $x^2 - y^2 = 4$	(c) $(x+y-1)(x-y-4)=0$	(d) $(x+y+1)(x-y+1)$	4) = 0					
9.	The value of λ for which the equation $x^2 - \lambda xy + 2y^2 + 3x - 5y + 2 = 0$ may represent a pair of straight lines is									
				[Kurukshetra C	EE 1996]					
	(a) 2	(b) 3	(c) 4	(d) 1						
10.	$2x^2 + 7xy + 3y^2 + 8x + 14$	$4y + \lambda = 0$ will represent a pair	of straight lines, when $\lambda =$	[MP P	ET 1996]					
	(a) 2	(b) 4	(c) 6	(d) 8						
11.	If $Lx^2 - 10xy + 12y^2 + 5$	x - 16y - 3 = 0 represents a pair	of straight line, then L is	[MP P	ET 2001]					
	(a) 1	(b) 2	(c) 3	(d) -1						
12.	Separate equations of	lines, for a pair of lines, whos	se equation is $x^2 + xy - 12y^2 = 0$,	are						
	(a) $x + 4y = 0$ and $x + 3$	3y = 0	(b) $2x - 3y = 0$ and $x - 4y = 0$							
	(c) $x - 6y = 0$ and $x - 3$	3y = 0	(d) $x + 4y = 0$ and $x - 3y = 0$							
13.	If the equation $2x^2 + 7$	$xy + 3y^2 - 9x - 7y + k = 0 \text{ representation}$	ents a pair of lines, then k is eq	ıual to						
	(a) 4	(b) 2	(c) 1	(d) - 4						
14.	If equation $3x^2 + xy - y$	$y^2 - 3x + 6y + k = 0 \text{ represents a}$	pair of lines, then k is equal to	[Karnataka C	ET 2002]					
	(a) 9	(b) 1	(c) 0	(d) - 9						

15.	Equation $3x^2 + 7xy + 2y^2$	$x^{2} + 5x + 3y + 2 = 0$ represents		[UPSEAT 2002]
	(a) Pair of straight line	s (b) Ellipse	(c) Hyperbola	(d) None of these
16.	For what value of $'p'$,	$y^2 + xy + px^2 - x - 2y = 0$ represen	ts two straight lines	[UPSEAT 2002]
	(a) 2	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$
17.	If $6x^2 + 11xy - 10y^2 + x +$	31y + k = 0 represents a pair of s	straight lines, then $k =$	[MP PET 1991]
•	(a) -15	(b) 6	(c) -10	(d) -4
18.	If the equation $x^2 + y^2$	+2gx + 2fy + 1 = 0 represents a pa	ir of lines, then	[Karnataka CET 1999]
	(a) $g^2 - f^2 = 1$	(b) $f^2 - g^2 = 1$	(c) $g^2 + f^2 = 1$	(d) $f^2 + g^2 = 1/2$
19.		$-y^2 - 5x - 7y + 6 = 0$ represents a		
	ź	10		
	(a) $\frac{5}{3}$	(b) $\frac{10}{3}$	(c) $\frac{3}{2}$	(d) $\frac{3}{10}$
20.	The equation $2x^2 + 4xy$	$-ky^2 + 4x + 2y - 1 = 0 \text{ represents}$	a pair of lines. The value of	k is
	(a) $-\frac{5}{3}$	(b) $\frac{5}{3}$	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$
	3	3	3	5
21.	The equation $4x^2 - 24xy$	=		[Orissa JEE 2003]
	-	(b) Two perpendicular lines	•	
22.		the equation $2x^2 + 5xy + 3y^2 + 6x$		
22	(a) 4	(b) 6 pair of straight lines throu	(c) 0	(d) 8
23.	$2x^2 - 5xy + y^2 = 0$, is		gn the origin which are	perpendicular to the inies
		(b) $x^2 + 2y^2 + 5xy = 0$	(c) $x^2 - 5xy + 2y^2 = 0$	(d) $2x^2 + y^2 - 5xy = 0$
- 4			(C) x -3xy + 2y = 0	
24.	The equation $xy + a^2 = a$	-	(a) An allinga	[MP PET 1991]
	(a) A parabola lines	(b) A pair of straight lines	(c) An empse	(d) Two parallel straight
25.	If the equation $Ax^2 + 2B$	$Bxy + Cy^2 + Dx + Ey + F = 0 \text{ represe}$	ents a pair of straight lines,	then $B^2 - AC$
	(a) < 0	(b) = 0	(c) > 0	(d) None of these
26.	The equation of pair of	straight lines perpendicular to	the pair $ax^2 + 2hxy + by^2 = 0$	is [MP PET 1989]
	(a) $ax^2 - 2hxy + by^2 = 0$	(b) $bx^2 + 2hxy + ay^2 = 0$	(c) $ay^2 - 2hxy + bx^2 = 0$	(d) $ay^2 - bx^2 = 0$
27.	If the equation $ax^2 + 2h$ MP PET 1988]	$xy + by^2 = 0$ represents two lines	s $y = m_1 x$ and $y = m_2 x$, then	[Kurukshetra CEE 1993;
	(a) $m_1 + m_2 = \frac{-2h}{b}$ and $m_1 + m_2 = \frac{-2h}{b}$	$n_1 m_2 = \frac{a}{b}$	(b) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m$	$_2 = \frac{-a}{b}$
	(c) $m_1 + m_2 = \frac{2h}{b}$ and m_1	$m_2 = \frac{a}{b}$	(d) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m$	$_{2}=-ab$
28.	Difference of slopes of	the lines represented by equation	on $x^2(\sec^2\theta - \sin^2\theta) - 2xy \tan\theta$	$+y^2\sin^2\theta=0$ is
	(a) 4	(b) 3	(c) 2	(d) None of these
29.	If the ratio of gradien	ts of the lines represented by	$ax^2 + 2hxy + by^2 = 0$ is 1:3	, then the value of the ratio
	$h^2:ab$ is	[MP PET 1998]		
	(a) $\frac{1}{3}$	(b) $\frac{3}{4}$	(c) $\frac{4}{3}$	(d) 1
30.	If the sum of slopes of	the pair of lines represented by	$4x^2 + 2hxy - 7y^2 = 0$ is equa	l to the product of the slopes,
	then the value of <i>h</i> is			
	(a) -6	(b) -2	(c) -4	(d) 4
31.	The gradient of one of t	the lines of $ax^2 + 2hxy + by^2 = 0$	is twice that of the other, th	en [MP PET 2000]

	(a) $h^2 = ab$	(b) $h = a + b$	(c) $8h^2 = 9ab$	(d) $9h^2 = 8ab$
32.	If the slope of one	line of the pair of lines repr	esented by $ax^{2} + 4xy + y^{2} = 0$ is 3 to	imes the slope of the other line,
	then a is	[DCE 1999]		
	(a) 1	(b) 2	(c) 3	(d) 4
33.	If the slope of one	of the lines given by $ax^2 + 2h$	$xy + by^2 = 0$ is 5 times the other, t	hen
	(a) $5h^2 = ab$	(b) $5h^2 = 9ab$	(c) $9h^2 = 5ab$	(d) $h^2 = ab$
34.	The value of k such	$1 + 10x^2 - 11xy + 10y^2 - 7x + 1$	3y + k = 0 may represent a pair of	straight lines, is
	(a) 3	(b) 4	(c) 6	(d) 8
35.	If $x^2 - kxy + y^2 + 2y$	+2 = 0 denotes a pair of strain	ght lines, then <i>k</i>	=
	(a) 2	(b) $\frac{1}{\sqrt{2}}$	(c) $2\sqrt{2}$	(d) $\sqrt{2}$
36.	The equation $4x^2$	$+mxy - 3y^2 = 0$ represents a pa	air of real and distinct lines if	
	(a) $m \in R$	(b) $m \in (3,4)$	(c) $m \in (-3,4)$	(d) $m > 4$
37.	Lines represented	by $9x^2 + y^2 + 6xy - 4 = 0$ are		[EAMCET 1988]
Ο,	(a) Coincident		oincident (c) Not parallel	(d) Perpendicular
38.			a pair of straight lines, then $k =$	[Kurukshetra CEE 1982]
_	(a) 3	(b) 4	(c) -3	(d) None of these
39.	Equation of pair $3x^2 - 7xy - 2y^2 = 0$ if	_	through (1, 1) and perpend	-
	_		_	[Roorkee 1984: MNR 1988]
	(a) $2x^2 + 7xy - 11x$		(b) $2(x-1)^2 + 7(x-1)(y-1)$	$1) - 3y^2 = 0$
	(c) $2(x-1)^2 + 7(x-1)^2$	$1)(y-1) + 3(y-1)^2 = 0$	(d) None of these	
40.	If the lines represe	ented by the equation $2x^2 - 3$.	$xy + y^2 = 0$ make angles α and β w	with x-axis, then $\cot^2 \alpha + \cot^2 \beta =$
	(a) o	(b) $\frac{3}{2}$	(c) $\frac{7}{4}$	(d) $\frac{5}{4}$
		L	т	4
41.	If one of the lines	given by $6x^2 - xy + 4cy^2 = 0$ is	3x + 4y = 0, then c equals	[AIEEE 2004]
	(a) -3	(b) -1	(c) 3	(d) 1
42.	If $ax^2 - y^2 + 4x - y =$	= 0 represents a pair of lines,	then $a =$	[Karnataka CET 2004]
	(a) -16	(b) 16	(c) 4	(d) - 4
43.	The value of λ , for	r which the equation $x^2 - y^2 -$	$-x + \lambda y - 2 = 0$ represent a pair of s	traight lines, are
	(a) 3, -3	(b) -3, 1	(c) 3, 1	(d) -1, 1
		Ac	lvance Level	
44.	The equation $\sqrt{(x-x)^2}$	$\sqrt{(x+2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4 \text{ rep}$	presents a	

(c) Parabola

(c) p = -1, q = 12

(c) Circle

The equation of the pair of straight lines parallel to x-axis and touching the circle $x^2 + y^2 - 6x - 4y - 12 = 0$ is **[Kerala (En**

(d) Ellipse

(d) Ellipse

(d) p = 1, q = -12

(b) Pair of straight lines

(b) Pair of straight lines

(b) p = 1, q = 12

The locus of the point P(x, y) satisfying the relation $\sqrt{(x-3)^2 + (y-1)^2} + \sqrt{(x+3)^2 + (y-1)^2} = 6$ is a

If the equation $12x^2 + 7xy - py^2 - 18x + qy + 6 = 0$ represents a pair of perpendicular straight lines, then

(a) Circle

(a) p = 12, q = 1

45.

46.

47.

(a) $y^2 - 4y - 21 = 0$

(b) $y^2 + 4y - 21 = 0$

Pair of straight lines perpendicular to each other represented by

The angle between the pair of straight lines $x^2 + 4y^2 - 7xy = 0$, is

[MNR 1983; Kurukshetra CEE 1999]

(a) $2x^2 = 2y(2x + y)$ (b) $x^2 + y^2 + 3 = 0$ (c) $2x^2 = y(2x + y)$

59.

60.

48.	Two pairs of straight common among them	nt lines have the equations if	$3y^2 + xy - 12x^2 = 0$ and $ax^2 + $	$-2hxy + by^2 = 0$. One line	will be
	•		(c) $a = 2(b+h)$	(d) $a = -3(b+h)$	
49.	If $u \equiv a_1 x + b_1 y + c_1 = 0$,	$v = a_2 x + b_2 y + c_2 = 0$ and $\frac{a_1}{a_2} = \frac{1}{a_2}$	$\frac{b_1}{b_2} = \frac{c_1}{c_2}, \text{ then curve } u + kv = 0$	is [M	NR 1987]
	(a) A line represented	d by u (b)	A different line	(c) Not a line	(d)
50.	If one of the line repr	resented by the equation ax^2	$x^2 + 2hxy + by^2 = 0$ is coincident	with one of the line rep	resented
	by $a'x^2 + 2h'xy + b'y^2 =$	= 0, then			
	(a) $(ab'-a'b)^2 = 4(ah'-a')^2$	h)(hb'-h'b)	(b) $(ab'+a'b)^2 = 4(ah'-a')$	h) $(hb'-h'b)$	
	(c) $(ab'-a'b)^2 = (ah'-a'h)^2$)(hb'-h'b)	(d) None of these		
			Ang	le between the Pair of	Lines
		Bas	sic Level		
51.	The angle between the	e lines represented by the eq	uation $ax^2 + 2hxy + by^2 = 0$ is	given by	
	(a) $\tan \theta = \frac{2(h^2 - ab)}{(a+b)}$	(b) $\tan \theta = \frac{2\sqrt{(h^2 - ab)}}{(a+b)}$	(c) $\tan \theta = \frac{2(h^2 - ab)}{\sqrt{a+b}}$	(d) $\tan \theta = \frac{2\sqrt{h^2 + ab}}{(a+b)}$	- - -
52.	The angle between the	e pair of straight lines $x^2 - y$	$^{2}-2y-1=0$, is		
	(a) 90°	(b) 60°	(c) 75°	(d) 36°	
53.	If the angle 2θ is acut	e, then the acute angle betwe	een $x^2(\cos\theta - \sin\theta) + 2xy\cos\theta +$	$-y^2(\cos\theta + \sin\theta) = 0 \text{ is}[\text{EAM}]$	CET 2002]
	(a) 2 <i>θ</i>	(b) $\frac{\theta}{3}$	(c) θ	(d) $\frac{\theta}{2}$	
54.	The angle between the	e pair of lines $2x^2 + 5xy + 2y^2$	+3x + 3y + 1 = 0 is	[EAMC	CET 1994]
	(a) $\cos^{-1}\left(\frac{4}{5}\right)$	(b) $\tan^{-1} \left(\frac{4}{5} \right)$	(c) 0	(d) $\frac{\pi}{2}$	
55.	The equation $x^2 - 3xy$	$y + \lambda y^2 + 3x - 5y + 2 = 0 $ when λ	l is a real number, represen	ts a pair of straight line	s. If θ is
	the angle between the	e lines, then $\csc^2\theta$ =			
	(a) 3	(b) 9	(c) 10	(d) 100	
56.	The equation $12x^2 + 7x$	$axy + ay^2 + 13x - y + 3 = 0$ represe	ents a pair of perpendicular lii	nes. Then the value of 'a' i	S[Karnataka CE
	(a) $\frac{7}{2}$	(b) -19	(c) -12	(d) 12	
57.	The angle between the	e lines $x^2 + 4xy + y^2 = 0$ is		[Karnataka C	ET 2001]
	(a) 60°	(b) 15°	(c) 30°	(d) 45°	
58.	If the angle between t	the two lines represented by	$2x^2 + 5xy + 3y^2 + 6x + 7y + 4 =$	$0 ext{ is } an^{-1} m ext{ , then } m = extbf{[M]}$	NR 1993]
	(a) $\frac{1}{}$	(h) 1	(c) $\frac{7}{}$	(d) 7	

(c) $y^2 - 4y + 21 = 0$ (d) $y^2 + 4y + 21 = 0$

(d) $x^2 = 2(x - y)$

	(a) $\tan^{-1} \left(\frac{1}{3} \right)$	(b) tan ⁻¹ (3)	(c) $\tan^{-1}\left(\frac{\sqrt{33}}{5}\right)$	(d) $\tan^{-1}\left(\frac{5}{\sqrt{33}}\right)$
51.	The angle between the p	pair of straight lines $y^2 \sin^2 \theta - x$	$y \sin^2 \theta + x^2 (\cos^2 \theta - 1) = 1$, is	[MNR 1985; UPSEAT 2000]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{2\pi}{3}$	(d) None of these
62.	The angle between the p	pair of lines given by equation x	$x^2 + 2xy - y^2 = 0$, is	[MNR 1990]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) o
63.	Acute angle between the	e lines represented by $(x^2 + y^2)\sqrt{3}$	$\overline{3} = 4xy$ is	
	(a) $\pi/6$	(b) $\pi/4$	(c) $\pi/3$	(d) None of these
64.	The angle between the l	ines given by $x^2 - y^2 = 0$ is		[MP PET 1999]
	(a) 15°	(b) 45°	(c) 75°	(d) 90°
65.	The angle between the l	ines $xy = 0$ is		[MP PET 1990, 92]
	(a) 45°	(b) 60°	(c) 90°	(d) 180°
66.	The angle between the l	ines represented by the equation	$n 4x^2 - 24xy + 11y^2 = 0$ are	
	(a) $\tan^{-1} \left(\frac{3}{4} \right), \tan^{-1} \left(-\frac{3}{4} \right)$	(b) $\tan^{-1} \left(\frac{1}{3} \right), \tan^{-1} \left(\frac{-1}{3} \right)$	(c) $\tan^{-1}\left(\frac{4}{3}\right)$, $\tan^{-1}\left(-\frac{4}{3}\right)$	(d) $\tan^{-1} \left(\frac{1}{2} \right), \tan^{-1} \left(-\frac{1}{2} \right)$
67.	Condition that the two l	ines represented by the equation	$n ax^2 + 2hxy + by^2 = 0 \text{ to be per}$	erpendicular is
			[Kuru	kshetra CEE 1998; MP PET
2001		(b) $a = -b$	(c) $a = b$	(d) $ab-1$
58.	(a) $ab = -1$	sented by the equation $9x^2 - 12xy$		(d) $ab = 1$
	(a) Coincident	(b) Perpendicular	(c) Parallel	(d) Inclined at an angle of
45 <i>°</i>	(a) comeracine	(b) Terpendredia	(c) Turuner	(a) memica at an angle of
69.	The nature of straight li	nes represented by the equation	$4x^2 + 12xy + 9y^2 = 0$ is	[MP PET 1988]
	_	(b) Real and different	(c) Imaginary and differen	nt (d) None of these
70.	The equation $x^2 + ky^2 + 4$	4xy = 0 represents two coinciden	t lines, if $k =$	
	(a) 0	(b) 1	(c) 4	(d) 16
71.	The straight lines join	ining the origin to the poir	nts of intersection of th	e line $2x + y = 1$ and curve
	$3x^2 + 4xy - 4x + 1 = 0 \text{ incl}$	lude an angle		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$
72.	If the acute angles betw	ween the pairs of lines $3x^2 - 7xy$	$+4y^2 = 0$ and $6x^2 - 5xy + y^2$	= 0 be θ_1 and θ_2 respectively,
	then			
	(a) $\theta_1 = \theta_2$	(b) $\theta_1 = 2\theta_2$	(c) $2\theta_1 = \theta_2$	(d) None of these
73.		sented by $3ax^2 + 5xy + (a^2 - 2)y^2 =$		h other for
	(a) Two values of a	(b) For all values of a	(c) For one value of a	(d) For no values of a
		Advance i	Level	

An isosceles triangle

(c) An equilateral triangle(d)

The figure formed by the lines $x^2 + 4xy + y^2 = 0$ and x - y = 4, is

(a) A right angled triangle (b)

74.

(a) $\frac{\pi}{2} - \alpha$

(a) $x^2 + 2xy \sec 2\alpha + y^2 = 0$

(c) $x^2 - 2xy\csc 2\alpha + y^2 = 0$

the other pair, then mn =

75.

76.

	2		4	
77•	If θ_1 and θ_2 are the $\tan \theta_1 - \tan \theta_2$ is equal		$(2 + \cos^2 \theta) - 2xy \tan \theta + y^2 \sin^2 \theta$	$\theta = 0$ make with the axis of x , then
	(a) $\cos 2\theta$	(b) $2\cos\theta\sin\theta$	(c) 2	(d) 1
			Bisectors of t	he Angles between the Lines
		Basi	ic Level	
78.	_	tion of bisectors of angles betwe	een coordinate axes, is	
	(a) $x^2 + y^2 = 0$	(b) $x^2 - y^2 = 0$	(c) $xy = 0$	(d) $x + y = 0$
79.	The equation of the	bisectors of the angle between	the lines represented by the	e equation $x^2 - y^2 = 0$, is
	(a) $x = 0$	(b) $y = 0$	(c) $xy = 0$	(d) None of these
80.	If $y = mx$ be one of t	he bisectors of the angle between	en the lines $ax^2 - 2hxy + by^2$	=0, then
	(a) $h(1+m^2)+m(a-b^2)$	$h(b) = 0$ (b) $h(1-m^2) + m(a+b) = 0$	(c) $h(1-m^2)+m(a-b)$	$= 0 (d) h(1+m^2) + m(a+b) = 0$
81.	The combined equa	tion of the bisectors of the angle	between the lines represe	nted by $(x^2 + y^2)\sqrt{3} = 4xy$ is [MP PE
	(a) $y^2 - x^2 = 0$	(b) $xy = 0$	(c) $x^2 + y^2 = 2xy$	(d) $\frac{x^2 - y^2}{\sqrt{3}} = \frac{xy}{2}$
82.	One bisector of the bisector is	e angle between the lines give	en by $a(x-1)^2 + 2h(x-1)y + b$	$by^2 = 0$ is $2x + y - 2 = 0$. The other
	(a) $x - 2y + 1 = 0$	(b) $2x + y - 1 = 0$	(c) $x + 2y - 1 = 0$	(d) $x - 2y - 1 = 0$
		Advar	nce Level	
83.	If the equation ax^2	$+2hxy + by^2 = 0$ has the one line a	as the bisector of angle bet	ween the coordinate axes, then
				[Bihar CEE 1990; Roorkee
1992			2 2 2	22
		(b) $(a+b)^2 = h^2$	(c) $(a-b)^2 = 4h^2$	
84.				equation $ax^2 + 2hxy + by^2 = 0$ and
		$(x^2 + y^2) = 0$ be coincident, then λ		
	(a) <i>a</i>	(b) <i>b</i>	(c) h	(d) Any real number
85.		_	=	$15x^2 + 4xy + 3y^2 = 0$ are same, ther
	(a) 30°	he lines represented by first with (b) 60°	(c) 45°	(d) 90°
86		• •	(- /	ach pair bisects the angle between

The equation of the pair of straight lines, each of which makes an angle α with the line y = x, is

the angle between l_1 and m_2 be α then the angle between l_2 and m_1 will be

(b) 2α

The combined equation of the lines l_1, l_2 is $2x^2 + 6xy + y^2 = 0$ and that of the lines m_1, m_2 is $4x^2 + 18xy + y^2 = 0$. If

(c) $\frac{\pi}{4} + \alpha$

(b) $x^2 + 2xy\csc 2\alpha + y^2 = 0$

 $x^2 - 2xy \sec 2\alpha + y^2 = 0$

1991;UPSEAT

(d) α

(a) 1

(b) -1

(c) o

(d) $-\frac{1}{2}$

If the lines represented by $x^2 - 2pxy - y^2 = 0$ are rotated about the origin through an angle θ , one in clockwise 87. direction and other in anti -clockwise direction, then the equation of the bisectors of the angle between the lines in the new position is

(a) $px^2 + 2xy - py^2 = 0$

(b) $px^2 + 2xy + py^2 = 0$

(c) $x^2 - 2pxy + y^2 = 0$

(d) None of these

If $r(1-m^2)+m(p-q)=0$, then a bisector of the angle between the lines represented by the equation 88. $px^{2} - 2rxy + qy^{2} = 0$ is

(a) y = x

(b) y = -x

(c) y = mx

(d) my = x

Point of intersection of the Lines

Basic Level

If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the *y*-axis, then 89.

[AIEEE 2002]

(a) $2fgh = bg^2 + ch^2$ (b) $bg^2 \neq ch^2$

(c) abc = 2fgh

(d) None of these

The point of intersection of the lines represented by equation $2(x+2)^2 + 3(x+2)(y-2) - 2(y-2)^2 = 0$ is 90.

(a) (2,2)

(b) (-2, -2)

(c) (-2,2)

(d) (2, -2)

Advance Level

The equations to a pair of opposite sides of a parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5 = 0$. The equations 91. to its diagonals are

(a) x + 4y = 13 and y = 4x - 7

(b) 4x + y = 13 and 4y = x - 7

(c) 4x + y = 13 and y = 4x - 7

(d) y-4x=13 and y+4x=7

The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is 92.

(a) (0,0)

(b) (-2, -2)

(c) (-1,-1)

(d) (-1,-2)

If the equations of opposite sides of a parallelogram are $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$, then the equation of 93. its one diagonal is

(a) 6x + 5y + 14 = 0

(b) 6x - 5y + 14 = 0

(c) 5x + 6y + 14 = 0

(d) 5x - 6y + 14 = 0

The limiting position of the point of intersection of the straight lines 3x + 5y = 1 and $(2+c)x + 5c^2y = 1$ as $c \to 1$ is 94.

(a) $\left(\frac{2}{5}, \frac{-1}{25}\right)$

(b) $\left(\frac{1}{2}, -\frac{1}{10}\right)$

(c) $\left(\frac{3}{8}, \frac{-1}{40}\right)$

(d) None of these

If two sides of a triangle are represented by $x^2 - 7xy + 6y^2 = 0$ and the centroid is (1, 0), then the equation of 95. third side is

(a) 2x + 7y + 3 = 0

(b) 2x - 7y + 3 = 0

(c) 2x + 7y - 3 = 0

(d) 2x - 7y - 3 = 0

If the lines $ax^2 + 2hxy + by^2 = 0$ represents the adjacent sides of a parallelogram, then the equation of second 96. diagonal if one is lx + my = 1, will be

(a) (am + hl)x = (bl + hm)y (b) (am - hl)x = (bl - hm)y

(c) (am - hl)x = (bl + hm)y

(d) None of these

Equation of lines joining the origin to the point of intersection of a curve and a Line, Distance between the

 $3x^2 + 5xy - 3y^2 + 2x + 3y = 0$, are

(c) Inclined at 45° to each other

The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is

(b) $\frac{2}{\sqrt{10}}$ (c) $\frac{4}{\sqrt{10}}$

(a) Parallel to each other

97.

99.

	[UPSEAT 2001]							
	(a) $\frac{7}{\sqrt{5}}$	(b) $\frac{7}{2\sqrt{5}}$	(c) $\frac{\sqrt{7}}{5}$	(d) None of these				
100.	The equation of secon	d degree $x^2 + 2\sqrt{2}xy + 2y^2 + 4x - 4x$	$+4\sqrt{2}y+1=0$ represents a	pair of straight lines. The				
	distance between them i							
	(a) 4	(b) $\frac{4}{\sqrt{3}}$	(c) 2	(d) $2\sqrt{3}$				
101.	If the straight lines	joining origin to the points	of intersections of the li	ine $x + y = 1$ with the curve				
	$x^2 + y^2 + x - 2y - m = 0$ ar	e perpendicular to each other, t	hen the value of m should b	be				
	(a) 0	(b) 1/2	(c) 1	(d) - 1				
102.	The lines joining the poorigin are perpendicular	oints of intersection of the curv r, then	e $(x-h)^2 + (y-k)^2 - c^2 = 0$ an	d the line $kx + hy = 2hk$ to the				
	(a) $c = h \pm k$	(b) $c^2 = h^2 + k^2$	(c) $c^2 = (h+k)^2$	(d) $4c^2 = h^2 + k^2$				
103.	The equation of pair of l	lines joining origin to the points	of intersection of $x^2 + y^2 =$	9 and $x + y = 3$ is				
	(a) $(x+y)^2 = 9$	(b) $x^2 + (3-x)^2 = 9$	(c) $xy = 0$	(d) $(3-x)^2 + y^2 = 9$				
104.	The acute angle forme	d between the lines joining t	he origin to the points of	f intersection of the curves				
	$x^2 + y^2 - 2x - 1 = 0$ and $x + y = 1$, is							
	(a) $\tan^{-1} \left(-\frac{1}{2} \right)$	(b) tan ⁻¹ (2)	(c) $\tan^{-1}\left(\frac{1}{2}\right)$	(d) 60°				
105.	The lines joining the or mutually perpendicular,	igin to the points of intersectio if	n of the line $y = mx + c$ and	the circle $x^2 + y^2 = a^2$ will be				
	(a) $a^2(m^2+1)=c^2$	(b) $a^2(m^2 - 1) = c^2$	(c) $a^2(m^2+1) = 2c^2$	(d) $a^2(m^2-1)=2c^2$				
106.	The angle between line	s joining the origin to the poin	nts of intersection of the li	ine $x\sqrt{3} + y = 2$ and the curve				
	$x^2 + y^2 = 4 $ is	<i>y</i> 0 0 1						
				[Roorkee 1998]				
	(a) $\pi/6$	(b) $\pi/4$	(c) $\pi/3$	(d) $\pi/2$				
		Advance i	Level					

107. The pair of lines joining the origin to the points of intersection of the curves $ax^2 + 2hxy + by^2 + 2gx = 0$ and

(c) gg' = (a+b)(a'+b')

(d) None of these

 $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be at right angles to one another if

(a) g(a'+b') = g'(a+b) (b) g(a+b) = g'(a'+b')

The lines joining the origin to the points of intersection of the line 3x - 2y = 1 and the curve

The equation $8x^2 + 8xy + 2y^2 + 26x + 13y + 15 = 0$ represents a pair of straight lines. The distance between them is

(b) Perpendicular to each other

None of these

(d) $\sqrt{10}$

[EAMCET 1994]

108. The square of distance between the point of intersection of the lines represented by the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ and origin, is

(a)
$$\frac{c(a+b)-f^2-g^2}{ab-h^2}$$

(a)
$$\frac{c(a+b)-f^2-g^2}{ab-h^2}$$
 (b) $\frac{c(a-b)+f^2+g^2}{\sqrt{ab-h^2}}$ (c) $\frac{c(a+b)-f^2-g^2}{ab+h^2}$

(c)
$$\frac{c(a+b)-f^2-g^2}{ab+h^2}$$

- 109. If the portion of the line lx + my = 1 falling inside the circle $x^2 + y^2 = a^2$ subtends an angle of 45° at the origin,

(a)
$$4[a^2(l^2+m^2)-1]=a^2(l^2+m^2)$$

(b)
$$4[a^2(l^2+m^2)-1] = a^2(l^2+m^2)-2$$

(c)
$$4[a^2(l^2+m^2)-1] = [a^2(l^2+m^2)-2]^2$$

(d) None of these

Miscellaneous problems

Basic Level

product of perpendiculars drawn from the origin to the lines represented the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ will be

(a)
$$\frac{ab}{\sqrt{a^2 - b^2 + 4h^2}}$$

(b)
$$\frac{bc}{\sqrt{a^2 - b^2 + 4h^2}}$$

(a)
$$\frac{ab}{\sqrt{a^2 - b^2 + 4h^2}}$$
 (b) $\frac{bc}{\sqrt{a^2 - b^2 + 4h^2}}$ (c) $\frac{ca}{\sqrt{(a^2 + b^2) + 4h^2}}$ (d) $\frac{c}{\sqrt{(a-b)^2 + 4h^2}}$

$$(d) \frac{c}{\sqrt{(a-b)^2+4h^2}}$$

A curve with equation of the form $y = ax^4 + bx^3 + cx + d$ has zero gradient at the point (0,1) and also touches the x-axis at the point (-1,0). Then the values of x for which the curve has negative gradients are

(a)
$$x > -1$$

(b)
$$x < 1$$

(c)
$$x < -1$$

(d)
$$-1 \le x \le 1$$

Advance Level

112. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Continuous and Section 12].

(a)
$$(b+d)(ad+be)+(e-a)^2(a+c+e)=0$$

(b)
$$(b+d)(ad+be)+(e+a)^2(a+c+e)=0$$

(c)
$$(b-d)(ad-be)+(e-a)^2(a+c+e)=0$$

(d)
$$(b-d)(ad-be)+(e+a)^2(a+c+e)=0$$

113. Let PQR be a right angled isosceles triangle, right angled at P(2,1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is

(a)
$$3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$$

(b)
$$3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$$

(c)
$$3x^2 - 3y^2 + 8xy + 10x + 15y + 20 = 0$$

(d)
$$3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$$

114. The area (in square units) of the quadrilateral formed by the two pairs of lines $l^2x^2 - m^2y^2 - n(lx + my) = 0$ and $l^2x^2 - m^2y^2 + n(lx - my) = 0$ is [EAMCET 2003]

(a)
$$\frac{n^2}{2||lm||}$$

(b)
$$\frac{n^2}{|m|}$$

(c)
$$\frac{n}{2 \mid lm \mid}$$

(d)
$$\frac{n^2}{4|lm|}$$

Two lines represented by the equation $x^2 - y^2 - 2x + 1 = 0$ are rotated about the point (1, 0), the line making the bigger angle with the positive direction of the x-axis being turned by 45° in the clockwise sense and the other line being turned by 15° in the anticlockwise sense. The combined equation of the pair of lines in their new positions is

(a)
$$\sqrt{3}x^2 - xy + 2\sqrt{3}x - y + \sqrt{3} = 0$$

(b)
$$\sqrt{3}x^2 - xy - 2\sqrt{3}x + y + \sqrt{3} = 0$$

(c)
$$\sqrt{3}x^2 - xy - 2\sqrt{3}x + \sqrt{3} = 0$$

- **116.** The combined equation of three sides of a triangle is $(x^2 y^2)(2x + 3y 6) = 0$. If (-2, a) is an interior point and (b, a)1) is an exterior point of the triangle, then
 - (a) $2 < a < \frac{10}{3}$
- (b) $-2 < a < \frac{10}{3}$
- (c) $-1 < b < \frac{9}{2}$ (d) -1 < b < 1
- 117. The diagonals of a square are along the pair of lines whose equation is $2x^2 3xy 2y^2 = 0$. If (2, 1) is a vertex of the square, then another vertex consecutive to it can be

- (d) (-1, -4)
- 118. The equation $x^3 6x^2y + 11xy^2 6y^3 = 0$ represent three straight lines passing through the origin, the slopes of which form an
 - (a) A.P.
- (b) G.P.

(c) H.P.

- (d) None of these
- 119. If P_1, P_2 denote the length of the perpendiculars from the point (2,3) on the lines given by $15x^2 + 31xy + 14y^2 = 0$ then

 - (a) $P_1 + P_2 = \frac{31}{14}$ (b) $|P_1 P_2| = \frac{31}{\sqrt{74}} \frac{12}{\sqrt{13}}$ (c) $P_1 P_2 = \frac{372}{\sqrt{962}}$ (d) $P_1 P_2 = \frac{15}{14}$
- 120. The equation of the locus of feet of perpendicular drawn from the origin to the line passing through a fixed
- (a) $x^2 + y^2 ax by = 0$ (b) $x^2 + y^2 + ax + by = 0$ (c) $x^2 + y^2 2ax 2by = 0$ (d) None of these

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	С	а	d	d	а	b	С	b	d	b	d	а	d	а	С	а	С	b	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	а	b	b	d	С	а	С	С	b	С	С	b	b	d	а	b	а	d	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	b	а	b	b	а	а	a,b	а	а	b	а	С	а	С	С	а	а	а	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	С	а	d	С	С	b	а	а	С	а	а	а	С	d	d	С	b	С	С
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
а	d	d	d	d	b	а	С	а	С	С	С	b	а	d	b	b	b	b	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	С	b	С	С	а	а	С	d	С	а	b	а	b	a,d	a,c	С	b,c	а