CHAPTER

6.5

FREQUENCY-DOMAIN ANALYSIS

Statement for Q.1-2:

An under damped second order system having a transfer function of the form

$$T(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

has a frequency response plot shown in fig. P6.5.1-2.

8

1. The system gain K is

(A) 1 (B) 2 (C) $\sqrt{2}$ (D) $\frac{1}{\sqrt{2}}$

2. The damping factor ξ	is approximately
(A) 0.6	(B) 0.2
(C) 1.8	(D) 2.4

3. For the transfer function

$$G(s)H(s) = \frac{1}{s(s+1)(s+0.5)}$$

the phase cross-over frequency is

(A) 0.5 rad/sec	(B) 0.707 rad/sec
(C) 1.732 rad/sec	(D) 2 rad/sec

4. The gain-phase plots of open-loop transfer function of four different system are shown in fig. P6.5.4. The correct sequence of the increasing order of stability of these four system will be

5. The open-loop frequency response of a unity feedback system is shown in following table

ω	$ G(j\omega) $	$\angle G(j\omega)$
2	8.5	-119°
3	6.4	-128°
4	4.8	-142°
5	2.56	-156°
6	1.4	-164°
8	1.00	-172°
10	0.63	-180°

The gain margin and phase margin of the system

(A) 2 dB, 8°	(B) 2 dB, -172°
(C) 4 dB, 8°	(D) 4 dB, -172°

Statement for Q.6–7:

are

Consider the gain-phase plot shown in fig. P6.5.6–7.

6. The gain margin and phase margin are

(A) -2 dB, 40°
(B) 2 dB, 40°
(C) 2 dB, 140°
(D) -2 dB, 140°

7. The gain crossover and phase crossover frequency are respectively

- (A) 10 rad/sec, 100 rad/sec
- (B) 100 rad/sec, 10 rad/sec
- (C) 10 rad/sec, 2 rad/sec
- (D) 100 rad/sec, 2 rad/sec

8. The phase margin of a system with the open loop transfer function

is

	$G(s)H(s) = \frac{(1-s)}{(1+s)(3+s)}$
(A) 68.3°	(B) 90 [°]

(C) 0 (D) ∞

9. Consider a *ufb* system having an open-loop transfer function

$$G(s) = \frac{K}{s(0.2s+1)(0.05s+1)}$$

For K = 1, the gain margin is 28 dB. When gain margin is 20 dB, K will be equal to

(A) 2	(B) 4
(C) 5	(D) 2.5

10. The gain margin of the *ufb* system

$$G(s) = \frac{2}{(s+1)(s+2)}$$
 is

- (A) 1.76 dB (B) 3.5 dB
- (C) -3.5 dB (D) -1.76 dB

11. The open-loop transfer function of a system is

$$G(s)H(s) = \frac{K}{s(1+2s)(1+3s)}$$

The phase crossover frequency is

12. The open-loop transfer function of a ufb system is

$$G(s) = \frac{1+s}{s(1+0.5s)}$$

The corner frequencies are

- $(A) \ 0 \ and \ 2 \qquad \qquad (B) \ 0 \ and \ 1$
- $(C) \ 0 \ and \ -1 \qquad \qquad (D) \ 1 \ and \ 2$

13. In the Bode-plot of a unity feedback control system, the value of magnitude of $G(j\omega)$ at the phase crossover frequency is $\frac{1}{2}$. The gain margin is

(A) 2 (B) $\frac{1}{2}$

(C)
$$\frac{1}{3}$$
 (D) 3

14. In the Bode-plot of a *ufb* control system, the value of phase of $G(j\omega)$ at the gain crossover frequency is -120° . The phase margin of the system is

- (A) -120° (B) 60°
- (C) -60° (D) 120°

15. The transfer function of a system is given by

$$G(s) = \frac{K}{s(sT+1)} \quad ; \quad K < \frac{1}{T}$$

The Bode plot of this function is

16. The asymptotic approximation of the log-magnitude versus frequency plot of a certain system is shown in fig. P6.5.16. Its transfer function is

17. For the Bode plot shown in fig. P6.5.17 the transfer function is

18. Bode plot of a stable system is shown in the fig. P6.3.18. The open-loop transfer function of the *ufb* system is

(A)
$$\frac{100}{s+10}$$
 (B) $\frac{10}{s+10}$
(C) $\frac{1}{s+10}$ (D) None of the above

19. Consider the asymptotic Bode plot of a minimum phase linear system given in fig. P6.5.19. The transfer function is

20. The Bode plot shown in fig. P6.5.20 represent

Statement for Q.21-22:

The Bode plot of the transfer function K/(1 + sT) is given in the fig. P6.5.21–22.

Fig. P6.5.21-22

Statement for Q.29-30:

Consider the Bode plot of a ufb system shown in fig. P6.5.29–30.

29. The steady state error corresponding to a ramp input is

(A) 0.25	(B) 0.2
(C) 0	∞ (D)

30. The damping ratio is	
(A) 0.063	(B) 0.179
(C) 0.483	(D) 0.639

31. The Nyquist plot of a open-loop transfer function $G(j\omega)H(j\omega)$ of a system encloses the (-1, j0) point. The gain margin of the system is

(A) less than zero	(B) greater than zero
(C) zero	(D) infinity

32. Consider a *ufb* system

$$G(s) = \frac{K}{s(1+sT_1)(1+sT_2)(1+sT_3)}$$

The angle of asymptote, which the Nyquist plot approaches as $\omega \rightarrow 0$, is

(A) –90°	(B) 90°
(C) 180°	(D) -45°

33. If the gain margin of a certain feedback system is given as 20 dB, the Nyquist plot will cross the negative real axis at the point

(A) $s = -0.05$	(B) $s = -0.2$

(C) $s = -0.1$	(D) $s = -0.01$
----------------	-----------------

34. The transfer function of an open-loop system is

$$G(s)H(s) = \frac{s+2}{(s+1)(s-1)}$$

The Nyquist plot will be of the form

35. Consider a *ufb* system whose open-loop transfer function is

$$G(s) = \frac{K}{s(s^2 + 2s + 2)}$$

The Nyquist plot for this system is

36. The open loop transfer function of a system is

$$G(s)H(s) = \frac{K(1+s)^2}{s^3}$$

The Nyquist plot for this system is

37. For the certain unity feedback system

$$G(s) = \frac{K}{s(s+1)(2s+1)(3s+1)}$$

The Nyquist plot is

38. The Nyquist plot of a system is shown in fig. P6.5.38. The open-loop transfer function is

$$G(s)H(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$$

The no. of poles of closed loop system in RHP are

(A) 0	(B) 1
(C) 2	D) 4

Statement for Q.39-40:

The open-loop transfer function of a feedback control system is

$$G(s)H(s) = \frac{-1}{2s(1-20s)}$$

40. Regarding the system consider the statements

1. Open-loop system is stable

2. Closed-loop system is unstable

3. One closed-loop poles is lying on the RHP

The correct statements are

(A) 1 and 2 (B) 1 and 3

(C) only 2	(D) All
------------	---------

41. The Nyquist plot show	vn in the fig. P6.5.41 is for
(A) type-0 system	(B) type-1 system
(C) type–2 system	(D) type–3 system

Statement for Q.42-43:

The open-loop transfer function of a feedback system is

$$G(s)H(s) = \frac{K(1+s)}{(1-s)}$$

42. The Nyquist plot of this system is

43. The system is stable for	Κ
(A) $K > 1$	(B) $K < 1$
(C) any value of K	(D) unstable

Statement for Q.44–46:

A unity feedback system has open-loop transfer function

$$G(s) = \frac{1}{s(2s+1)(s+1)}$$

44. The Nyquist plot for the system is

45. The phase crossover and gain crossover frequencies are

- (A) 1.414 rad/sec, 0.57 rad/sec
- (B) 1.414 rad/sec, 1.38 rad/sec
- (C) 0.707 rad/sec, 0.57 rad/sec
- (D) 0.707 rad/sec, 1.38 rad/sec
- 46. The gain margin and phase margin are

(A) –3.52 dB, –168.5°	(B) –3.52 dB, 11.6°
(C) 3.52 dB, -168.5°	(D) 3.52 dB, 11.6°

SOLUTIONS

1. (A)
$$T(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

 $T(j\omega) = \frac{K\omega_n^2}{-\omega^2 + 2j\xi\omega_n \omega + \omega_n^2}$
 $|T(j\omega)|^2 = \frac{K^2\omega_n^4}{(\omega_n^2 - \omega^2)^2 + 4\xi^2\omega_n^2\omega^2}$
From the fig. P6.5.1–2, $|T(j0)| = 1$
 $|T(j0)|^2 = \frac{K^2\omega_n^4}{\omega_n^4} = K^2 = 1 \implies K = 1$

2. (B) The peak value of $T(j\omega)$ occurs when the denominator of function $\left|T(j\omega)\right|^2$ is minimum i.e. when

$$\begin{split} \omega_n^2 &-\omega^2 = 0 \quad \Rightarrow \quad \omega = \omega_n \\ \left| T(j\omega_n) \right|^2 &= \frac{K^2 \omega_n^4}{4\xi^2 \omega_n^4} = \frac{K^2}{4\xi^2} \quad \Rightarrow \quad \left| T(j\omega_n) \right| = \frac{K}{2\xi} = 2.5 \\ \xi &= \frac{K}{5} = 0.2 \end{split}$$

3. (B)
$$G(j\omega)H(j\omega) = \frac{1}{j\alpha(j\omega+1)(0.5+j\omega)}$$

 $\phi = -90^{\circ} - \tan^{-1} 2\omega - \tan^{-1} \omega$
At phase cross over point $\phi = -180^{\circ}$
 $-\tan^{-1} 2\omega - \tan^{-1} \omega - 90^{\circ} = -180^{\circ}$
 $\tan^{-1} 2\omega + \tan^{-1} \omega = 90^{\circ}$
 $\frac{2\omega + \omega}{1 - (2\omega)(\omega)} = \tan 90^{\circ} = \infty$
 $1 - (2\omega)\omega = 0 \Rightarrow \quad \omega = \frac{1}{\sqrt{2}} = 0.707 \text{ rad/sec}$

4. (B) For a stable system gain at 180° phase must be negative in dB. More magnitude more stability.

5. (C) At 180° gain is 0.63. Hence gain margin is = $20 \log \frac{1}{0.63} = 4 \text{ dB}$

At unity gain phase is -172° , Phase margin $= 180^{\circ} - 172^{\circ} = 8^{\circ}$

6. (A) At $\angle G(j\omega) = 180^{\circ}$ gain is -2 dB. Hence gain margin is 2 dB. At 0 dB gain phase is -140° . Hence phase margin is $180^{\circ}-140^{\circ}=40^{\circ}$.

7. (A) At $\omega = 100$ rad/sec phase is 180°. Phase crossover frequency $\omega_{\pi} = 100$ rad/sec. At $\omega = 10$ rad/sec gain is 0 dB. Gain cross over frequency $\omega = 10$ rad/sec.

8. (D) $|GH(j\omega)| \neq 1$, for any value of ω . Thus phase margin is ∞ .

9. (D) For 28 dB gain Nyquist plot intersect the real axis at a,

$$20\log\frac{1}{a} = 28 \quad \Rightarrow \quad a = 0.04$$

For 20 dB gain Nyquist plot should intersect at b,

$$20 \log \frac{1}{b} = 20 \implies b = 0.1.$$

This is achieved if the system gain is increased by factor $\frac{0.1}{0.04} = 2.5$. Thus K = 2.5.

10. (B) Here
$$K = 2$$
, $T_1 = 1$, $T_2 = \frac{1}{2}$
Gain Margin $= \left[\frac{KT_1T_2}{T_1 + T_2}\right]^{-1} = \left[\frac{(2)(0.5)}{1 + 0.5}\right]^{-1} = 1.5 = 3.5 \text{ dB}$

11. (C) For phase crossover frequency

$$\angle GH(j\omega) = -180^{\circ}$$

 $GH(j\omega) = \frac{K}{j\omega(1+2j\omega)(1+3j\omega)}$
 $-90^{\circ} - \tan^{-1} 2\omega_{\pi} - \tan^{-1} 3\omega_{\pi} = -180^{\circ}$
 $\tan^{-1} 2\omega_{\pi} + \tan^{-1} 3\omega_{\pi} = 90^{\circ}$
 $\frac{2\omega_{\pi} + 3\omega_{\pi}}{1 - (2\omega_{\pi})(3\omega_{\pi})} = \tan 90^{\circ}$
 $1 - 6\omega_{\pi}^{2} = 0 \implies \omega_{\pi} = 0.41 \text{ rad/s}$
12. (D) $G(s) = \frac{s+1}{s(1+0.5s)} = \frac{s+1}{s(\frac{s}{2}+1)}$

The Bode plot of this function has break at $\omega = 1$ and $\omega = 2$. These are the corner frequencies.

13. (A) G.M.
$$=\frac{1}{|GH(j\omega_{\pi})|} = \frac{1}{\frac{1}{2}} = 2$$

14. (B) P.M. =
$$180^{\circ} + \angle GH(j\omega_1) = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

15. (D) Due to pole at origin initial plot has a slope of -20 dB/decade. At $s = j\omega = \frac{1}{T}$. Slope increases to -40 dB/decade. At $\omega = \frac{1}{T}$, $|G(j\omega)| \approx KT < 1$, Gain in dB < 0.

27. (C) Initially slope is -20 dB/decade. Hence there is a pole at origin and system type is 1. For type-1 system position error coefficient is ∞ .

 $20\log K = 6 \quad \Rightarrow \quad K = 2,$

28. (B) The system is type -0,

 $20 \log K_p = 40, \ K_p = 100, \ e_{step}(\infty) = \frac{1}{1+K_p} = \frac{1}{101} \ .$

29. (A) The Bode plot is as shown in fig. S6.5.29

$$K_v = 4, \; e_{ramp}(\infty) = \frac{1}{K_v} = \frac{1}{4} = 0.25$$

30. (B) From fig. S6.5.29 $\xi = \frac{\omega_2}{2\omega_3} = \frac{0.5}{2(1.4)} = 0.179$

31. (A) If Nyquist plot encloses the point (-1, j0), the system is unstable and gain margin is negative.

32.(A)
$$GH(j\omega) = \frac{K}{j\omega(1+j\omega T_1)(1+j\omega T_2)(1+j\omega T_2)}$$

$$\lim_{\omega \to 0} GH(j\omega) = \lim_{\omega \to 0} \frac{K}{j\omega} = \lim_{\omega \to 0} \frac{K}{\omega} \angle -90^{\circ}$$

Hence, the asymptote of the Nyquist plot tends to an angle of -90° as $\omega \rightarrow 0$.

33. (C)
$$20 \log \frac{1}{|GH(j\omega)|} = 20$$

$$\frac{1}{|GH(j\omega)|} = 10 \implies |GH(j\omega)| = 0.1$$

Since system is stable, it will cross at s = -0.1.

34. (B)
$$GH(s) = \frac{s+2}{(s^2-1)}$$

 $GH(j\omega) = \frac{j\omega+2}{(-1-\omega^2)}$
At $\omega = 0$, $GH(j\omega) = 2 \angle -180^{\circ}$
At $\omega = \infty$, $GH(j\omega) = 0 \angle -270^{\circ}$
Hence (B) is correct option.

35. (C)
$$GH(j\omega) = \frac{K}{j\omega(-\omega^2 + 2j\omega + 2)}$$

$$\angle GH(j\omega) = -\tan^{-1} \frac{2\omega}{2-\omega^2} - 90^{\circ}$$
$$|GH(j\omega)| = \frac{K}{\omega\sqrt{(2-\omega^2)^2 + 4\omega^2}}$$
At $\omega = 0$, $GH(j\omega) = \omega \angle -90^{\circ}$,
At $\omega = \infty$ $GH(j\omega) = 0 \angle -270^{\circ}$,
At $\omega = 1$, $GH(j\omega) = \frac{K}{\sqrt{5}} \angle -153.43^{\circ}$,
At $\omega = 2$, $GH(j\omega) = \frac{K}{2\sqrt{18}} \angle -206.6^{\circ}$,

Due to s there will be a infinite semicircle. Hence (C) is correct option.

36. (B)
$$GH(j\omega) = \frac{K(1+j\omega)^2}{(j\omega)^3}$$

 $|GH(j\omega)| = \frac{K(1+\omega^2)}{\omega^3}$
 $\angle GH(j\omega) = -270^\circ + 2 \tan^{-1} \omega$
For $\omega = 0$, $GH(j\omega) = \infty \angle -270^\circ$
For $\omega = 1$, $\angle GH(j\omega) = -180^\circ$
For $\omega = \infty$, $GH(j\omega) = 0 \angle -90^\circ$

As ω increases from 0 to ∞ , phase goes -270° to -90° . Due to s^3 term there will be 3 infinite semicircle.

37. (A)
$$|GH(j\omega)| = \frac{K}{\sqrt{1 + \omega^2}\sqrt{1 + 4\omega^2}\sqrt{1 + 9\omega^2}},$$

 $\angle GH(j\omega) = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}2\omega - \tan^{-1}3\omega,$
For $\omega = 0, GH(j\omega) = \infty \angle -90^{\circ},$
For $\omega = \infty, GH(j\omega) = 0 \angle -360^{\circ},$
Hence (A) is correct option.

38. (C) The open-loop poles in RHP are P = 0. Nyquist path enclosed 2 times the point (-1 + j0). Taking clockwise encirclements as negative N = -2.

N = P - Z, -2 = 0 - Z, Z = 2 which implies that two poles of closed-loop system are on RHP.

39. (B)
$$G(s)H(s) = \frac{-1}{2s(1-20s)}$$
,
 $|GH(j\omega)| = \frac{1}{2\omega\sqrt{1+400\omega^2}}$
 $\angle GH(j\omega) = 180^{\circ} - 90^{\circ} - \tan^{-1}\frac{-20\omega}{1}$,
At $\omega = 0 \ GH(j\omega) = \omega \angle 90^{\circ}$
At $\omega = \infty \ GH(j\omega) = 0 \angle 180^{\circ}$
At $\omega = 0.1 \ GH(j\omega) = 2.24 \angle 153.43^{\circ}$
At $\omega = 0.01 \ GH(j\omega) = 49 \angle 91.15^{\circ}$

40. (C) One open-loop pole is lying on the RHP. Thus open-loop system is unstable and P = 1. There is one clockwise encirclement. Hence N = -1.

Z = P - N = 1 - (-1) = 2,

Hence there are 2 closed-loop poles on the RHP and system is unstable.

41. (B) There is one infinite semicircle. Which represent single pole at origin. So system type is1.

42. (D)
$$|GH(j\omega)| = \frac{K\sqrt{1+\omega^2}}{\sqrt{1+\omega^2}} = K$$

 $\angle GH(j\omega) = \tan^{-1}\omega - \tan^{-1} - \frac{-\omega}{1}$
At $\omega = 0$ $GH(j\omega) = K \angle 0^\circ$,
At $\omega = 1$ $GH(j\omega) = K \angle 90^\circ$,
At $\omega = 2$ $GH(j\omega) = K \angle 127^\circ$,
At $\omega = \infty$ $GH(j\omega) = K \angle 180^\circ$,

43. (A) RHP poles of open-loop system P = 1, Z = P - N.

For closed loop system to be stable,

$$Z=0, 0=1-N \Rightarrow N=1$$

There must be one anticlockwise rotation of point (-1 + j0). It is possible when K > 1.

44. (C)
$$G(s) = \frac{1}{s(2s+1)(s+1)}$$
, $H(s) = 1$
 $GH(s) = \frac{1}{s(2s+1)(s+1)}$
 $GH(j\omega) = \frac{1}{j\omega(2j\omega+1)(j\omega+1)}$
 $\lim_{\omega \to 0} GH(j\omega) = \lim_{\omega \to 0} \frac{1}{j\omega} = \infty \angle -90^{\circ}$

$$\lim_{\omega \to \infty} GH(j\omega) = \lim_{\omega \to \infty} \omega \frac{1}{2(j\omega)^3} = 0 \angle -270^\circ$$

The intersection with the real axis can be calculated as $Im\{GH(j\omega)\}=0$, The condition gives $\omega(2\omega^2 - 1) = 0$

i.e.
$$\omega = 0$$
, $\frac{1}{\sqrt{2}}$, $GH\left(j\frac{1}{\sqrt{2}}\right) = \frac{-2}{3}$

With the above information the plot in option (C) is correct.

45. (C) The Nyquist plot crosses the negative real axis at $\omega = \frac{1}{\sqrt{2}}$ rad/sec. Hence phase crossover frequency is $\omega_{\pi} = \frac{1}{\sqrt{2}} = 0.707$ rad/sec.

The frequency at which magnitude unity is

$$\omega_1^2 (1 + \omega_1^2) (1 + 4\omega_1^2) = 1$$

 $\omega^2=0.326,\ \omega_1=0.57\ \text{rad/sec}$

46. (D) G.M. = 20 log $\frac{1}{|GH(j\omega_{\pi})|}$, $|GH(j\omega_{\pi})| = \frac{2}{3}$ Gain Margin = 20 log $\frac{3}{2} = 3.52$ dB. $\angle GH(j\omega) = -90^{\circ} - \tan^{-1} \omega - \tan^{-1} 2\omega$, At unit gain $\omega_{1} = 0.57$ rad/sec, Phase at this frequency is $\angle GH(j\omega_{1}) = -90^{\circ} - \tan^{-1} 0.57 - \tan^{-1} 2(0.57) = -168.42^{\circ}$ Phase margin = $-168.42^{\circ} + 180^{\circ} = 11.6^{\circ}$ Note that system is stable. So gain margin and pha

Note that system is stable. So gain margin and phase margin are positive value. Hence only possible option is (D).
