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About This Textbook...

We have pleasure in presenting this textbook of physics of Standard 12 to you. This book is
on the syllabi based on the courses of National Curriculum Framework (NCF), Core-Curriculum and
National Council of Educational Research and Training (NCERT) and has been sanctioned by the
State Government keeping in view the National Education Policy.

The State Government has implemented the semester system in science stream. The semester
system will reduce the educational load of the students and increase the interest towards study.

In this Textbook of Physics for Standard-12, Seven chapters are included, looking into the
depth of the topics, time which will be available for classroom teaching, etc...

The real understanding of the theories of physics is obtained only through solving related
problems. Hence, for the new concept, solved problems are given. One of the positive sides of the
book is that at the end of each chapter extended summary is given. On the basis of this one can
see the whole contents of the chapter at a glance.

Keeping in view the formats of various entrance test conducted on all India basis, we have
included MCQs, Short questions, objective questions and problems in this book. At the end of the
book, Hints for solving the problems are also included so that students themselves can solve the
problems.

This book is published in quite a new look in four-colour printing so that the figures included
in the book are much clear. It has been observed, generally, that students do not preserve old text-
books, once they go to the higher standard. In the semester system, each semester has its own
importance and the look of the book is also very nice so the students would like to preserve this
book and it will become a reference book in future.

The previous textbook got excellent support from students, teachers and experts. So a
substantial portion from that book is taken in this book either in its original form or with some
changes. We are thankful to that team of authors. We are also thankful to the teachers who
remained present in the Review workshop and gave their inputs to make this textbook error-free.

Proper care has been taken by authors, subject advisors and reviewers while preparing this
book to see that it becomes error-free and concepts are properly developed. We welcome
suggestions and comments for the importance of the textbook in future.
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1.1 Introduction

ELECcTRIC CHARGE AND ELECTRIC FIELD

Whatever facilities an individual is enjoying in this modern age is due to technological
development. From all kinds of energy, electric energy holds an important role for human
comfort. Electric energy can be easily stored and can be transferred to another form of energy.
There is no exaggeration in calling the electricity is the mother of technology. Electric charges
are the foundation stones of electricity.

In this chapter we will study about static charges, their properties and interaction between
them. Such a study is called static electricity. Static electricity is used in copier machine, laser
printer, television etc. Natural phenomenon such as lightning can be understood through static
electricity. Here, we will study about electric fields due to different system of charges and its
characteristics.

1.2 Electric Charge

Any matter consists of certain fundamental particles. Fundamental particles are more
than 100. Out of them three particles are most important namely electron, proton and
neutron. Because of their masses these particles exert gravitational force on each other. For
example two electrons lcm apart exert 5.5 X 1077 N gravitational force on each other, which
is attractive. However, an electron is found to repel another electron at the same distance
(1 cm) with a force of 2.3 X 107> N. This additional force other than gravitational force is
an electric force. The fundamental intrinsic property due to which such a force acts is
called the electric charge.

Just as masses of two particles are responsible for the gravitational force, charges are
responsible for the electric force.

Two protons placed at a distance of 1 cm also repel each other with a force of 2.3 X 107* N,
which shows that proton has the electric charge. The magnitude of this charge is same as the
charge of an electron. Now if a proton and electron are placed 1 cm apart, they exert a force

of 2.3 X 107** N on each other but this force is attractive.

Thus, we conclude that magnitude of charge on electron and proton is same but they are
of opposite type.

Electric charges are of two types : Positive charge and Negative charge. Traditionally,
charge of a proton considered positive and that of an electron negative. Though it makes no
difference whatsoever to Physics if this sign convention is reversed.

Electric Charge and Electric Field - 1



The force acting between two like charges is repulsive and it is attractive between two
unlike charges.

All material bodies contain equal number of electrons and equal number of protons in their
normal state. So they are electrically neutral. In any substance, electrons are comparatively weakly
bound than the force with which the protons are bound inside the nucleus. Hence, whenever there
is an exchange of charge between two bodies due to some process (e.g. friction), it is the electrons
are transferred from one body to the other. The body that receives the extra electrons, becomes
negatively charged. The body that loses the electrons, becomes positively charged because it has
more number of protons than electrons. Thus, when a glass rod is rubbed with a silk cloth, some
electrons are transferred from the glass rod to the silk cloth. The glass rod becomes positively
charged and the cloth becomes negatively charged because it receives extra electrons. To detect
these charges a simple device is used, known as electroscope.

Electic charge is a fundamental property like mass. It is difficult to define. The SI unit of
the quantity of charge is coulomb and abbreviated as C.

One coulomb is the charge flowing through any section of the conductor in one second when
the electric current in it is 1 ampere. The charge on a proton is e = +1.6 X 107" C. The charge
on the electron is e = —1.6 X 107 C.

Quantization of Electric Charge

All the experiments carried out so far show that the magnitude of all charges found in
nature are in integral multiple of a fundamental charge.

Q = ne

This fact is known as quantization of charges. The fundamental charge is the charge of an
electron or proton. It is denoted by e and it is called the fundamental unit of charge.

Out of all the fundamental particles, the building blocks of all matters, the particles having
possesed charge equal to e. For example, charge on proton and positron (positive electron) is
+e, while charge on electron is —e. Thus, charge on any object can be increased or decreased
only in step of e. The quantization of charge was first suggested by English scientist Faraday.
It was experimentally demonstrated by Millikan in 1912.

No theory, so far, has been able to explain satisfactorily, the quantization of charges.

According to new research, the proton and neutron consists of another fundamental particles
called quarks.

A proton and neutron consist of three quarks each. These quarks are of two types : the

quark possessing +%e charge is called an up quark (#) and another having —%e charge is

called a down quark (d). (The composition of proton is indicated as uud and composition of
neutron is indicated as udd). Thus, matter is formed of such quarks and electrons. The
independent existence of quark is not detected so far.
Conservation of Electric Charge

The algebraic sum of electric charges in an electrically isolated system always
remains constant irrespective of any process taking place. This statement represents the
law of conservation of charge.

In an electrically isolated system, a charge can neither enter from outside nor escape from
inside. Any chargeless thing can enter or leave such a system.

In the experiment of glass rod and silk cloth, before rubbing glass rod with silk the net
charge on them is zero. After rubbing the glass rod with silk cloth, the glass rod becomes

2 - Physics-IIT



positively charged and same amount of negative charge is received by the silk cloth. Thus, after
the process of friction the net charge of system (glass rod + silk cloth) is zero.
Now, to understand the conservation of electric charge we consider another illustration.
As shown in figure 1.1, the initial charge in a box
having thin walls is zero. A highly energetic photon enters
in the box. A photon is a chargeless particle. As the

szgusssshansssas

photon enters through a box it produces an electron- xE
positron pair. After the pair production in the isolated “;m-' """ s
system the net charge is zero because the charges on the jr Y R
electron and positron are equal and opposite type. The o “g=0 T olated
initial charge of the system was zero. Thus, in this event ] . System
also charge is conserved. e” = Positron

In other words in an electrically isolated system, only e~ = Electron
those processes are possible in which charges of equal Figure 1.1 Conservation of
magnitude and opposite types are either produced or Electric Charge
destroyed.

Charging by Induction

Consider two identical isolated sphere placed on an insulated stand, one carrying net charge +Q
(i.e. positively charged) and other having no net charge. If they are brought directly in contact or
brought in contact with conducting wire, some of the electrons from the chargeless sphere
transferred to positively charged sphere. As a result, the positive charge on the positively charged
sphere reduced and chargeless sphere becomes positive, because it loses the electrons. Now, both

Q

the spheres will have equal amount of charge+7 after the separation because they are identical.
Thus we have established % electric charge on the other sphere through contact or that the

charging of the second sphere has taken place.

There is another method of charging the object. In that method the charged body does not
looses its own charge and without coming in physical contact with other object it will induce
opposite charge in that. This phenomenon is called induction of electric charge.

Figure 1.2(a) shows an isolated metal sphere. The net charge on the sphere is zero. As shown
in figure 1.2(b), a negatively charged plastic rod is brought close to the sphere the free electrons
of the sphere move away from the rod because of repulsion and go to the other part of the sphere.
Consequently the part of the sphere close to the rod becomes positively charged due to deficiency
of electron in that region.

7 2 O
isolated meta’ ﬁ ﬁ |

negatively
charged plastic
rod

(a) (b) ()

isolated
j sphere
(a) (b)

Figure 1.2 Induction of Electric Charge
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As shown in figure 1.2(c) when the sphere is connected to the earth through a conducting
wire, the some of the electrons of the sphere will flow to the ground. (The earth is a good
conductor and it act as a practically infinite source of extra electrons or sink of electrons.)

As shown in figure 1.2(d), even if the connection with the earth is removed, the sphere
retains the positive charge. When the plastic rod is moved away from the sphere, the electrons
get redistributed on the sphere such that the same positive charge is spread all over the surface
of the sphere. (Figure 1.2 (e))

1.3 Coulomb’s Law

French scientist Charles Coulomb (1736-1806) measured electrical attraction and repulsion
between two electric charges through a number of experiments and deduced the law that
governs them, which is known as Coulomb’s law. The law is as under :

‘The electric force (Coulombian force) between two stationary point charges is
directly proportional to the product of their charges and inversely proportional to the
square of the distance between them.’” This force is along the line joining the two charges.

According to Coulomb’s law, the electric force between the two point charges ¢, and g,
separated by a distance r can be given as,

94
F o< 2
,
44,
2

r

 F =k (1.3.1)

Where k is a Coulomb’s constant. It’s value depends on the unit of ¢, ¢, and r.
Experimentally the value of k in vacuum in SI unit is 8.9875 X 10° Nm?>C~2. For practical
purposes, kK = 9 X 10° Nm?C™2. (In CGS unit value of k is 1).

For the simplification of formula in electrostatic k is expressed as dme, -

1
47'[80

k =

Where, € is the permittivity of free space. From the above equation,

1 1 —-12 OnT—1...—2
g = —=——1 = 8854 x 102 C®N"'m
0 4nk 47x8.9875%10°
1 44,
Thus, F = prr (1.3.2)

If the charges are in any other insulating medium and not in vacuum, the permittivity of
vacuum €, in equation (1.3.2) should be replaced by the permittivity € of that medium. Hence
force in that medium,

1 919
= T l—f (1.3.3)

Thus, Coulombian force acting on two point charges is also depend on the medium between
the two charges. By taking ratio of equation (1.3.2) and (1.3.3),

(1.3.4)

4 - Physics-IIT



Where, € is known as relative permittivity of the medium or dielectric constant (K). A
detailed study about this we will learn in Chapter 2. From equation (1.3.4) it is clear that the

force between given charges held at a given distance apart in insulating medium is only %
times (i.e.k-th part) of the force between them in vacuum.

Remember that Coulomb’s law holds only for stationary point charges. Generally, this law is also
applicable for charged objects whose sizes are much smaller than the distance between them.

Coulomb’s law resembles inverse square law of gravitation. The charge q plays the same
role in Coulomb’s law that the mass m plays in gravitational law. The gravitational forces are
always attractive, whereas electrostatic forces can be repulsive or attractive, because electric
charges are of two types.

Illustration 1 : The repulsive force between two particles of same mass and charge, separated
by a certain distance is equal to the weight of one of them. Find the distance between them.
Mass of particle = 1.6 X 10’27kg
Charge of particle = 1.6 x 107°C, k = 9 x 10° MKS, g = 10ms .
Solution : Here,
Repulsive force between Weight of one of
two particles - the particles

919
. k=5 = mg
r

. kgg, | 9x10°x(1.6x107"7)? 4t w102
T Tmg T aex10hao) X

r = 0.12 m.

Illustration 2 : Two spheres of copper, having mass 1g each, are kept 1 m apart. The
number of electrons in them are 1% less than the number of protons. Find the electrical force
between them. Atomic weight of copper is 63.54 g/mol, atomic number is 29, Avogadro’s
number N, = 6.023 X 10% mol™". k = 9 x 10° SL

Solution : In a neutral atom of copper the number of electrons and protons are 29 each.
Here, the number of electrons are less than that of protons by 1%.

Total Charge Total Charge
Net charge on each atom ¢' = [ & j+[ & j

of Protons of Electrons

= (+29¢) + (—29¢) — (—0.29¢)
=+ 0.29
. Net positive charge of 1 g copper,

63.54

No. of Atoms
1= in 1g Copper

23
] x 0.29¢ = 8023x107 79,
Electric force between two copper spheres,

2
r r

ES)

2
9x10° « 6.023x10% x0.29%x1.6x10""°
2 63.54

= 1.74 x 10°N

It can be seen in above example that even a difference of 1% between positive and
negative charges in any substance can give rise to a very large force. Most of the matters are
electrically neutral so that there is a dominance of weak gravitational force on them.

Electric Charge and Electric Field - 5



Illustration 3 : Charge Q is uniformly distributed over a body. How should the body be
divided into two parts, so that force acting between the two parts of body is maximum for a
given separation between them ?

Solution : Suppose the body is broken into two parts such that the charge on one part of
body is g and on the other is Q — ¢g. The force existing between the two parts separated by
distance r will be,

F = k‘](QZ—CI)
r
The force F to be maximum, the quantity y = ¢(Q — q¢) = Qq — ¢*
. . dy dy
should be maximum. For this aq should be zero. .. - =Q — 2 =0
0= 2

Thus, the body should be divided into two parts such equal charges are present on each part.

Coulomb’s Law in Vector from :

Force is a vector quantity, so the Coulomb’s law can be represented in vector form as
follows :

L3

z1 z
E, .
BN
t"‘-a.“ ny q, -E: .
S JaNE J B
-
; q;\ = h q2
7. —
0 ’ - "2
i 4 >y
K ‘
(a) X (b)

Figure 1.3 Coulomb’s Law in Vector Form

As shwon in figure 1.3(a), let f and ;; be the position vectors of the charges ¢, and ¢,

respectively in a Cartesian co-ordinate system. Let r. be the unit vector pointing from

12

¢ S
9, © 4> n, = 1 -

According to Coulomb’s Law, force acting on charge ¢, due to charge g, is,

- W
E, = k=5 7, (1.3.5)
12 r
12
— . . ~ . .
Where, r,, = |E) — r,| is the distance between the two charges and 7/, is a unit vector
f » in the direction f
of r, in the direction from ¢, to gq,.
- -
. hTh
T S5
ln—r,l
- -
E. =k 9% (—n)
12 - >, - -
ln—r,l lr—r,l
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- q,49,
F, = k—l2—
lr—r,l

(5 = 1) (1.3.6)
Above equation is valid for any sign of the charges whether positive or negative. If g, and

q, are of the same sign (either both positive or both negative)

131)2 is along #,, which denotes repulsive force. If g, and g, are of opposite sign, 1?2) . is

along —1#,, which denotes the attraction between the opposite charges. (See Figure 1.3(b)).

The coulombian force on charge g, due to charge g, can be given by replacing 1 and 2
in equation (1.3.6)

- _ 99 -
E =k et (1.3.7)
449
- k—_)1_>23(r_2> - %) (1.3.8)
|r2—r1|

Where, r,, 1s a unit vector directed from g, to g,.

- - - -
Here, r, — n == (5 — 1)

Thus, from equation (1.3.8),

= A | o e R N
le_ k—> —>3(r1 rZ)_ Fl2

lr—rl
Thus, Coulomb’s Law agrees with the Newton’s Third Law.

1.4 Forces between more than two charges : The Superposition Principle

We can use Coulomb’s Law to find the force acting between two electric charges. When more
than two charges (Suppose they are ¢q,, ¢,, ..., ¢,) are present and to calculate the net force acting
on any one charge, we have to use superposition principle in addition to Coulomb’s Law.

Superposition Principle : When more than one coulombian forces are acting on a
charge, the resultant coulombian force acting on it is equal to the vector sum of the
individual force.

Thus, the coulombian force acting between two charges
is not influenced by the presence of a third charge. Hence,
the coulombian force is called a two body force.

Consider a system of charges ¢,, q,, g, and ¢, as

3 r, are their
respective position vectors in a given co—ordinate system.

shown in figure 1.4. Let 7 , r_; 7 and

1

Here, we will find the resultant force T:; acting on charge

q, due to the other charges. X
The force on charge g, due to charge g, is, Figure 1.4  Superposition Principle
> 4% P
E, = R
21

The force on charge g, due to g, is,
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= 4, q3 S

=k

F23 23
r; 23

b

The force on charge g, due to g, is

q> 49,
=k .2 T
24

According to superposition principle,

N
F24

- o - 2 419 q2q3 N q2q4 2
F,=F + E; + By =k—75 4 +k—5 ’23+kr Iy
H1 "23 24
q . 9z dq .
= kq,| T2t 3t 5
1 3 24
4 q,
= kg, Y, 5 h; (1.4.1)
j=1 1
Jj#2
or
N 4 q; L -
B =k, 25—~ () (1.4.2)
—1Ir—r |
j#2 2

In general, the force acting on charge g; due to system of n electric charges will be,

n
d J A
E = 2—2 T
J:
J#i
- “ -
Eo=kg,2 55— (=) (1.4.3)
Ehlir—r
J#i L J

Illustration 4 : Three equal charges each having a magnitude of 2.0 X 1075C are placed at

the three corners of a right angled triangle of sides 3cm, 4cm and Scm. Find the force on the charge
at the right angle corner.

Solution :

Y The situation is as shown in the figure.
q1:q2:q3:q:2>(10_6c
73 The position vectors of ¢,, ¢, and g, are
E) Sem ) N R
Feiti respectively 5, r; and n-
L. 4 9 5= (0, 0)
F,*® 4 cm r_z’
5
¥ B r, = (4, O)cm = (0.04, O)m
N

n = (0, 3)em = (0, 0.03)m.

q, is placed at the right angle of right angled triangle. Net force acting on g, is,

s Physis 1



A

7; 7

P 2} (v 4, =q,=q (1)

12 '3

X« 94
=kr2 P +k123”13=k‘]{

Now, r, = r — 1, = (0, 0) — (0.04, 0) = (=0.04, O)m.

r, = \E0.047+0)° = 0.04m.
- -
. o ~0.04,0
hy = 52 = S0 = (-1, om.
Ir, ! ’

?3 - ?—73 = (0, 0) — (0, 0.03) = (0, —0.03)m

i3 = §0)?+(=0.03)> = 0.03m

. _ h-n _ (0,-003) _
= 5 T oo (O 7bm

|r13|

Put all these values in equation (1),

L0) , ©-1) }

9 —0,2
9 x 10% (2 x 1079 [(0'04)2 003

N
K

=36 x 107°[625 (-1, 0) + 1111.1 (0, —1)]
= (=22.5, —40)N

2Bl = 22574407 = 45.88N

Direction of force,

F _
0 = tanl[F—y] = tan’l(%) = tan”'(1.777)

X

= 60.6°
0 is the angle with respect to negative X-axis.

Illustration 5 : Two electric charges having magnitude 8.0LC and —2.0LC are separated by
20cm. Where should a third charge be placed so that the resultant force acting on it is zero ?

4 20cm ——% B +—(x+20)cm—us
Aw

q,= 8ucC q,= —2uC q,

aC

Solution : Let the two charges ¢, = 8UC and g, = —2UC be placed at points A and B

respectively as shown in figure. The resultant force on the third charge g, will be zero only
if the forces due to two charges are equal in magnitude and opposite in direction. This is
possible only if the third charge is placed at a point on the line joining the two charges. Third

Electric Charge and Electric Field - 9



charge g, cannot be placed anywhere between points A and B since g, and g, have opposite

sign. As the magnitude of charge on A is greater than that on B the third charge has to be
nearer to B.

Suppose the third charge is placed at point C and BC = x cm.
According to superposition principle, the net force on charge g,
Fy = F, + Fy

0= kDB L Bs a4 BXIOT a0t
(r+x) X2 (r—}—x)2 x? (20+x) %2
A = s x = 20cm

Illustration 6 : Two spheres having same radius and mass are suspended by two strings of
equal length from the same point, in such a way that their surfaces touch each other. On depositing

4 x 107'C charge on them, they repel each other in such a way that in equilibrium the angle
between their strings becomes 60°. If the distance from the point of suspension to the center of the
sphere is 20cm, find the mass of each sphere. k = 9 x 10° SI and g = 10ms 2.

Solution : If the spheres are identical in all respects then 4 X 107’c charge will be

distributed equally between them. Hence charge on each sphere is 2 X 107'C. The force acting
on sphere 1 in equilibrium will be :
(1) Weight mg in the vertically downward direction.

LU
i Ay (2) F,, the repulsive force between the spheres,
7 1ok (3) The tension T produced in the string.
I i Under the balanced condition, if we consider the
! . 6 X and Y components in the Cartesian co-ordinate
= 'ﬁ(/_]uTcosG system as shown in the figure
i . ’
4 I F, = Tsin®
; i *
) = T — t AN .(_{ X 2
Tomd TN F, o kL = Tsin® (1)
€ X » X
v and mg = TcosO 2)
mg
2 2
];q = tan® = m = 4
x“mg x“gtan®
X
From figure, sin® = =7
. x = 2l sin®
qu
om =

g 41% 5in®0 tand

(9%x10”)(2x1077)? 156 % 102k
S 0% 420x10 ) x (5in30°) x(tan30?) 0 % g
1.5 Electric Field

When we place a point charge g, in the region around another point charge ¢ in the space,

it will exert the electric force on g,. We may ask the question. If charge g, is removed then

o [ —



what is left in the surrounding ? Is there nothing ? If there is nothing in the surrounding, then
how does a force act on g, ? In order to answer these questions, the concept of electric field

is very useful.

A charge produces some effect in the space around it. The region around the charge in
which the effect of electric charge is prevailing is called the electric field of the charge. This
electric field can interact with another charge ¢, placed in it and exerts the force on it. (It
does not exert the force which produce the electric field). Thus, electric field acts as an agency

between g and g,
Suppose a charge Q is placed at an origin of a co-ordinate system. Now bring a charge
g, at the given point in the electric field without disturbing the position of charge Q. If the
position vector of that point is v , then electric field at that point can be defined as follows :
E(r (1.5.1)
Here, E is called the electric field or electric field intensity of charge Q at a position

vector r . The quantity E is independent of g,. It is dependent solely on the magnitude of

electric charges of the system, their arrangement and the position vector 7 of 7pe

The charge g, used to define or to measure intensity of electric field is called a test
charge. The charges producing electric field are called the source charges.

In SI system, the unit of electric field is NC! or Vi

In equation (1.5.1), if g, = 1C then E = ? and definition of electric field can be given
as follows :

‘The force acting on a unit positive charge at a given point in an electric field of
a point charge of a system at charges is called the electric field or intensity of electric
field % at that point.

Electric field is a vector quantity and it is in the direction of force acting on unit positive
charge at a given point.

If the system of charges consists of more than one charge, then electric field at a given
point can be obtained by using Coulomb’s Law and superposition principle.

Consider a system of charges g, g,, ..., g, with position vectors E), r_z) s e Z relative to
origin. The electric field is produced in the region surrounding the system due to the system of
charges. We want to determine the electric field at a point P(x, y, z) having position vector r . For

this purpose place a very small test charge g, at that point and use the superposition principle.

Electric field at point P due to charge g, is given by, 71 B ﬁz

l;) \VEI
- q -
E, = L=k oG- ;

o lr—n P

Electric field at point P due to charge g, is.

N
— E q, - 5
— - - s _ 3
E2 - q - k RN ( r r2) * Yy
0 lr—r,l
Same way, electric field at point P due to X

Figure 1.5 Superposition Principle
for Electric Field
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F

- -

E, =2 =kq—"(r—7)
9

- 3 n
| r—r |

According to superposition principle, net electric field at a point P is.

-
r
n

g - — -
E=E +E, +. +E,
9 - > p) - - q -
= NN (r—r1)+k_>_)3(r—r2)+ ...... +k_)i3(r—},;1)
lr—nl r=rn lr—r |
n
= S 49; - -
E=kX5 5 (r-7) (1.5.2)
i=1 3 J
=Llr—r. |
i
Here, ¢q,, q,, ..., g, are the sources of electric field.

The following points are noteworthy for an electric field

(1) To determine the electric field there should not be any change in the original system of
charges due to the presence of a test charge. So it is necessary that the test charge should be very
small. To define electric field more precisely g, — 0. But minimum value of g, is 1.6 X 107C.

(2) Equation 1.5.2 indicates the force acting on unit positive charge at point

;) (x, y, 2). Once E(?) is known, we do not have to worry about the source of electric field.
In this sense, the electric field itself is a special representation of the system of charges
producing electric field, as far as the effect on other charge is concerned. Once such a
representation is done, the force acting on charge ¢ kept at that point in the field can be
determined using following equation.

- - - -
F(r)=4qE(r) (1.5.3)
(3) The direction of force acting on unit positive charge at a given point is the direction
of electric field at that point.
(4) Faraday was the first person to introduce the concept of electric field. Electric field is
not an imaginary concept but a physical reality.
1.6 Electric Field Due to a Point Charge

- As shown in figure 1.6, consider a point charge Q on
¥ the origin of a cartesian co-ordinate system.
—
E . .
In order to calculate electric field due to charge Q,
consider a test charge ¢, at a distance r from the charge
L]
q, Q. Force acting on charge q due to Q is,
5
’
- Qq,
F = k57
r
Q(-. > X Therefore, electric field intensity at r due to Q will

be,
Figure 1.6 Electric Field Due to a

Point Charge

7 (1.6.1)
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Figure 1.7 shows the electric field due to point charge in two dimensions using field vectors.
From figure 1.7 it is clear that for positive charge (Q > 0), direction of field vectors are
radially outward while those of a negative charge (Q < 0) are radially inward. The length of
the arrow decreases, indicating the decreasing strength of the electric field, as we go away

from the charge. 4
" T A N
S gl gl
e — P — — - e o
20 R
“u A =
A T Y

e
u

v l
!

Figure 1.7 Electric Field of a Point Charge
A charge +107°C is located at the origin of cartesian co-ordinate system

Illustration 7 :
and another charge Q at (2, 0, O)m. If X-component of electric field at (3, 1, 1)m is zero,

calculate the value of Q.
As shown in the figure, Position vector of

Solution :
qg = 107°C s (0, 0, 0) and position vector of Q is
(2, 0, O)m. Y
The co-ordinates of point P is (3, 1, 1) m. N F(3’ L1
"
1
'? =(3’ 1’ 1)_(0’ O’ 0)=(39 15 1) 0 ;-_2>
=
=3; + [+ ¢ f"'fq(o, 0,00 Q20,0
171 = J3*+@*+@? = V11 m.
n =G 1,1)-@2,0,0=(,11)m

=7+ +i

5= Jo*+@?+@? = +3 m.

Electric field at point P, E = El + 1?32
-9 4% ~on 2 S
q Q 10 (3l+_]+k)+Q(l+]+k)
= -y =+ — =
k 3 n kr23 T, k ( ,—11)3 (_\/5)3

gt

Now, x component of electric field is zero.

107 3,.Q
o E =k 3 31 =0
anz 3?2

. Q = — (%)% X 3 x 107° = —0.43 x 107 C.
F
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Illustration 8 : Four particles, each having a charge ¢, are placed on the four vertices of
a regular pentagon. The distance of each corner from the centre is a. Find the electric field

at the centre of the pentagon.
Solution : Let the charges be placed at the vertices A, B, C and D of the pentagon as

shown in figure. If we put a charge g at the corner E also, the field at O will be zero by
symm\etry.

;
y \ Therefore, g + g. + E. + E + F =0
erefore, E, E, E. E, E, =
— - - - —
E, T Ey * E. T E, = TEg

4

Thus, the field at the centre due to charges at A, B, C and
D is equal and opposite to the field due to the charges g at E

-4 alone.

The field at the centre due to the charge g at E is.

N
Eg

Thus, the field at O due to the charges on A, B, C and D is

= ka% (along EO).

= q . .
E = k? (along OE direction).

Illustration 9 : Four electric charges +¢q, +¢g, —g and —¢g are respectively placed on the
vertices A, B, C and D of a square. The length of the square is a, calculate the intensity of
the resultant electric field at the centre.

Solution : All the electric charges are equidistant from the centre O of the square, hence
the magnitude of intensity of electric field due to all the charges will be the same at point O.
If r is the distance of vertices from the centre, we have,

kq

4 tH 4 E,= E;= E= E= 2

The directions of these electric field are as shown in
figure.

If E' is the resultant field of E, and E. then

a ) & .

X T XN ' q
& E - =E, +E. =2-= 1
% N\e A C 2 (D

E

In a similar way E"' is the resultant field of E; and E,.

D —q —g C "o_ _ ~kq
q E'" = E, + E, =25 (2)

r

. . - - -
Resultant electric field, E = E' + E"

. E = /(E')2+(E")2 (" Angle between E' and E" is 90°)
kg ¥ (kg
= \/(2—2) +( —ZJ (from equation (1) and (2))
r r
8k’q> 242kq
=\ =T ©
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From the figure, (2r)* = a®> + a?

a

so2r = 2a2 S r = \/5
Putting the value of r in equation (3),

2\2kq
2
a_
%)
The direction of E is parallel to AD (or BC).
Ilustration 10 : An electron falls through a distance of 1.5 cm in a space, devoid of
gravity, having uniform electric field of intensity 2.0 X 10* N c. (Figure (a)). The direction
of electric field intensity is then reversed keeping its magnitude same, in which a proton falls

through the same distance. (Figure (b)). Calculate the time taken by both of them. m, = 9.1 x 107!

E =

kq

kg, m, = 1.7 X 10% kg and ¢ = 1.6 x 107" C.
Solution : As shown in the Figure (a), the direction of the electric field is vertically upward
because of which the electron experiences a force eE in the vertically downward direction.

The acceleration of electron,

®@ @ & @ ®@ ® ®@ @

Fy Fy ', 3
e E 4
— l =) — l =
F =¢ E F=¢E
L,
E
W L 3 v -~
®@ @ @ @ @ @ ©
Figure (a) Figure (b)

From the equation of motion d = vt + %at2 (considering v, = 0) the time taken by

electron to travel distance A.

;= 2h ,the
e a, - ¢E

Substituting the given data, we have 7, = 2.9 X 107% = 2.9 ns.

As shown in the figure (b) electric field is now in the vertically downward direction, the
proton experiences the electric force eE in the vertically downward direction.

. E
Therefore, acceleration of proton a = £
p m,

. . . 2hm

Therefore, the time taken by the proton to travel distance h is l, = eE”

Substituting the given data t, = 1.3 x 107s = 0.13us (microsecond).
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Hence, we can see that the time taken by a heavier particle is more than the time taken
by a lighter particle having the same magnitude of charge in a uniform electric field.

(On the contrary, as we have studied in Standard 11, the time taken for free fall in
gravitational field is independent of the mass.)
1.7 Electric Dipole

A system of two equal and opposite charges, separated by a finite distance is called
an electric dipole.

As shown in figure 1.8, the two electric charges of electric dipoles are +¢g and —¢q and

distance between them is 2a. Electric dipole moment (Z) of the system can be defined as
follows :

P =qa) (1.7.1)

The SI unit of electric dipole is coulomb-meter (Cm).

—q ; +q Electric dipole is a vector quantity and its direction is from
)] — ©) the negative charge (—¢q) to positive charge (+q).
|, 2 __I The net electric charge on an electric dipole is zero but

its electric field is not zero, since the position of the two

charges is different.
Figure 1.8 Electric Dipole

If im g — o and 2a — 0 in F = Z;q, then the electric dipole is called a point dipole.
Electric field of a Dipole :

To find the electric field due to an electric dipole, placed the co-ordinate system such that
its Z-axis coincides with the dipole and origin of system coincides with the centre of dipole. The
separation between the charges of the dipole +g and —¢ is 2a.

Here, we will determine the electric field at the point on the axis as well as point on the
equator of a dipole.

Electric field at the point on the axis of a Dipole :

N “z As shown in figure 1.9, we want to determine the
E+p electric field at a point P on the axis of a dipole. Let
2 Pz =2 the point P be a distance z from the origin. Hence, the

_‘r . . .

+44 :‘5{ distance of point P will be z — a and z + a from

G‘H"“* charges +qg and —q respectively.
. "'“-.._‘_ (_}(y =y Electric field at point P due to charge +¢ is,
0 —% § DY ‘
/ sin =g
: E sin ! E =k 5 b (1.7.2)
. G - E, + (z—a)
_.»="" E_ E cos® E_cosd

“dar Where, p is the unit vector along the dipole axis

Figure 1.9 Electric Field at the from —qg to +q.
Point on the Axis of a Dipole

. :’a)z p (1.7.3)

Now, Electric field at point P due to charge —q is, E_ = —k

According to superposition principle, the net electric field at point P is,

- = = 1 1 A dza
= + = k - = k — 5
E() = E, + E_ Q[(Z_a)z (z+a)2}p T2 P
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2kpz

E(z)=m

p (o 2aq = p) (1.7.4)

If z >> a, then a* can be neglected in comparison with z2.

- 2kp
E () = 3 p (z >> a) (1.7.5)

The direction of this resultant electric field is from O to P.
Electric Field at a Point on the Equator of a Dipole

The perpendicular bisector to the line joining the two electric charges of the dipole is called
the equator of a dipole. Here, we want to determine the electric field at a point Q on the
equator. Point Q is at a distance y from the centre of a dipole. The magnitude of electric field
due to the two charges +g and —g will be same since they are at equal distance from
point Q.

Magnitude of Electric field due to +q is,
E, = kﬁ (1.7.6)
Magnitude of Electric field due to —q is,

E = k—1 (1.7.7)
B (y2+a2)

- -
The direction of E _ and E _ at point Q are shown in Figure 1.9.

- - .
The components of E_, and E _ normal to the dipole axis are E_ sinf® and

E_sin® respectively. These components cancelled each other, since they are of equal magnitude

with opposite directions.

The components of E + and E_ along the dipole axis are E ,cos® and E_cosO respectively.

They will be added up since they are in the same direction.

A

The net electric field at point Q is opposite to p we have,

E(y) = —(E, + E_)cosB p

k ki . (2aq)
:_[ 2q2+2q2J%p:_k—§p
O +a”) (y +a") (y2+a2)2 (y2+a2)2
— k R
E() = -——2—5p (1.7.8)
(y* +a*)?
— kp R
If y >> a then, E(y) = —? D (y >> a) (1.7.9)

From the equations (1.7.5) and (1.7.9) it is clear that electric field of dipole at large

distance falls of not as % but as %
r r
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Behaviour of an Electric Dipole in a Uniform Electric Field :

Y“ As shown in figure 1.10, an electric dipole of
-
e =g
/H et |p| = q|2a_>| is kept in a uniform electric field E .
+q E .. . L .
Na % The origin O of co-ordinate system coincides with
0" - . D - L.
P /;0’6 Y the centre of a dipole and electric field E is in
L_//O > positive X-axis. Suppose, at any instant, the angle
= =g -
—4E q between p and E is O.

= - - .

The forces gE and —g E are acting on +¢q and

—q charges respectively. These forces are equal and
Figure 1.10 Electric Dipole in Uniform

o in opposite direction. The resultant force being zero,
Electric Field

keeps the dipole in translational equilibrium.
But, the two forces have different lines of action, hence the dipole will experience a torque.

A torque acting on +g with respect to point O, due to force qg is,
- N -
1, = (a X gE) (1.7.10)
In a similar way, the torque acting on —g with respect to point O due to force —qE) is,

t, = (—d) X (~qE) = (d X qE) (1.7.11)

Here, a and —a are the position vectors of +¢g and —g respectively.
From the equation (1.7.10) and (1.7.11) the resultant torque acting on a dipole,

T=(d XqE)+ (d XqgE)=2d XqE =2aq %X E
T= 7 XE (1.7.12)
Magnitude of torque, |?| = pEsin0 (1.7.13)

The direction of torque is perpendicular to the paper, going inside of it.

The torque rotates the dipole in such a way that the angle O reduces (In this case dipole
rotates in clockwise direction), when the dipole align itself along the direction of the electric
field (6 = 0), the torque becomes zero. This is the normal position of dipole in electric field.
If the dipole is to be rotated by an angle O from this position, work is required to be done
against the torque. This work is equal to the change in the potential energy of the dipole.

Behaviour of electric dipole in non-uniform electric field :

If the electric field is non-uniform the intensity of electric field will be different at different
points as a result the electric force acting on the positive charge and negative charge of the
dipoles will also be different. In this situation both the net force and torque are acting on the
dipole. As a result dipole experiences a linear displacement in addition to rotation. This rotation
of dipole continues only till the dipole aligns in the direction of the electric field. But linear
motion of the dipole will continue.

Our common experience is that when a dry comb is rubbed against dry hair, it attracts the
small pieces of papers.

Here, the comb acquires negative charge through friction. But the paper is not charged,
then why does paper attract by comb ?

s [ Physics 1



The non-uniform electric field is produced by the charge

on the comb. Electric dipole is induced along the direction of

non-uniform electric field in the small pieces of papers. Comb

Non-uniform Electric

When charged comb is brought near to the small pieces of
Field
paper, this non-uniform electric field exerts a net force on

. . . . Piece of Paper
the small pieces of paper and paper move in the direction of P

Figure 1.11 Electric Field of
comb. Comb

Ilustration 11 : Calculate the magnitude of the torque on an electric dipole having dipole
moment of 4 X 10~ Cm placed in a uniform electric field of intensity of 5 x 10* NC™! making
an angle 30° with the field.

Solution : p = 4 X 10° Cm, E =5 x 10* NC', 6 = 30°, © = ?

T = pEsin® = (4 x 107) (5 x 10%sin30° = 10~ Nm.

1.8 Continuous Distribution of Charges

We can determine the net electric force acting on a point charge due to the discrete
charges in the space using Coulomb’s law and superposition principle. But, in practical situation
we need to work with the continuous charge distribution. For example, a continuous charge
distribution on a surface. In this situation, it is difficult to describe the effect of these charges
using superposition principle. Therefore, we use the concept of charge density to describe the
system of continuous charge distribution. It is not necessary that charge density will be uniform
in the system.

The continuous charge distribution of electric charge can be of three types :

(1) Linear charge distribution, (2) Surface charge distribution and (3) Volume charge
distribution.

. e . z1
(1) Linear Charge Distribution : Consider a Lo dr'
continuous charge distribution over a line as shown in Nt
+
figure 1.12. We want to determine the force acting on a g T .
charge ¢ situated at point P due to this charge distribution. rlq
=3
Let the amount of charge per unit length of line be A. 0 d > Y
It is called the linear charge density.
X
Total Charge on a Line . . _
A= Length of a Line = %, Unit of A is Cm™’ Figure 1.12 Linear Charge

Distribution

If the charge distribution is not uniform, then A will be different at different points on the
line. In that case linear charge density is represented as M7 ") at a point on a line having

. -
position vector r

Imagine the line to be divided into a large number of small segments of length dl’". Such

N
a line element dl ' having position vector r ' with respect to O is shown in figure 1.12.

Hence, the charge in line element dl'" will be,

dg = M7 ") |dl'| (1.8.1)
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The force acting on charge g having position vector ¥ will be,

d g -
A = QYD o o) (1.8.2)

- 93
| r—r'l

In order to calculate total force acting on charge g we have to add the forces like d F
due to all the line elements of entire linear charge distribution. If the line elements of the
charges are distributed continuously then the sum results into integration.

Total force,

k(q)(d

- - >
i Ir—r'P

- -
Mr|dl'
F = kg f%(?—? ') (from equation 1.8.2) (1.8.3)
L lr=r'l
If the charge ¢ situated at point P is very small (¢ — 0), then the intensity of electric field
at that point due to linear charge distribution will be,

I, Ml
E = — =k J‘—>——>3(r—r ) (1.8.4)
q I lr—r'l

Illustration 12 : A circle, as shown in the figure, having radius ‘a’ has line charge
distribution over its circumference having linear charge density A = KOCOSZG. Calculate the total
2n

electric charge residing on the circumference of the circle. [Hint : jcoszede: ]
0

Solution : The length of an infinitesimally small line element shown in the figure is ad®,
then the charge on the line element is

dg = had® = A cos*® ad®

In order to calculate the total charge Q residing on the surface, we have to integrate dgq
over the entire surface.

_ado £ Q= $dg

Here the symbol § indicates the integration over the entire

> closed path (circumference of the circle)
2n 2n 5
. Q= [ngcos’0ad0 = ak, [ cos™0d0=mak,
0 0

Illustration 13 : A conducting wire of length L carries a total charge g which is uniformly
distributed on it. Find the electric field at a point located on the axis of the wire at a distance
‘a’ from the nearer end. (Neglect the thickness of a wire).

Solution : Consider a small element dx of the rod located at a distance x from point P

where the electric field is to be determined.
dx I i | I
[+ %+ &+l & F % FF------=cc-c-= P > »
A 0 B p

| A
| X !
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The charge in this element will be, dg = %dx

Hence, magnitude of electric field at point P will be,

d
dE = k5 = ki &
X L
Now, electric field at P due to entire wire,

L
S P T
o L 2 L X,
a a
_ k_q[_ 1 +l} — % q | q
- L L+a a] = “allL+a) = 4ng, a(L+a)

Note : If L << a, then E = a% which is same as electric field due to a point charge.

41‘[80

If the charge g is positive, the direction of the field will be along the AP.

Illustration 14 : An arc of raidus r subtends an angle © at the centre with the X-axis
in a cartesian co-ordinate system. A charge is distributed over the arc such that the linear
charge density is A. Calculate the electric field at the origin.

Solution : The electric charge distributed on the portion of arc making an angle d¢ is

dq = Ardo. VA
The electric field at the origin due to this
charge rdo
khrd
dE = %
5 dg
The electric field vector dE is shown in the dEcosd
- >N
. . = . | ) r
figure. Taking two components of dE : Y iEsing
- kardo ~ dE
dg, = - 2 cos¢ { and
S kardg
dEy =-"7 sind j
= [ kA [ k)
& R
Now, E = JdEx = - Icos¢d¢l =-7 [smq)]ol
0 0
E, =—%2sin0i (1)
= kA [ k) 0
Now, E = -~ £S1n¢d¢J === [~coso], j
>k _ R
E, = -7 [cosO 1] (2)
E = Ex + Ey = —% sin®i + %(cose -1 (From equations (1) and (2))
=S VWA .
E = “=[(—sin®)i + (cos® — 1);]

r
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Illustration 15 : A charge Q is uniformly distributed on the circumference of a circular
ring of radius a. Find the intensity of electric field at a point at a distance x from the centre

on the axis of the ring.
Solution : Given situation is depicted in the figure. Consider an infinitesimal element at point A

on the circumference of the ring. Let charge on this element be dg. The magnitude of the intensity

5
of electric field dE, at a point P situated at a distance x from the centre on its axis is,

dq dq

A 1
dE = — =k———>- 1
4ne, AP @+ (D
a 5 p dEcos0
o" - a 5> Its direction is from A to P. Now consider two

dEsmng components of d E), (i) dEsin®, perpendicular to the
axis of the ring and (ii) dEcos0, parallel to the axis.

Here it is clear that in the vector sum of intensities due to all such elements taken all over
the circumference, the dEsin® components of the diametrically opposite elements will meet each
other as they are mutually opposite. Hence only dEcos® components only should be considered
for integration.

. The total intensity of electric field at point P.

_ _ (x—Y%__op . _ oP
E = JdEcosG = Jk(a2+x2) AP (" cos® = E)
dq X .
E = k‘l.(a2+x2) 1 (from equation 1)
(a” +x7)?
VE=k——3 [ da = kXQ3:4nla e
(a2+x2)2 surface (a2+x2)2 0 (a2+x2)2

(2) Surface Charge Distribution
As shown in figure 1.13 suppose the charge is distributed continuously over a surface. We

want to determine the force on the charge g placed at point P having position vector 7 due
to these charge distribution.

7 4 Here, charge is distributed continuously over a surface
) A . .
Ia ;ﬁ 1 having surface charge density o(7 ).
] 7
- Surface charge density is the charge per unit area.
4)' F
r . __ Total Charge on the Surface _ Q . . )
q = Surface Arca =% Unit of 0 is Cm™~.
v Imagine the entire surface to be divided into large
0 *» Y
number of small surface element of dg'. The charge in
X > .
Figure 1.13 area element dgq' will be,
Surface Charge Distribution
dg = o(7") |da'| (1.8.5)
Force acting on charge g due to this charge (dg) will be,
(9)(dq)
dF = k(P =7 ) (1.8.6)
[ r—r'l

The total force on g due to charge on the surface can be determined by taking surface
integration of above equation,
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From equation 1.8.5 and 1.8.6,

S . Mddl - -,
F = [dF = qu(T:)—L;'(r—7 ) (1.8.7)
S s |lr—r'

If the charge at point P is very small, then electric field at that point,
7 o(r)|da ,

BoE g rlddl o o
4 s lr=r'l

Illustration 16 : As shown in the figure, a square having length a has electric charge
distribution of surface charge density 6 = G, xy. Calculate the total electric charge on the
square. The Cartesian co-ordinate system is shown in the figure.

Solution : As shown in the figure, consider an element of area dxdy at a point (x, y).
The charge on the area element is,

dq = o, xy dx dy At

‘. Therefore, the total electric charge on the surface,

a a 2 4 y2 ¢ 2\ 22
Q =g, J-xdx ' J-ydy =G 2| |2 ZGO[TJ(TJ ‘
0 0 0 0

(5614
0 | _—
4 0 il

[]

[x, vl

Q=

(3) Volume Charge Distribution
As shown in figure 1.14, suppose electric charge is distributed continuously over some

volume and volume charge density is p(7 '). zZ1 o
dy
Volume charge density is charge per unit volume.
_ Total Charge _ Q Unit of s Cm™3 3 Fq
= Total Volume v~ -mtobpis tm- .
E’
Imagine the entire volume divided into small volume 9 > Y
elements dV'. The charge in this volume element will be,
N Figure 1.14 Volume Charge
dq = p( r ')dV' Distribution

Force acting on the charge g at point P having position vector 7 due to charge dg will
k(q)(d
be dE = k (q)( q)(? 7
| r— FP
As explained earlier, the total force acting on charge g can be determined by taking volume
integration of above equation.

jp(r')dV' > _ o

de kq )

ViF—r'P
If charge g is very small, then electric field at point P will be,
F Jp( ryav

5
E =L =k
q

-7 ")

VIr—rI
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1.9 Electric Field Lines

tq P Electric field lines are the pictorial representation of the electric

field produced by the electric charge. Scientist Michael Faraday
introduced the concept of electric field lines and obtained important
results of electric field. (Faraday called these electric field of lines

i

as lines of electric force.)

An electric field line is a curve drawn in an electric field
in such a way that the tangent to the curve at any point is
in the direction of net electric field at that point.

In fact, an electric line of field is the path along which a

{

=

positive charge would move if free to do so.

Now we consider an example of electric dipole to understand

-4 the method of drawing electric field lines.
Figure 1.15 To Draw Electric We can use the equation of electric field to determine the
Field Line of an Electric

Dipole intensity of electric field at any point. As shown in figure 1.15

5

draw a vector of electric field (E,) at a point P, according to magnitude and direction at

electric field at that point. Now consider another point P' close to P and draw a vector of
-

electric field E , at that point according to its magnitude and direction. Similarly draw a vector

N
E, at point P"', very close to P'. Same way other vectors of electric field can be drawn.

P, P', P'" all these points are so close to each other that a continuous curve passes through
the tails of these vectors can be drawn. This curve represents the electric field line. Thus the
curve on which the tangents drawn at different points like P, P', P"' .. and so on, represent the
direction of the electric field at the respective points, is called the electric field line.

Characteristics of Electric Field Lines

(1) Electric field lines start from positive charges and end at negative charges.

(2) The tangent drawn at any points on the electric field lines shows the direction of
electric field at that point.

}52 (3) Two field lines never cross each other.
p If two lines intersect at a point, two tangents can be
drawn at that point indicating two directions of electric
field at that point which is not possible.

o

(4) Electric field lines of stationary electric charge
Figure 1.16 distribution do not form closed loops.
(5) The separation of neighbouring field lines in a region at electric field indicates the
strength of electric field in that region.

In practice, the number of field lines are so restricted

that the number of field lines passing through unit cross

sectional area about a point, kept perpendicular to electric
field lines is proportional to the intensity of electric field

at that point. If the field lines are close to each other, the

electric field in that region is relatively strong, if the field

Figure 1.17 Intensity of Electric
Field
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From the figure 1.17, it is clear that at point P, electric field is relatively strong than

electric field at point P,. J

A N
i | ey
\S@é/ \i\e/ﬁ/ & l;fif”{%ﬁff 5 / \
e\l
450 g <0 = o, S =

Figure 1.18 Electric Field Lines of Some Systems of Charges

(6) Field lines of uniform electric field are mutually parallel and equidistant.

Note : The electric field lines are geometrical representation of electric field and are not
real. But electric field is a reality.

Figure 1.18 shows the electric field lines of some systems of charges.

Here, the field lines are drawn in a plane but are actually they are in three dimensional
space.
1.10 Electric Flux

Coulomb’s law is the fundamental law in electrostatics, we can apply Coulomb’s law to find
electric field at any point. Another equivalent of Coulomb’s law is Gauss’s law. Gauss’s law is
useful to determine the electric field of the system of charges having symmetry. Before we
discuss Gauss’s law we discuss the concept of electric flux.

The concepts of electric flux relates the electric field with its source. Flux is simply a
mathematical concept which can be interpreted physically. Flux is a characteristics of all types
of the vector fields.

= =
> Al

/(I
; P/ /q\(/ 3
NN e e =

Ll
>
—| >

¥ = E
- S L/\/
/ AcosO
(a) (b) (c) ~
0=0,0d=EA ¢ = EAcosO 0 =90° ¢ =0

Figure 1.19 Electric Flux for Uniform Electric Field

Electric flux is quantity proportional to the number of electric field lines passing through
surface. (Here we use the word proportional because the number of lines we choose to draw

. : . . L = - .

arbitrary.) Consider a surface of area A placed in a uniform electric field E. Surface A is
-

perpendicular to E as shown in figure 1.19. Area A is vector quantity and its direction is

along the outward drawn normal to the area. Here, area vector A and E both are in the same
direction.

Electric field can also be defined in terms of the electric field lines. Electric field at any
point is the number of electric field lines are passing through a surface of unit area placed

Electric Charge and Electric Field - 25



perpendicular to the electric field at that point. Therefore, the number of lines passing through
surface of area A will be EA. This is an electric flux ¢ associated with the given surface.
Thus, electric flux is the number of lines passing through the surface. It is represented as ¢.
~ 0 = EA (1.10.1)
If the surface under the consideration is not perpendicular to the field, the number of lines

passing through it must be less. As shown in figure 1.19(b), if the surface of area A is making

an angle O with the direction of electric field E, then to determine the electric flux linked with

the surface, we have to consider the AcosO® component of the A parallel (or anti-parallel) to
the electric field. Hence, Electric flux linked with the surface is,

¢ = EAcos6 (1.10.2)
In the vector form,
O=E-A (1.10.3)

Electric flux is a scalar quantity. Its SI unit is Nm?> C™' or V m. From equation 1.10.2, it
is clear that flux can be positive, negative or zero. If the surface is parallel to the electric field

then, X 1 E Hence, the flux linked with surface will be ¢ = EAcos90° = 0. For 6 < 90°,

flux is positive and for O > 90° it is negative. If the field lines are entering in the close
surface, then flux linked with this surface is considered to be negative and if the field lines are
leaving the surface, the flux is considered to be positive. (See the figure 1.20).

o=20 o > 0 (Positive Flux) ¢ < 0 (Negative Flux)

Figure 1.20 Electric flux
Now, we will discuss the general definition of electric flux.

As shown in figure 1.21, consider an arbitrary surface in
the electric field. Divide this imaginary surface into small
surface elements. If the element is infinitesimally small and
surface is not highly irregular, each surface element can be
considered as a plane. In such a small element we can
consider an electric field to be uniform. Each of these small
surface element can be represented by an area vector. The
magnitude of this vector should be equal to the area of
surface element and direction is along the normal to the
surface. If the surface is closed, i.e. surface enclosed the
volume, then such vectors are drawn in outward direction of
closed surface.

Figure 1.21 Electric Flux
Linked with the Surface Placed
in Non-uniform Electric Field

Suppose the vector Aaj is an area vector of j™ element and the electric field at this

element is EJ,. As the area of this element is very small the electric field does not change

appreciably at all the points over the element. Hence, the electric flux associated with the j®
surface element will be.

0, = E; A0 (1.10.4)
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Total flux ¢ linked with the surface can be determined by adding the flux associated with
all such elements.

0= YE A0 (1.10.5)
J

lim
. - . _ . .
Taking |Aaj | >0, i.e. considering each element as small as possible, the summation taken

in equation 1.10.5 can be written as integration.

lim - =
¢ = |Aa 10 2E;- A0
J

0= [ Eda (1.10.6)

surface

Equation 1.10.6 is known as the surface integration of E over surface a.

Thus, the general definition of electric flux can be given as follows :

‘The flux lined with any surface is the surface integration of the electric field over
the given surface.’
1.11 Gauss’s Law d Zail,

The integration of electric field over a closed surface which E
enclosed the charges, leads us towards the Gauss’s law. Gauss’s
law is one of the fundamental laws of nature. To understand

this law, consider the following example :

Consider a point charge +¢g located at the centre O of the
sphere of raidus r. See figure 1.22. Now, we will determine the
total flux linked with the surface of a sphere.

According to definition of flux, total flux linked with the
Figure 1.22 Flux Associated

surface, with the Sphere

- -
O = jE.da = jEdacose (1.11.1)
S S

N

All the points on the surface are at equidistant from the centre, hence magnitude of E will
be same at every points at the surface. The electric field due to a point charge is radially
outward.

Hence, area vector 4; of each surface element will be along the direction of E(e = 0).
From equation 1.11.1

o = J-Eda (*cosO = 1)

N

= Ejda = g 7 X 4mr? (Area of the surface of sphere is 47'Er2)
4n80r
q
= = 1.11.2
o =3 ( )
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Here, the flux is independent of the radius of the sphere; hence it is true for any closed
surface. Equation (1.11.2) is the general result of Gauss’s law. Gauss’s law statement is as
follows, we will accept it without proof.

Guass’s Law : The total electric flux associated with any closed surface is equal to the
ratio of the net electric charge enclosed by the surface to €,

- 2q
a

= = (1.11.3)

N
Flux associated with any closed surface, ¢ = jE.d 2
N

The law implies that the total electric flux through a closed surface is zero if no charge

is enclosed by the surface.
Let us note some important points regarding this law :
(1) Gauss’s Law is true for any closed surface, no matter what its shape or size.

(2) The term g on the right side of equation (1.11.3), includes the sum of all charges enclosed

by the surface. The charges may be located anywhere inside the surface.

q, (3) The electric field appearing on the left hand side of

]
equation 1.11.3 is the electric field produced due to a

bl =

system of charges, whether enclosed by the surface or

outside it.

As for example ¢,, q,, q;, q, and g as shown in figure

1.23. To calculate the electric flux passing through surface

=g . . . .o, .
Surface (S) S, E is determined by taking the vector addition of the

Figure 1.23 electric fields at the surface due to all the charges, which
is used in the left side of the equation (1.11.3). But on the
right side of the equation (1.11.3) we should consider the charges ¢g,, g, and g, to calculate
net charge 2g.
Flux linked with the surface S,

_ q, +q,+qs
q) - 80

(4) The surface that we choose for the application of Gauss’s Law is called Gaussian
surface.

(5) Gauss’s Law is useful towards a much easier calculation of electric field when system
has some symmetry.

Ilustration 17 : An electric field prevailing in a region depends only on x and y

xi+ yf

. . . =g . .
co-ordinates according to an equation, E = bx2+y2 where b is a constant. Find the flux

passing through a sphere of radius r whose centre is on the origin of the co-ordinate system.
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Solution : As shown in the figure, 7 is the unit vector in the

. . d
direction of , .

’.\+ ¢+ A — x;‘l‘y‘;
Fo= r = w NOW, E = bﬁ
r X +y

~

N
E.

2 o N N 2 2
> | MW | xi+yi+zk ; _ bda X *+Y b
dd = b[ zj.fda = Iy > da

x2+y

R
‘[E-dz - b jda = boan = anbr
r r

¢ = 4mbr
Illustration 18 : Calculate the total electric flux linked with a circular disc of radius a,
situated at a distance R from a point charge q.

[Hint : er—r = — 1

——
(R2+r2)% \/(R2+r2)

Solution : Consider a thin circular ring of radius r and width dr as shown in figure. The
electric field intensity at some point P on the ring is given by,

- k g
dE|= 3 s
X

The area of the ring is ldd| = 2mrdr.

dd is perpendicular to the plane of the

ring and makes an angle 6 with dE . The flux 4
passing through the small area element of the
disc is given by,

do = |dE| |d a |cosO

k d
X—Z X 27rdr X % = 2mkgR X % = 2mkgR X % (v x> =R>+ 1)

R%+17)2

_ T rdr _ S S - 1L
- Total flux ¢ = 275qu.[ 3 = 2Tcqu! (R2+r2)] = 2mkgR [R I(R2+a2)]

0(R?+7%)2 0
Ilustration 19 : Q amount of electric charge is uniformly distributed on a ring of radius
r. A sphere of radius r is drawn in such a way that the centre of the sphere lies on the
surface of the ring. Calculate the electric flux associated with the surface of the sphere.
Solution : It is evident from the geometry of the sphere that

OP = O00' and O'P = 0'O. Hence, AOPO' is an equilateral
triangle.

. ZPOO' = 60° or ZPOQ = 120°

Hence, the chord PO'Q of the ring will subtend an angle 120°
at its centre. Hence, it is evident that the length of the chord will
be equal to one third of the circumference of the ring. The total

charge residing on this chord (enclosed by sphere) PO'Q will be
Q

equal to 3

From Gauss’s Law, the total flux passing through surface of the sphere is equal to %.
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1.12 Applications of Gauss’s Law

The electric field of any symmetric charge distribution can be easily determined by using
Gauss’s Law. Let us consider some examples.

(1) Electric Field_)Due to an Infinitely Long Straight Uniformly Charged Wire :

da TIP Q . An infinitely long and linear charge
/FE\ . i F\ distribution having uniform linear charge
— ' 1 £ —
euau=tly I SR i 1 1,da _____ density A is shown in figure 1.24. We want
Electric field \ ) to find the intensity of electric field at point
linear s Cylindrical ) ) )
K L s{Gaussian Surface P situated at a perpendicular distance r

Figure 1.24 Infinitely Long Wire having Linear Charge from the linear charge distribution.
Distribution
Since the wire is of infinite length, the electric field at all points line P, Q, ..... situated at

the same perpendicular distance from the wire will be same.

Now imagine a cylindrical Gaussian surface of radius r and length L, whose axis coincides
with the line of linear charge distribution. At all the points at such a cylindrical surface the
electric field is same and directed radially outward. The area of this curved surface of cylinder

is 2mrL and cross sectional area is Tr®. The charge enclosed by the cylinder of length L is
qg = AL
As shown in figure, electric flux associated with cylindrical surface of radius r and length
L is,
- -
o, = J‘E'da = JEdacosO = Ejda
. 0, = EQ2nrL) (1.12.1)
Now, the flux associated with the two end sides of cylinder perpendicular to axis is,
- -
o, = .[E-da = JEdacos90° =0

. Total flux, ¢ = ¢, + ¢, = 2nArL)E

According to Gauss’s Law, ¢ = 2mL)E = % = (2nrL)E = i;—L
. Y |
- E= ey T (1.12.3)

Electric field is in the direction of raidus, hence taking 7 as the unit vector in the direction
of radius.

A
27[80

E = p (1.12.4)

S =

Illustration 20 : An electric dipole is prepared by taking two electric charges of 2 X 107%c
separated by distance 2 mm. This dipole is kept near a line charge distribution having density
4 x 107*C/m in such a way that the negative electric charge of the dipole is at a distance 2 cm
from the wire as shown in the figure. Calculate the force acting on the dipole. Take kK = 9 x 10°
Nm?C~2,
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Solution : The electric field intensity at some point r .:

from continuous line charge distribution having density A I s "+ ’
is given by the following formula. + .
+ ¥ = o=l +
—2k\g » a + e e e e — >
FromE:%l:M,Ez 4; and?zwz + X
me, r r - r + r, —3lcm — ———>
2 mm
. P 2 1_17,
. Resultant force, F = F, + F = 2kA\g rr |
:2><9><109><4><1o—4><2><10—8[ L1 }
22x107  2.0x107% |

= —0.65{ N
(2) Electric Field Due to a Uniformly Charged Infinite Plane Sheet :
As shown in Figure 1.25, we want to find the electric field at point P situated at a
perpendicular distance r from the infinite plane sheet of uniform surface charge density ©
(The figure shows only a small part at the infinite plane sheet.)
It can be inferred from the symmetry that on either side and equidistant from the plane,

points like P and P' the magnitude of electric field will be same. But the direction of electric
field at these two points are perpendicular to the plane and mutually opposite. (If the charge
on the plane is positive / negative, the direction of the field will be away / towards the plane).

As shown in the figure 1.25 consider a close Infinite Plane

cylindrical Gaussian surface having cross-sectional area = o I of Charge
. . . . + £
A and equal length on either 81d'e of t'he cylinder. The da (_, ~(.-..f 4 ( 07
charge enclosed by the close cylinder is ¢ = OA since E‘:é : o 91- E
the surface charge density of plane is O. Pl : + | Gaussian
&
The flux linked with the curved surface of i Surface

cylinder is Figure 1.25 Electric Field due to

Infinite Plane Sheet of Uniform

5
o, = JE dd JEdacos90 =0 (1.12.5) Surface Charge Density

- )
because for curved surface, E and d_a> both are perpendicular to each other.

The flux linked with the surface of area A at the end of cylinder at point P is,

E-dd = [Edacos0 = [Eda = EA (1.12.6)
Same way, flux linked with surface area A at point P' is, (bp, = EA (1.12.7)

Thus, total flux, ¢ = ¢, + (j)p + ¢, =0+ EA + EA = 2EA

According to Gauss’s Law, ¢ = 2EA = %
A
= 2EA = ‘;—0 (" g = OA)
R (1.12.8)
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This equation shows that electric field at a point is independent of the distance of the point
from the plane.

Electric field in a vector form is represented as,

g _ fo] N

E = 2 A (1.12.9)

Where, 7 is a unit vector normal to the plane and going away from it. If the charge on

a plane is negative, then E is towards the plane and perpendicular to it.
Equation (1.12.8) is used to calculate the electric field intensity and direction of the electric

field between two planes having surface charge density G, and O,.

5 5,
i K. Two parallel planes S, and S,
" i i " having surface charge density O, and
E, —BE,
i E M . O, respectively are shown in figure
2 1 2
E, ] — ] — — —

; | R | o 1.26. E, and E, are the electric
s —_— field produced due to the charge on
E=E, +€ M Z_Bim N E=E +E, .

TR | E.=E/+E, I N the S, and S, respectively.
5] 62 From the figure, electric field at
Figure 1.26 point P,
o 2 2 _% % 9% , o
E, = E + E, = 2%, + %, © 2% (in S,S, direction)

Electric field at point Q,

g 0,70, . . .
+ E, = 2, (in S,S, direction)

Electric field at point R, (for ¢, > ©,)

— — - 01—02
ER = El =+ E2 = 28

(in S,S, direction) (1.12.10)
0

Illustration 21 : A particle of mass m and charge g is attached to one end of a thread.
The other end of the thread is attached to a large, vertical positively charged plate, having
surface charge density G. Find the angle the thread makes with the plate vertical in equilibrium.

Solution : Electric field produced due to positively charged plane is,

The forces acting on the charge and components of the
tension (T) produced in string are shown in the figure.

MTcosO
In the equilibrium,

T cos® = mg and T sin® = gE

£=
i Tsin® qE gE qo

.tan9=m—g=m

)
mg o0 = tan_l(z,zggoj

:
]
+

= [ Physics 1



(3) Electric Field Due to a Uniformly Charged Thin Spherical Shell :

Let 0 be the surface charge density on a spherical shell having radius R, as shown in
figure 1.27. Therefore, total charge on the shell,

g = OA = O(4mR?)
The electric field produced from such a spherical shell is radial. We want to determine the
electric field at points inside and outside the spherical shell.

Gaussian Surface

+

s +

.+
herical Shell
Spherical She Gaussian Surface"“--..___.d,-ﬂ"’j

(a) (b)
Figure 1.27 Electric Field of a Spherical Shell

(1.12.11)

(1) For a Point Lying Inside a Shell : Consider a spherical Gaussian surface of radius

r'(r' < R), concentric with the shell (See figure 1.27)

Since the charge enclosed by such a surface is zero then according
to Gauss’s Law,

- o
jE.da =< =0 (v g =0
E =0

Thus, electric field inside the charged spherical shell is zero.
(2) For a Point Lying Outside the Shell :

(1.12.12)

To determine electric field outside the shell, consider a spherical Gaussian surface of radius

r(r > R). (See figure 1.27 (b))
According to Gauss’s Law, flux linked with this surface,

jE.dZ = %

q - . . .
IEdacosO =z (o E and 4 4 are in the same direction.)

4a
€

E(4nr?)

. _ 1 g
'E_4n80r2

For an electric field on the surface of a shell, put r = R.

1 49
E = =
dme, R

Electric Charge and Electric Field

(1.12.3)

(1.12.4)

R



Equations 1.12.3 and 1.12.4 shows that for an electric field outside the sphere the entire
charge on a shell can be treated as concentrated at its centre.

Putting, ¢ = (47R*C in equation 1.12.4

1 (47‘[R2)G

E =

dme,, 72

(1.12.5)

Figure 1.28 shows the variation of electric field
intensity with distance from the centre O to the

region outside the uniformly charged spherical shell.

Inside the shell E = 0. The magnitude of E is

maximum on the surface (r = R). However, outside

L

0 r
(distance from centre of sphere)

1
he shell electric fiel T rdin 3.
Figure 1.28 Electric Field of a Spherical Shell the shell electric field decreases) according to r2

(4) Electric Field Intensity Due to Uniformly Charged Sphere :

"‘EE Let p be the volume charge density of a charged

sphere having radius R as shwon in figure 1.29. The

charge inside the sphere is
Gaussian sphere

inside the
| surface 4
/ q = (3TRO)p. (1.12.6)
A ~—Gaussian sphere
e - outside the
R surface The electric field due to such a sphere is radial.
Figure 1.29 Electric Field due to We want to determine the electric field at points

Uniformly
Charged Sphere
(1) For Point Lying Inside the Sphere : Imagine spherical Gaussian surface of radius r'

inside and outside for such a charge sphere.

(where r' < R) concentric with sphere to determine the electric field at a distance r' (point P")
from the centre of sphere. The charge enclosed by such a sphere is.

4
q' = (gﬂ:r'3)p (1.12.7)
_ 4.3 q .
= 37 X 7] (From equation 1.12.6)
—ﬂ:R3
3
1 r'3
.q' = q? (1.12.8)
The flux linked with the Gaussian surface.
Baz = L
J‘ aa €y
3
12 qr .
E@mr ©) = R (From equation 1.12.8)
g
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q r' '
fE = Gpg 18 (for r' < R) (1.12.9)

i.e. Inside the sphere, E o r'
By putting the value of g from equation 1.12.6, we can represent electric field in terms of
charge density.

pr'

3 (for r' < R) (1.12.10)
0

E =

(2) For Point Lying Outside the Sphere : Now, consider a Gaussian surface of radius r
(where r > R). The centres of two spheres coincide with each other. The charge enclosed by this
surface is g. According to Gaussian’s Law.

- - i
jEd(l = 80
q
Eda = -
[Eda g
E@nd) = o
1 4
E= gz (for r 2 R) (1.12.11)

This shows that a point outside the sphere the entire charge of the sphere can be

considered as concentrated at its centre. Thus, for a point outside the sphere, E o 2

In above equation put g = (%nR3)p,
We can have electric field in terms of p.

3

R
E = —F A (1.12.12)
3rig,
E
. . . E_ oEsess
Figure 1.30 shows the variation of electric mas 't
field intensity with distance r from the centre O Q)O” | E o ﬁ
to the region outside the charged sphere. Note '
that electric field on a surface of sphere is '_ 5
0 r=R I distance from
. centre of sphere
maximum (E = 1 iz) R b
47T80 R Figure 1.30 Electric Field of a Charged

Sphere

SUMMARY

1. Electric Charge : Just as masses of two particles are responsible for the gravitational
force, charges are responsible for the electric force. Electric charge is an intrinsic
property of a particle.

Charges are of two types : (1) Positive charge (2) Negative charge.

The force acting between two like charges is repulsive and it is attractive between two
unlike charges.

The SI unit of charge is coulomb (C).
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Quantization of Electric Charge : The magnitude of all charges found in nature are in
integral multiple of a fundamental charge. Q = ne where, e is the fundamental unit of
charge.

Conservation of Electric Charge : Irrespective of any process taking place, the
algebraic sum of electric charges in an electrically isolated system always remains
constant.

Coulomb’s Law : The electric force between two stationary point charges is directly
proportional to the product of their charges and inversely proportional to the square of the
distance between them.

94, 1 44
F =k =
72 dng, 2

If g,q, > 0, then there is a repulsion between the two charges and for g,q, < 0 there
is an attractive force between the charges.

Electric Field Intensity : The force acting on a unit positive charges at a given point
in an electric field of a system of charges is called the electric field or the intensity of

electric field (E) at that point.

ﬁ
E =

o1

The SI unit of E is NC! or Vm™.
If 7, o, .. r_; are the position vectors of the charge g, g,, .... g, respectively then

1° 20

neot electric field at a point of position vector 7 s,

- & q; S5 o
E=kX557 (F=r)

N
= 3
= r—r.|

>

Electric Dipole : A system of two equal and opposite charges, separated by a finite
distance is called an electric dipole.

Electric dipole moment 17 = (2 a )q
The direction of ; is from the negative electric charge to the positive electric charge.

Electric field of a dipole on the axis of the dipole at point z = z,

= 2kp N
E(z) = ? p (for z >> a)

Electric field of a dipole on the equator of the dipole at point y = y.

E(y) = —7 p (for y >> a)

The torque acting on the dipole place in the electric field at an angle ©,

- -
T

- - .
= p X E, |t| = pEsin®
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9. Electric Flux : Electric flux associated with surface of area Z, placed in the uniform

electric field.
0 = E.A = EAcos®

. = -
where O is the angle between E and A .

Its unit is Nm?C! or Vm.

10. Gauss’s Law : The total electric flux associated with the closed surface,

= o Zq
0 J da £
S
where 2q is the net charge enclosed by the surface.
11. Electric field due to an infinitely long straight charged wire,

_> . . . .
E = ﬁ % 7, where, r is the perpendicular distance from the wire.
0

12. Electric field due to uniformly charged infinite plane, E = 2;:0

13. Electric field due to uniformly charged thin spherical shell,
(1) Electric field inside the shell E = 0.

(2) Electric field at a distance r from the centre outside the shell,

_ .49 _ o
E—kr2—8

R?
2
0o r

, where R = radius of spherical shell.
14. Electric field due to a uniformly charged sphere of radius R,
(1) Electric field inside the region of the sphere :

Q r _ pr

T Amg F T 3

(2) Electric field outside the sphere,

R3p
3r280

Q

dmte

1
E() = Jag 17 =

where, Q is the total charge inside the sphere.

EXERCISE

For the following statements choose the correct option from the given options

1. The force acting between two point charges kept at a certain distance is ¢. Now
magnitudes of charges are doubled and distance between them is halved, the force acting
between them is .........

(A) o (B) 40 (C) 80 (D) 160
2. An electric dipole is placed in a uniform field. The resultant force acting on it .......... .

(A) always be zero (B) depends on its relative position

(C) never be zero (D) depends on its dipole moment.
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10.

11.

12.

An electric dipole is placed in an electric field of a point charge, then ..........

(A) the resultant force acting on the dipole is always zero

(B) the resultant force acting on the dipole may be zero

(C) torque acting on it may be zero

(D) torque acting on it is always zero.

When an electron and a proton are both placed in an electric field .......... .

(A) the electric forces acting on them are equal in magnitude as well as direction.
(B) only the magnitudes of forces are same

(C) accelerations produced in them are same

(D) magnitudes of accelerations produced in them are same.

The electric force acting between two point charges kept at a certain distance in vacuum
is o. If the same two charges are kept at the same distance in a medium of dielectric
constant K. The electric force acting between them is .......... .

(A) o (B) Ko (C) Ko (D) /K

The distance between two point charges 4g and —q is r. A third charge Q is placed at
their midpoint. The resultant force acting on —¢g is zero then Q = .......... .

(A) —q (B) q (C) —4q (D) 4q
The linear charge density on the circumference of a circle of radius ‘a’ varies as
A = Ajcos6. The total charge on it is ....... )

(A) zero (B) infinite ©) TEa?LO (D) 2ma

Two identical metal spheres A and B carry same charge g. When the two spheres are
at distance r from each other, the force acting between them is F. Another identical
sphere C is first brought in contact with A, then it is touched to sphere B and then
separated from it. Now the force acting between A and B at the same distance is ..........

(A) F (B) 2F © ¥ D) +

Two point charges of g and 4q are kept 30 cm apart. At a distance .......... , on the
straight line joining them, the intensity of electric field is zero.

(A) 20 cm from 4q (B) 7.5 cm from g¢q

(C) 15 cm from 4q (D) 5 cm from ¢

The dimensions of permittivity [€)] are ......... .Take Q as the dimension of charge.

(A) MlL—2T—2Q—2 (B) M—ILZT—3Q—1 (C) M—IL—3T2Q2 (D) M—1L3T—2Q—2

The electric dipole moment of an HCL atom is 3.4 x 10° Cm. The charges on both
atoms are unlike and of same magnitude. Magnitude of this charge is .......... . The

(&)
distance between the charges is 1 A

A) 17 x 1020 C B)34x102C € 68x102°C D) 34x10"°cC

There exists an electric field of 100 N/C along Z—direction. The flux passing through a
square of 10 cm sides placed on XY plane inside the electric field is .......... .

(A) 1.0 Nm¥C  (B) 2.0 Vm (C) 10 Vm (D) 4.0 Nm*C
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14.

15.

16.

17.

18.

19.

20.

21.

The radius of a conducting spherical shell is 10 mm and a 100 pC charge is spread on

it. The force acting on a 10 UC charged placed at its centre is .......... k=9 x10°
MKS.
(A) 10°N (B) 10°N (C) zero (D) 10°N

When a 10 pC charge is enclosed by a closed surface, the flux passing through the
surface is ¢. Now another —10 UC charge is placed inside the closed surface, then the
flux passing through the surface is ..........

(A) 20 (B) ¢ (©) 40 (D) zero
An electric dipole is placed at the centre of a sphere. The flux passing through the
surface of the sphere is .......... .

2
(A) Infinity (B) zero (C) cannot be found (D) S—Oq

Two spheres carrying charge ¢g are hanging from a same point of suspension with the
help of threads of length 1 m, in a space free from gravity. The distance between them
will be .......... .
(A) 0 (B) 0.5
C) 2 m (D) cannot be determined.
One point electric charge Q is placed at P. A closed surface is placed near the point P.
The electrical total flux passing through a surface of the sphere will be
€0 Q

(A) Q g B) © & (D) zero
Charge Q each is placed on (n — 1) corners of a polygon of sides n. The distance of
each corner from the centre of the polygon is r. The electric field at its centre is ..........

Q Q Q -1, Q
(A) k3 B) n — 1) k3 (© k> ®) ks

r r r r
When two spheres having 2Q and —Q charge are placed at a certain distance, the force
acting between them is F. Now they are connected by a conducting wire and again
separated from each other. How much force will act between them if the separation now
is the same as before ?

(A) F ®) % © £ (D)

o1

The number of electric field of lines emerged out from 1 C charge is ..........
(g, = 8.85 x 107'* MKS)
(A) 9 x 10° (B) 8.85 x 10? (C) 1.13 x 10" (D) infinite

When 10" electrons are removed from a neutral metal plate through some process, the

charge on it becomes .......... .

(A) —-1.6 C B) + 1.6 C (©) 10° C D) 107 C
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22,

23.

24.

25.

A charge Q is placed at the centre of a cube. The electric flux emerging from any one
surface of the cube is .......... .

(A) % (B) % © % (D) %

The liquid drop of mass m has a charge g. What should be the magnitude of electric field
E to balance this drop ?

A = ®) £ (©) mgq D)

As shown in figure the electric flux associated with close surface is ..........

« 2 3 2
(A) g—j (B) g—z
q
.q ©) g (D) zero

As shown in the figure, g charge is placed at the open end of the cylinder with one end
open. The total flux emerging from the surface of cylinder is .......... .

4 2q
(A) & (B) &

®q q
©) 2, (D) zero

ANSWERS

1. D) 2. (A) 3. (0 4. (B) 5. (D) 6. (A)
7. (A) 8. (O) 9. (A) 10. (C) 11. (B) 12. (A)
13. (C) 14. (D) 15. (B) 16. (C) 17. (D) 18. (A)
19. (D) 20. (C) 21. (B) 22. (D) 23. (A) 24.(D)
25. (C)

Answer the following questions in brief :

1.
2.

p—
[y

S PN, R W

How many number of protons of the charge is equivalent to a 1 uC ?

Two identical metal spheres of equal radius are taken. One of the spheres has charge of
1000 electrons and another has charge of 600 protons. When the two spheres are brought
in contact with copper wire and removed, what will be the charges on each sphere ?
If g,q, > 0, which type of the force acting between two charges ?

What is a test charge ? What should be its magnitude ?

Define the electric dipole moment and give its SI unit.

What will be the torque acting on the dipole if it is placed parallel to the electric field.
Explain the behaviour of electric dipole placed in the non-uniform electric field.

Give the statement of Gauss’s Law.

Why does the two electric field lines not intersecting each other ?

Draw the electric field lines of electric dipole.

A charge enclosed by the spherical Gaussian surface is 8.85 X 1078C. What is the

electric flux linked with this surface ? If the radius of sphere is doubled, what is the
electric flux ?
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12. Write the conservation law of electric charge.

13. An electric dipole is placed at the centre of the cube. What is the total electric flux
linked with the surfaces of the cube ?

Answer the following questions

1. Write the Coulomb’s Law and represent the forces between the two charges in vector
form.

2. Explain the linear charge density, surface charge density and volume charge density. Also
give their units.

3. What is electric field ? Explain, giving the characteristics of the electric field.

4. Obtain the expression of the electric field at a point on the axis of the electric dipole.

5. Obtain the expression for the torque acting on the electric dipole place in the uniform
electric field.

6. Write the characteristics of the lines of the electric field.

7. Write and explain the Gauss’s Law.

8. Obtain the expression of the electric field due to an infinitely long linear charged wire
along the perpendicular distance from the wire.

9. Derive the expression of the electric field produced due to uniformly charged infinite
plane.

10. Using Gauss’s Law, find the intensity of the electric field inside and outside the charged
sphere having uniform volume charge density.

Solve the following examples

1. A metal sphere is suspended through a nylon thread. When another charged sphere
(identical to A) is brought near to A and kept at a distance d, a force of repulsion
F acts between them. Now A is brought in contact with an identical uncharged
spheres C and B also brought in contact with an identical uncharged sphere D and
then they are separated from each other. What will be the force between the

spheres A and B when they are at a distance % ? [Ans. : F]

2. Two identically charged spheres are suspended by strings of equal length. When they are
immersed in kerosene, the angle between their strings remains the same as it was in the
air. Find the density of the spheres. The dieletric constant of kerosene is 2 and its density

is 800 kg m™. [Ans. : 1600 kg m™]

3. Three point charges 0.5 UC, —0.25 UC and 0.1 UC are placed at the vertices A, B and
C of an equilateral triangle ABC. The length of the side of triangle is 5.0 cm. Calculate
resultant force acting on the charge placed at point C. k = 9 x 10° SI.

[Ans. : E = 0045 3, ¥3)N]

4. Three identical charges g are placed on the vertices of an equilateral triangle. Find the
resultant force acting on the charge 2g kept at its centroid. (The distance of the centroid
from vertices is 1 m). [Ans. : Zero]

5.  An electric dipole of momentum F is placed in a uniform electric field. The dipole is

rotated through a very small angle 0 from equilibrium and is released. Prove that it

executes simple harmonic motion with frequency f = ﬁ JPT. Where, I = moment of

inertia of the dipole.
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10.

11.

12.

2

The surface charge density of a very large surface is —3.0 X 10°°Cm™. From what

distance should an electron of 150 eV energy be projected towards the plane so that its
velocity becomes zero on reaching the plane ? Charge of an electron = 1.6 X 107¢c,
1 eV =16x10"] g =9 x 107" SL [Ans. : 9 X 107'm]
Two small, identical spheres, one positively charged and another negatively charged are
placed 0.5m apart attract each other with a force of 0.108N. If they are brought in
contact for some time and again separated by 0.5m, they repelled each other with force
of 0.036N. What were the initial charges on the spheres ?

[Ans. : g, = £3.0 X 107°C, q,= ¥10 X 107°C]
Two charged particles of mass m and 2m have charges +2¢g and +¢q respectively. They
are kept in a uniform electric field far away from each other and then allowed to move
for some time f. Find the ratio of their kinetic energy. [Ans. : 8 : 1]

A simple pendulum is suspended in a uniform electric field

=

E as shown in the figure. What will be its period if its length
is [ ? Charge on the bob of pendulum is g and mass is m.

E
0
/ [Ans.:T:ZTE' l T |
3 22 2
2 qg°E° 2gqE
J[g +7—TC’0S6J

A charge of 4 X 107%C is uniformly distributed over the surface of sphere of radius lcm.

Another hollow sphere of radius Scm is concentric with the smaller sphere. Find the
intensity of the electric field at a distance 2cm from the centre. kK = 9 X 107 SI.
[Ans. : 9 X 10° NC™']

A An arc of radius r, lying in the first quadrant is
M shown in the figure. The linear charge density on
the arc is A. Calculate the magnitude and direction

of electric field intensity at the point of origin.

[Ans. : E = 3@, making an angle 45° with

O
X-axis in the third quadrant]

A particle of mass 5 X 107 kg is held at some distance from very large uniformly charged
plane. The surface charge density on the plane is 4 X 10°C/m>. What should be the charge
on the particle so that the particle remains stationary even after releasing it ?
g, = 885 x 107°C*°N"'m™, g = 9.8 ms™

[Ans. : ¢ = 2.17 x 1075C)
In the hydrogen atom, an electron revolves around a proton in a circular orbit of radius
0.53 A . Calculate the radial acceleration and the angular velocity of the electron.

m, = 9.1 X 107" kg, e = 1.6 x 107°C.
[Ans. : a, = 9.01 X 10 m/s>, ® = 39 X ' rad/s)
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2.1 Introduction
In Chapter 1, we learned about the types of electric charge, the forces acting between the
charges, the electric fields produced by a point charge and by different charge distributions and

ELECTROSTATIC POTENTIAL AND CAPACITANCE

Gauss’ theorem. The force acting on a given charge ¢ can be found by knowing the electric
field. Now, if the electric charge is able to move due to this force, it will start moving and in
such a motion work will be done. So, now in this chapter we shall study in detail, the physical
quantities like electrostatic energy, electrostatic potential that give information about the work
done on the charge. Moreover electric potential and electric field, both the quantities can be
obtained from each other. We will also know the relation between them.

A simple device which stores the electric charge and electrical energy is a capacitor. We
shall also study about the capacitance of a capacitor, the series and parallel combinations of
capacitors, the electrical energy stored in it, etc. The capacitors are used in different electrical
and electronic circuits e.g. electric motor, flashgun of a camera, pulsed lasers, radio, TV etc.
At the end of the chapter we shall see about a device—with the help of which we can get a
very large potential difference—Van de Graaff generator.

2.2 Work done during the Motion of an Electric Charge in the Electric Field

We had seen in Chapter-1 that when an electric

charge ¢ is placed at a point in an electric field E ,

= - . . .
a force F = ¢gE, acts on it. Now, if this charge
is able to move, it starts moving. To discuss the
work done during such a motion, initially we will

consider a unit positive charge.

As shown in the figure 2.1, we want to take a

unit positive charge (¢ = +1 C charge) from point

A to point B, in the electric field produced by a

point charge (Q), and also want to find the work

done by the electric field during this motion.
Many different paths can be thought of to go from
A to B. In the figure 2.1 ACB and ADB paths are  Figure 2.1 Work during the Motion of a

shown as illustrations. Charge
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According to the definition, the force on the unit positive charge at a given point, is

kQ)

5
the electric field E at that point. According to the formula E = > this force varies
r

continuously with distance. Hence the work done by the electric field on unit positive

charge in a small displacement is given by dW = gd_; and the work done during

-

R
A to B by W,, = JEdr (2.2.1)

> —w

B
- >
Here, _[E'dr is called the line integral of electric field between the points A and B.
A

ACB Path : (1) First, we go from A to C on the circular arc AC having radius OA and

then we go from C to B in oc direction. The electric field produced by Q, is normal to the

- - C—> -
arc AC at every point on it (the angle between E and dr = 90°). Hence W,. = ,[E'dr = 0.
A
The work done by the electric field on the path CB, is
B
- [E-ar 2.2.2
W = ! r (2.2.2)
BkQ B | 17
= %4 ariy = kol tar = kQ [}
cr cr c
1 _ 1
W = kQ |73 s (2.2.3)
Thus, on the path ACB, the work done by the electric field
1 _ 1
Wip = Wae+t W = kQ |:rc rB} (2.2.4)

Here, since Fo < Iy, it is self-evident that this work is positive.
(2) Path ADB : From A to D, just like the above, the work done by the electric field is

1 1
obtained as W D = kQ {a - g} Moreover, since the electric field is normal to the arc DB,

the work done in this motion = O.
Hence the work done by the electric field on ADB path is

1 _ 1
Wos = Wop + W = kQ{rA rD} (2.2.5)
Here |r]_;| = |r;| and |r:| = |rg|. Hence from equations 2.2.4 and 2.2.5,
1_1
Wiee = Waps = Wyp = kQ | 7077 (2.2.6)

Thus, in an electric field, the work done by the electric field in moving a unit positive
charge from one point to the other, depends only on the positions of those two points and
does not depend on the path joining them.
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Now, if we move the unit positive charge from point B to A, on any path, the work done
by the electric field, will be given by (according to equation 2.2.6)
11
Wiy = kQ | 5577y (2.2.7)
If a unit positive charge is taken from point A to B on any path and then is brought back
to A on any path, a closed loop is formed (e.g. ACBDA or ADBCA) and on this closed loop

the total work done by the electric field (§ E-J;); will be W . + W, = 0 (using equations
2.2.6 and 2.2.7). You are aware of the fact that a field with this property is known as a
conservative field. Thus electric field is also a conservative field. [In Standard 11 you had
also seen that the gravitational field is also a conservative field.]

Although we have considered the work done on unit positive charge, all these aspects are
also applicable to the work done on any charge q, but for that, the right hand side of the above
equations for the work, should be multiplied by ¢. e.g., Work for A to B will be W, =
B

- -
qu~dr. Moreover, you will be able to understand that instead of the work done by the
A

electric field, if we want to find the work required to be done by the external force
against the electric field (for the motion without acceleration), then the negative sign will
have to be put on the right hand side of the above equation (2.2.1) for the work. Hence for

B

unit positive charge, such a work will be given by WA'B = —J‘ﬁjr) which is the same in
A

magnitude as work given by equation 2.2.1 but has the opposite sign to it. For charge q such

. . " ¢ =
a work will be given by W, = —qu-dr .
A

B
From this discussion we should remember that JEJ}, that is the line integral of electric
A

field between A to B — is the work done by the electric field in moving a unit positive charge

from A to B and it does not depend on the path. Moreover, f’E)d_r) = 0. E-ar is also

sometimes written as E -4/ where g/ is also a small displacement vector
2.3 Electrostatic Potential

We know that the work done by the electric field in moving a unit positive (+1 C) charge
from one point to the other, in the electric field, depends only on the positions of those two
points and not on the path joining them.

If we take a reference point A, and take the unit positive charge from point A to B; A

to C; A to D; ... etc in the electric field, then the work done by the electric field is obtained
B C D
- - - - - - i . .
as W, = iE'dr, W, = ;[E'dr, W, = ;[Edr,... respectively. But the reference point A is

already fixed, hence the above mentioned work depends on the position of the other points

(B, C, D, ...) only. Conventionally the reference point is taken as a point at infinite distance

from the source of electric field. Hence to bring a unit positive charge from that point to a
P

point P in the field, the work done by the electric field is given by the formula W_, = jﬁci_r)

oo
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and it becomes the function only of the position of point P. But, if we want to find the work
required to be done against the electric field; in order that the motion becomes ‘“motion
without acceleration,”

N

P
the formula W;p = — JE'dr has to be used.

An important characteristic of an electric field is called electrostatic potential and with
reference to the work done on unit positive charge, it is defined as under :

“Work required to be done against the electric field in bringing a wunit positive
charge from infinite distance to the given point in the electric field is called the
electrostatic potential (V) at that point.”

Here the meaning of ‘“against the electric field” is actually ‘‘against the force by the
electric field”. We will call the electrostatic potential as electric potential in short.

According to the above definition, the electric potential at a point P is given by the formula

P
v, = —jg.d—; (2.3.1)

In other words this formula represents the definition of electric potential.
From this formula the potential difference betwen points Q and P is given by

Q—> - P—> -
V, -V, = -[B-ar |- |-[E-ar (2.3.2)
L P P
- - - - - -
= jE'dr —+ JE r = J.E'dr (2.3.3)
Q oo Q
Q
- -
- _[Ea (2.3.4)
P

This potential difference shows the work required to be done to take a unit positive
charge from P to (), against the electric field and in that sense it also shows the potential
of Q with respect to P. Very often the potential difference is in short written as p.d. also. The
unit of electric potential (and hence that of the potential difference also) is joule / coulomb

joule

which is called volt (symbol V) in memory of the scientist Volta. i.e., volt = ————
coulomb

I
ok
Electric potential is a scalar quantity. Moreover, we have obtained electric potential from the

V = It’s dimensional formula is M'L>’T3A™".

vector quantity-electric field E (See equation 2.3.1). In future we will also obtain electric field

. . . . . . . = .
from the electric potential. In the calculations involving electric field E, its three components

Ex, Ey, EZ have to be considered and the calculations become longer, while in the calculations

involving the electric potential, only one scalar appears and hence the calculations become
shorter and easier. Hence the concept of electric potential is widely used. Absolute value of
electric potential has no importance, only the difference in potential is important.
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[For Information Only : Galvani (1737—1798) produced electricity by placing two different
metallic electrodes in the tissue of frog. He called it Animal Electricity. Volta explained that the
above process had nothing to do with the characteristics of the frog, but one can generate
electricity by placing two dissimilar metallic electrodes on any wet body. He was the one who
designed the electro chemical cell, which we studied earlier as voltaic cell.

The importance of electric potential in electricity is similar to the importance of
temperature in thermodynamics and the height of fluid in hydrostatics. The electricity flows
(i.e. the electric current flows) from an electrically charged material having higher electric
potential to an electrically charged material having lower electric potential. Quite similar to
water, which flows from a higher level to a lower level or like the flow of heat which flows
from a region having higher temperature to a region having lower temperature. Thus, the direction
of the flow of electric current between two materials depends on their electric potentials.]

Ilustration 1 : Suppose an electric field due to a stationary ‘r’h
P(2,8)

charge distribution is given by E = ky; + kxj, where k is a '
—_—

constant. (a) Find the line integral of electric field on the linear dr
path joining the origin O with point P(2, 8), in the Figure. For OP
(b) Obtain the formula for the electric potential at any point on y=dx

the line OP, with respect to (0, 0) 0 > X

Solution : (a) The displacement vector g, on the line OP is ar = dx; + dyj

-

~dr = (kyi + kxj) - (dxi + dyj)

kydx + kxdy = k(ydx + xdy)

Moreover, on the entire OP line y = 4x (. the slope of a straight line is constant)
soody = 4dx

. The line integral of electric field from O to P, is

il

(2.8)

P P 2
[B-dl = kJOdx+xdy) — g | [4xdx+xaan)]  _ [8rar (A
(0] (0] (0, 0) 0

_ 2T e
=3 20—16

(b) In order to obtain the potential at any point Q(x, y) on the line OP with respect to (0,
Q% -
0) we can use V(Q) = —JE~a’l
0

()
- JSkxdx (from equation A)
)

. V(Q

0
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Illustration 2 : The electric field at distance r perpendicularly from the length of an

infinitely long wire is E(r) = 2ncyr where A is the linear charge density of the wire. Find

the potential at a point having distance b from the wire with respect to a point having distance

a from the wire (¢ > b). [Hint : J.%dr =In r].

b—> -
Solution : V, — V = —IE'dr
a a
F
- -
= _J-Zneor (E”d”)
a
A {1 I S
= T 2mg, ,[Fdr = T 2mg, [In r]a = T 2mgyr [Inb—ina]
a

S a
= 2mg, In (b)
For reference point a, taking V= 0

A a
. Vb = 2ng, In (E)

\
Ilustration 3 : An electric field is represented by E = Ax}, where A = 10 e Find

the potential of the origin with respect to the point (10, 20)m.

Solution : E = Ax; = 10x;}
0,0
V(0, 0) = V(10, 20) = - [ B.@
(10, 20)
0,0) 0
_ - j (10x7)-(dxi +dy]) — —jmxdx
(10, 20) 10

, 10
= —10{)‘7} = [0 — (=500)] = 500 volt
10

Since V(10, 20) is to be taken as zero,

V0, 0) = 500 volt.
2.4 Electrostatic Potential Energy

In the previous article (2.2), we had discussed the work done by the electric field on a unit
positive charge and then also on the charge g, during the motion in the electric field. Moreover
we had also talked about the work required to be done by the external force against the
electric field, in which the motion of charge is without acceleration only. Hence its velocity
remains constant and its kinetic energy does not change. But the work done by this external
force is stored in the form of potential energy of that charge. From this, the electric potential
energy is defined as under :

“The work required to be done against the electric field in bringing a given charge
(@), from infinite distance to the given point in the electric field is called the electric
potential energy of that charge at that point.” Here ‘“motion without acceleration” is
implied when we mentioned” ‘“work required to be done.”
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From the definitions of electric potential energy and the electric potential, we can write the
electric potential energy of charge g at point P, as

¢ - - P—> -
Up= -JaE-ar = -4JE-ar 2.4.1)
= 4V, (2.4.2)

Moreover, we can also call the electric potential at point P as the electric potential energy
of unit positive charge (¢ = +1 C) at that point. That is,

electric potential | _ Jelectric potential energy of unit
ata given point [ — | positive charge at that point

For more clarity in this discussion, we note a few important points as under :

(1) When we bring charge g (or a unit positive charge) from infinite distance to the given
point or when we move it from one point to the other in the field, the positions of the
sources (charges) producing the field are not changed. (We will imagine these sources as
being clamped on their positions by some invisible force !!)

(2) The absolute value of the electric potential energy is not at all important, only the
difference in its value is important. Here, in moving a charge ¢, from point P to Q, without
acceleration, the work required to be done by the external force, shows the difference
in the electric potential energies (UQ — U,) of this charge ¢, at those two points.

Qa -
LU, - U, =~ |[Edr (2.4.3)
P

(3) Here, electric potential energy is of the entire system of the sources producing the
field and the charge that is moved, for some one configuration, and when the configuration
changes the electric potential energy of the system also changes. e.g., when the distance
between them is r, it is one configuration and if distance r changes, the configuration is also
said to be changed and hence the electric potential energy of the system is also said to be
changed. But as the conditions of the sources producing the field are not changed, the entire
change in the electric potential energy is experienced by this charge ¢ only which we have
moved. Hence we are able to write U, = U, as the difference in potential energy of this
charge ¢ only. Because of this reason we have mentioned “potential energy of charge g~ for
equation 2.4.1 and “potential energy of unit positive charge” in the discussion that followed it.
2.5 Electric Potential due to a Point Charge

o,

We want to find the electric potential V(P), due to a VA sto oo
. . . . &,
point charge ¢, at some point P, at a distance r from it. ’
For this we will put the origin of co-ordinate axes "(,
0, at the position of that charge. See figure 2.2. Here p,* I
o
oP = 7. According to the definition of electric poten-
tial we can use the equation.
P 7
- -
VP) = —|E-ar (2.5.1)
Moreover, we can also write this equation in g 3%
another form as
(= - Figure 2.2 Potential due to Point
= JEd D.
V(P) .}[ r (2.5.2) Charge
P o
- - -
because, jE-dr = —IE-dr.
% P
. . k
At this point P, E>= 2q P (2.5.3)

r
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. From equation 2.5.2

vp) = [YMiarr = [Mar
Pr rr

k
ve) =
1

or V(P) = 47%%

(2.5.6)

(2.5.7)

This equation is true for any charge, positive or negative. The potential due to a positive
charge is positive and that due to a negative charge is negative (as q is to be put with negative

sign in the above equation.)

It is self evident from equation 2.5.6 that as the distance r increases, the electric potential

1
decreases as e

In case of potential also superposition principle is applicable. To find the

electric potential due to many point charges we should find the potential due to every charge
according to equation 2.5.7 and they should be added algebraically.

Illustration 4 : A point P is 20 m away from a 2 UC point charge and 40 m away from
a 4 NC point charge. Find the electric potential at P.

(1) Find the work required to be done to bring 0.2 C charge from infinite distance to the

point P.

(2) Find the work required to be done to bring —0.4 C charge from infinite distance to the

point P. [k = 9 X 10° N m?> C?]
. kg, kg, 9, 9
Solution : V, = T = k Tl+§
=9 x 100 | 22007 x0T pgh oy
20 40
(1) W, =V, ¢g," = (1800)(0.2) = 360 I.
(2) W, =V, ¢q," = (1800)(-0.4) = =720 ]
2.6 Electric Potential due to an Electric Dipole
equator 4, We have seen in Chapter-1 that two equal and
E opposite charges (+ g and — ¢g) separated by a
'Fr
" » finite distance (= 2a) constitute an electric dipole.
1
)
E ,.r::' Such a dipole is shown in the figure 2.3, with
(r>>2a) i i ’,,: the origin of co-ordinate system O at its mid-point.
#
| 4 The magnitude of the dipole moment of the dipole is
RS e
i P a ;I s p = ¢q(2a) and its direction is from negative to the
L] &,
¥ g !f positive charge that is, in AB direction.
o &
E&i"«. P :‘ We want to find the electric potential at point P
2 ! “n... .r far away from the mid-point O of dipole and in the
A ‘*‘ AT L e
g 0 +q axis direction making an angle O with the axis of the
< 2u 4 dipole. Let OP = r, AP = r, and BP = r. At P, the

Figure 2.3 Potential due to an
Electric Dipole

» .

electric potential is equal to the sum of the poten-
tials produced by each of the charges.
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V() = 4, T 4me,, A (2.6.1)
_ 9 |1_1
T odmeg, |1, T
q -r

= 4n80[ T } (2.6.2)

Since P is a far distant point, r >> 2a and hence we can take AP || OP || BP. In this
condition the figure 2.3 shows that

{for numerator of equation (2.6.2), r_ —r, = AM =2a cos0 } (2.6.3)

and for denominator, r_=r,_=r

We have considered a very far distant point as compared to the length (2a) of the dipole.
The molecular dipoles are very small and such an approximation is very well applicable to them.
From equations (2.6.2) and (2.6.3), we get

q 2a cosf
V(r) = E[—zj (2.6.4)
r
1 pcosO
= 47[80 r2 (265)
Writing the unit vector in the direction Op as 7, we can wirte p.# = p cosb.
V(DY = e B ) 2.6.6
- V(r) = agg; 5 (for 7 >> 2a) (200

r

Note : The dipole obtained in the limits ¢ — o and a — 0, is called the point dipole. For
such a point dipole the above equation is more accurate, while for the physical dipole - found
in practice - this equation gives an approximate value of the electric potential. Let us note a
few points evident from equation (2.6.4), as under :

(1) Potential on the Axis : For a point on the axis of the dipole

1
06 =0o0rm .. V=125

D
0 r
From the given point, if the nearer charge is +¢q, then we get V as positive and if it is

—q, then we get V as negative.

(2) Potential on the Equator : For a point on the equator 6 = V=20

s
2
(3) The potential at any point depends on the angle between its position vector 7 and ?

1
(4) The potential due to a dipole decreases as 2z with distance (while the potential due

1

to a point charge decreases as +

with distance). We have seen in Chapter 1 that the electric

1
field due to a dipole decreases as 73)

Ilustration 5 : When two dipoles are lined up in opposite direction, the arrangement is
known as a quadruple (as shown in the Figure). (1) Calculate the electric potential at a point
z = z along the axis of the quadruple and (2) If z >> d, then show that,
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Q 24’
j V@ = 4rey 5

" PR i 7 Note : 2|Q|d” is called the quadruple moment.
i -2 ) P . :
i“' : |L Solution : (1) Let z be the Z co-ordinate of point P.
d d The electric potential at point P, due to +Q charge
(which is at the left hand side of the origin) is,
_ _KQ
v, = 22 (1)

The electric potential at point P due to the +Q charge which is at the right hand side of
the origin is,

_ _kQ
Vv, = z—d (2)
The electric potential at point P, due to —2Q charge present at the origin is,

— k(2Q)
v, = - o (3)

. The total potential at point P,
V(z) vV, + V, +V,

11 2 2z 2| |24
= kQ [z+d+z——d‘3] = kQ LZ-cﬂ Z} B "QL@Z—dZJ

(2) If z >> d, we can neglect d’ in comparison with z? in the denominator of right hand
side of the above equation.

. QR4 Q 24°
V@ =TT T dngy

Ilustration 6 : Charge Q is distributed uniformly over a non-conducting sphere of radius
R. Find the electric potential at distance r from the centre of the sphere (r < R). The electric

% r#. Also find the

, . o 1
field at a distance r from the centre of the sphere is given as dme, R

potential at the centre of the sphere.
Solution : The electric potential on the surface of such a sphere is,

_ 1 Q
VR) = 4me, R
. ra -
As a result, we can use the equation V(r) — V(R) = _JE~ ¥
R
1
~ V() — VR) = ‘hm %rdr PP Codr = dr#)
R0 R
r 21"
= - Q3J‘rdr = — QS[%}
4meR™ o 4mg R R
___Q [2 R
4ng,R7 |2 2
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1l
=
Z
+

@)
1
m|7~"
|
ST
|

" V(1)

. _ Q ——
- V() = dne, R T 8me R’ (R? — 17

1 Q [3_ r
. V(l") 411380 ﬁ F ,r <R

At the centre of the sphere r = 0, .. V (centre) = #80 (%]
2.7 Electric Potential due to a System of Charges

In a system of charges, point charges could have been distributed descretely (separated
from each other) while in some system they could have been distributed continuously with each
other. In some system of charges the distribution of charges could be a mixture of any type
of these two distributions. 1

(a) Descrete Distribution of Charges

In figure 2.4, point charges ¢, ¢,, q; - q, are

A

shown as distributed descretely. The position vectors of
these charges with respect to the origin of co-ordinate

- S S
[ A

system are 5, r,,..r respectively. We want to find the

electric potential due to this system, at point P with

position vector 7. For this we will find the electric

potential due to every point charge and then will make

summation. sq,
That is, V = V1 + V2 + .+, (2.7.1) Figure 2.4 Potential Due to Descrete
Charges
= L4 kL + o (2.7.2)
() rlp e r2p e rnp
Where r, == distance of P from ¢, = |7 - ?l
Similarly r, , ..., r, —are the corresponding distances.
p np
q q q
1 1 1 2 1 n
= + ... + (2.7.3)
dmeg |7 0 A 17 G Mo 177 |
i k4,
.V = i:1|7_7i| (2.7.4)

(b) Electric Potential due to a Continuous Distribution of Charges
Suppose in a certain region electric charge is distributed continuously. Imagine this region
to be divided in a large number of volume-elements, each one with extremely small volume. If

the volume of such an element having position vector 7' is dt' and at this position the

volume-density of charge is p(? '), then the charge in this element is p(? 'y dt', and it can
be treated as a point charge. The electric potential due to this small, volume element at point

P having the position vector r , is
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N
| plrdt
av = — S5 S (2.7.5)
47580 | r — rvl
By integrating this equation over the entire volume of this distribution, we get the total
potential at point P, which can be written as under :

%‘dV
V(7)== L [ AR (2.7.6)

41{80 volume lr— il

If the charge distribution is uniform, p(7 ') can be taken as canstant (= p).
(¢) A Spherical Shell with Uniform Charge Distribution :

In Chapter 1, we had seen that the electric field at a point outside and at a point on
the surface of spherical shell with uniform charge distribution is equal to the electric field
obtained by considering the entire charge of the shell as cencentrated.at the centre of the shell.

We have obtained the electric potential from the electric field (V =—JE)~d_r>). For electric

potential also the entire charge can be considered as concentrated at the centre of the shell.
Hence the potential at a point outside and at a point on the surface of the shell having charge
g and radius R, is

_ 1 g S
V= et (for r > R) (2.7.7)

where r = distance of the given point from centre of shell.

Moreover, we also know that the electric field inside the shell is zero. Hence during the
motion of unit positive charge inside the shell no work is required to be done. Hence the
potentials at all points inside the shell are equal having the value equal to the potential on the

. _ 1 4q <
surface of that shell. i.e. V = Jme, R (for r £ R) (2.7.8)

(Note that here, only that work is accounted for which is done during the motion of unit
positive charge from oo to the surface of the shell.)

2.8 Equipotential Surfaces

An equipotential surface is that surface on which the electric potentials at all points
are equal.

A One Equipotential The electric potential due to a point charge is given
Surface )
by V = 4 Hence if r is constant, V also becomes
dme, 1
constant. From this we can say that for a single point

charge ¢, the equipotential surfaces are the surfaces of

M

the spheres drawn by taking this charge as the centre.
(See figure 2.5). The potentials on two such different
surfaces are different but for all the points on the same
surface the potentials are equal. The electric field

produced by a point charge is along the radial directions
Figure 2.5 Equipotential Surfaces . . . . . .
drawn from it. [For +¢ they are in radial directions going
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away from it and for —g coming towards it.]. These radial lines are normal to those equipotential
surfaces at every point. Hence at a given point the direction of electric field is normal to an
equipotential surface passing through that point. We shall now prove that this is true not only for
a point charge but in general for any charge configuration.

Suppose a unit positive charge is given a small displacement d7 on the equipotential
surface (along this surface), from a given point. In this process the work required to be done

against the electric field (by the external force) is dW = —E-dl = potential difference
between those two points.
But the potential difference on the equipotential surface = 0.
- o - -
E-dl =0 = E dl cos® = 0, where 6 = angle between E and d!
But E#0and dl #0 - cos®=0 . 6 =% - E L dl.
But dl is along this surface. Hence the electric field E \"\x > \x >T
is normal to the equipotential surface at that point. el .
&
Like the field lines, the equipotential surface is also a useful ] e
concept to represent an electric field. For a uniform electric > )
(R CERE Rt B
field prevailing in X-direction, the field lines are parallel to - "7{“"_\)
R\‘/

X-axis and equispaced, while the equipotential surfaces are .
Figure 2.6 Equipotential Sur-

normal to X-axis (i.e. parallel to YZ plane.) See figure 2.6. face for a Uniform Electric Field

(a) Equipotential Surfaces (b) Equipotential Surfaces of a System of
of a Dipole Two Positive and Equal Charge
(Only For Information) (Only for Information)
Figure 2.7

The equipotential surfaces of an electric dipole are shown in figure 2.7(a).

The equipotential surfaces of a system of two positive charges of equal magnitude are

shown in figure 2.7(b).

2.9 Relation between the Electric Field and the Electric Potential

p
In article 2.3, we have obtained the electric potential V = (—J.E-d—r)) from the electric field.

Now, if we know about the electric potential in a certain region, we can get the electric field
from it as well.

We have seen in article 2.3, that from the line integral of electric field between points
P and Q, we can get the potential difference between those two points. (Equation 2.3.4) as
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V. - V. =AV = —|E-ar (2.9.1)

)
lav]
w—0

Now, if these points P and Q are very close to each other, then for such a small

- - -
displacement d [ , integration is not required and only one term E -d! can be kept.

. dV = —E-dl (2.9.2)
If d7 is in the direction of E, E-d{ = E dl cos0° = E dl
.. dV = —E dl
_ =dV
L E= ¥ (2.9.3)

This equation gives the magnitude of electric field in the direction of displacement d 7. Here

% = potential difference per unit distance. It is called the potential gradient. Its unit is % From

Qlz

equation (2.9.3) the unit of electric field is also written as %, which is equivalent to

If we had taken the displacement d? not in the direction of electric field, but in some
—dV.
dl
of that displacement. e.g. If the electric field is in X-direction only and the displacement is

in any direction (in three dimensions), then

other direction, then would give us the component of electric field in the direction

E =Ef and d = dxi + dyj + dzk

dv = — (E i) . (dxi + dyj + dzk)
= —E_dx (2.9.4)
_ —dVv
R (2.9.5)

Similarly, if the electric field was only in Y and only in Z direction respectively, we would get,

Ey = d_y (2.9.6)
_ —dV
E = = (2.9.7)

Now, if the electric field also has all the three (x—, y—, z—) components then from
equations (2.9.5) (2.9.6) and (2.9.7) we can write as under.

_ =V _ =V _ =V
B, =5 B =7 E= (2.9.8)
and B = —(%—ZH%—‘;H%—‘Z’EJ (2.9.9)
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Here %—:, aa—\y/, %—\Z] show the partial differentiation of V(x, y, z) with respect to

X, y, z respectively. Moreover, the partial differentiation of V(x, y, z) with respect to

x means the differentiation of V with respect to only x (i.e. %—X) by taking y and z in the
formula of V, as constants.

In equation (2.9.1), the values of E at all points between P and Q come in the calculation,
while equations (2.9.3) and (2.9.8) give relation between the potential difference near a given
point and the electric field at that point.

The direction of electric field is that in which the rate of decrease of electric potential with

distance (—d;clr\/) is maximum and this direction is always normal to the equipotential surface.

This entire discussion is based on the property that electric field is a conservative field.

2.10 Potential Energy of a System of Point Charges

l

-

52 0C =17,

5
i

<

- _ - _
OA ~— 1> 0B~

L

As shown in the figure 2.8, in a system of charges

e

three point charges ¢, g, and g, are lying stationary at

points A, B and C respectively. Their position vectors

from the origin of a co-ordinate system are 7, r, and

r_; respectively. We want to find the potential energy of

this system. Figure 2.8 System of Point Charges

In the beginning we shall imagine that these charges are lying at infinite distances from the
origin and also from each other. In this condition the electric force between them is zero, and their
potential energy is also zero.

Moreover, the electric fields at A, B and C are also zero. From such a condition the work
required to be done by the external forces (against the electric fields) to arrange them in the
above mentioned configuration is stored in the form of potential energy of this system.

First, we bring the charge ¢, from infinite distance to point A. In this process since no
electric field is present, the work done by the external force against the electric field is W,

= zero. (You know that here the field produced by this charge itself is not to be considered.)

Now the charge set on g,, produces an electric field and electric potential around it. The

potential due to this charge g, at point B separated by distances r , from it is (from equation
2.5.7) is

1 9
Vo = T 7 (2.10.1)
Where 7, = Ir_; - 71’I

Hence the work required to be done by the external force to bring charge ¢, from

infinite distance to point B, is W, = ¢,V = (2.10.2)

2
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(from equation 2.4.2).
(If we want to consider a system of these two charges only, then the total work W, +
1 449

W, = A, T is the electric potential energy of this system.)

Now ¢, and g, both will produce electric fields and electric potentials around them. The

q q
electric potential produced due to them at point C is V. = 4735 r—l ﬁ r—2 (2.10.3)
K 0 23

Therefore, the work required to be done to bring charge g, from infinite distance to point
C is

Wi= (Vog,
1 9% 1 D
T dmg, 1, + dng, 1y, (2.10.4)

Hence the total work to be done to set these three charges in the above arrangement (=
W, + W, + W,) is the electric potential energy U of this system.

1 9% 1 9% 1 D4
- U = dne, 1, dme, K, dng, 1y, (2.10.5)
1 |99 99 93
= Tneg { T T } (2.10.6)
949, 943 |, 993
= k[—+—+—} 2.10.7
o hs 3 ( )
From this, in general, the potential energy of a system of n—charges can be wirtten as
L kqiqj
U= (2.10.8)
i=l Y
i<j

As the electric field is conservative; it does not matter, which charge comes earlier or later.
In that case the electric potential energy does not change (and given by equation 2.10.8 only)

H G Illustration 7 : Calculate the potential energy of the

4;: _F_--ﬁ-'""t.r system of charges, shown in the Figure.
g __,--E*“""‘ 4 Solution : The total potential energy of the system of
El ' F charges is equal to the sum of the potential energy of all the
E % _..*' a pairs of charges.
! :J"i'; (1) There are 12 pairs of charges like the AB pair. The
E : distance between the electric charges in such pairs is equal
,f”,; """"" e to a.
J," - - i The potential energy of all such pairs is
A == 4 kq*
: a U, = % x 12 (1)

(2) There are 12 pairs of charges like the AC pair. The distance between charges in such

a pair is ay2. ("~ AC = JAB*+AC® = Wa’+d’ = a+2). Their potential energy is,

X 12 (2)
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(3) There are 4 pairs of charges like the AG pair. The distance between charges in these

pairs is equal to a 3. (- AG = \/AC2+CG2 = \/2a2+a2= a.f3)
2

Their potential energy is U, = % X 4

(4) There are eight pairs of electric charges similar to AO in which distance between

charges is ‘%E. (AO = % = ‘AZE)

kg 2q
(a

". total potential energy U = U, + U, + U, + U,

Their potential energy is U, = —

wl&

j><8 4)

LU 12k’ 12k dkgt 32k

’ a a2 a3 a3
_ kg [12+£+i—ﬁ} _ kq [121+ 1 }
S R A e Bl R L

2.11 The Potential Energy of an Electric Dipole in an External Electric Field

As shown in figure 2.9, an electric dipole AB is AB = 24, AC = ABcosO

placed in a uniform electric field E in X—direction such

that the axis of the dipole makes an angle 6 with the field = > T

= : . . o B

E. Its dipole moment is ¢g(2a) in AB direction. The / e +4

electric potential energy of this dipole means the algebraic o P / o
sum of the electric potential energies of both of its :.// : -
charges (+¢g and —¢q). We arbitrarily take the potential at ~-q {

the position of —g charge as zero. Hence its potential
energy becomes zero. Now we will find the potential
enegy of +¢q charge with respect to it and it will become Figure 2.9 Potential Energy of
the potential energy of the entire dipole. Dipole

As the electric field is only in X-direction,

W

E = DAV _ —(Vg=Vy)
Ax AC
_ VY .. —
= 5L (v V, =0 (2.11.1)
* V, = —E (2a cos0) (2.11.2)

. Potential energy of +¢q at B, is
U = gV, = ¢q[-E 2a cos8] (2.11.3)
= —E(qg 2a cos0)

= —E p cosO [ ¢gQa) = p]

= _8-7 (2.11.4)
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. The potential energy of the entire dipole U= —E ﬁ) = —1_;? (2.11.5)
We note a few points :

(i) If the axis of the dipole is normal to the electric field, then 6 = and

r
2

z

U =Ep cos5 =0

(ii) If the axis of the dipole is parallel to the field. ( AB I E)
Then © = 0 .. U = —pE. This is the minimum value of potential energy. Hence the dipole

5
tries to arrange its axis parallel to the electric field, so that f;’ becomes parallel to E. In this

condition dipole remains in stable equilibrium. (A system always tries to remain in such a state
that its potential energy becomes minimum.) (For O = 7, the dipole is in an unstable equilibrium.)
2.12 Electrostatics of Conductors

It is interesting to know the effects produced when metallic conductors are placed in the
electric field or when electric charges are placed on such conductors.

(a) Effect of External Electric Field on Conductors

In a metallic conductor there are positive ions situated at the lattice points and the free
electrons are moving randomly between these ions. They are free to move within the metal but
not free to come out of the metal. When such a conductor is placed in an external electric

: = . o .

field E ', the free electrons move under the effect of the force in the direction opposite to the
field and get deposited on the surface of one end of conductor. And an equal amount of
positive charge can be considered as deposited on the other end. Thus electric charges are

5

induced. These induced charges produce an electric field E " inside the conductor, in the
-

direction opposite to the external electric field E . When these two electric fields become

equal in magnitude, the resultant (net) electric field (E) inside the conductor becomes zero.
(See figure 2.10). Now the motion of charges in the conductor stops, and the charges become

steady (stationary) on the end-surfaces.
—

E’ Now let us consider a Gaussian Surface shown by

—
-

W

dotted line, inside the conductor and close to the surface,

as shown in figure 2.10. Every point on this surface is

R A = .
a point inside the conductor; the electric field E on this

entire surface is zero. Hence the electric charge enclosed

> >
Gaussian Surface N q

by it is also zero. (' |E- = 7).

Figure 2.10 Conductor in Electric Field y ( '[ E-dr €o )

Thus in the case of a metallic conductor, placed in an external electric field,

(1) A steady electric charge distribution is induced on the surface of the conductor.

(2) The net electric field inside the conductor is zero.

(3) The net electric charge inside the conductor is zero.

(4) On the outer surface of the conductor, the electric field at every point is locally normal
(perpendicular) to the surface. If the electric field were not normal (perpendicular) a component
of electric field parallel to the surface would exist and due to it the charge would move on the
surface. But now the motion is stoppd and the charges have become steady. Thus the
component of electric field parallel to the surface would be zero, and hence the electric field
would be normal to the surface.

60 - Physics-111



. - . . . . . . .
(5) Since E = 0 at every point inside the conductor, the electric potential everywhere inside
the conductor is constant and equal to the value of potential on the surface.

(6) If there is a cavity inside the conductor then even when the conductor is placed in an

5
external electric field (E '), the net electric field inside the coductor is zero and also inside the
cavity it is zero. Consider a Gaussian Surface around the cavity as shown in the figure 2.11.
Since every point on this surface is a point inside the conductor, the electric field on this entire

surface is zero.

Hence the total charge on the surface of the cavity is zero, Gaussian Surface E'

\
\ .
(JE ds = %) And there is no charge inside the cavity. {

Hence the electric field everywhere inside the cavity is zero.)

W

WY

This fact is called electrostatic shielding. If we are Figure 2.11
sitting in a car and suppose lightning strickes, we should Cavity in a Conductor
close the doors of the car. (we suppose the car is fully made of metal !) By doing so, we
happen to be in the cavity of car and we are protected due to electrostatic shielding.

(b) Effects Produced by Putting Charge on the Conductor

In the above discussion we considered the effects produced when a metallic conductor is
placed in an external electric field. Now we note the effects produced when a charge is placed
on a metallic body, in the absence of an external electric field.

(1) Whether a metallic conductor is put in an external electric field or not and whether a
charge is put or not, on it, in all such (but stable) conditions the electric field everywhere
inside the conductor is always zero. This is a very important and a general fact. (This can
be taken as a property to define a conductor).

(2) The charge placed on a coductor is always distributed only on the outer surface of
the conductor. We can understand this by the fact that the electric field inside a coductor is
zero. Consider a Gaussian Surface shown by the dots inside the surface and very close to it,
(figure 2.12). Every point on it is inside the surface and not on the surface of conductor Hence
the electric field at every point on this surface is zero. Hence according to Gauss’s theorem

the charge enclosed by that surface is also zero. N

(3) In a stable condition these charges are steady on the surface. . ‘_@
This shows that the electric field is locally normal to the surface. : 1-\
(See figure 2.12). 5

(4) The electric field at any point on the charged conductor is

= sgﬁ’ where 4 = unit vector coming out from the surface
0

normally. To prove this, we consider a Gaussian surface of a pill-box Figure 2.12

(a cylinder) of extremely small length and extremely small cross-section ds. A fraction of it is
inside the surface and the remaining part is outside the surface. The total charge enclosed by

this pill-box is ¢ = ods; where G = surface density of charge on the conductor. At every point

= . .
on the surface of the conductor E 1is perpendicular to the local surface element. Hence it is

- -
parallel to surface vector (E Il ds).
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But inside the surface E = 0. Hence the flux coming out from the cross-section of pill-

. . . . . _>
box inside the surface = 0. For its side the area vector (surface vector) is normal to E . Hence
flux through it is zero. The flux coming out from the cross-section of pill-box outside the

surface is Ecﬁ = Eds.

. Total flux = E ds

d
According to Gauss’s theorem, E ds = % = _GSOS (2.12.1)
“E=2 (2.12.2)
&0
= (9
In the vector from E = Pl (2.12.3)
0

. ., . - . . . . . .
If ¢ is positive, E is in the direction of normal coming out from the surface. If O is
. - . . . . . .
negative E is in the direction of normal entering into the surface.

(5) If some charge is placed inside a cavity in the conductor, then the charges are so
induced on the surface of the cavity and on the outer surface of conductor that the electric
field in the region which is inside the conductor but outside the cavity becomes zero. The
electric field inside the cavity is non-zero and the electric field outside the conductor due to that
charge is also non-zero.

[Note (For information only) : In the above discussion we have considered the
coductors to be insulated.

The sharp ends of the conductor have a large electric charge density. The electric field
near such a region is very strong. This strong electric field can strip the electrons from the
surface of the metal. This event is known as Corona discharge. In general, this event is
called dielectric breakdown.

The electrons escaping the surface of a metal perform an accelerated motion, colliding
with the air particles coming in their way. The excited atoms of the energetic particles emit
electromagnetic waves and a greenish glow is observed. Apart from the above process, the
ionization of the air molecules also takes palce, during collision

Sailors long ago saw these glows at the pointed tops of their masts and spars and
dubbed the phenomenon St. Elmo’s fire.]

2.13 Capacitors and Capacitance

. Consider an insulated conducting sphere as shown in the figure
Conducting Sphere . . .

2.13. Suppose we go on gradually adding positive charge on this
sphere. As the charge on the sphere is gradually increased, the
potential (V) on the surface of the sphere and the electric field

around the sphere also go on gradually increasing. In this process at

Non-conducting . . .. ..
Stand some one stage the electric field becomes sufficiently strong to ionize

the air particles around the sphere. Hence the charge on the sphere
is conducted through air and insulating property of air gets distroyed

Figure 2.13

(i.e. it is not sustained.). This effect is called dielectric breckdown.
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Thus the charge on the sphere is leaked and now the sphere is not able to store any additional
charge. During this entire process the ratio of the charge (Q) on the sphere and the potential (V)

on the sphere remains constant. This ratio is called the capacitance of the sphere. [C = %]

Figure 2.14
The maximum electric field upto which an insulating (non-conducting) medium can maintain
its insulating property is called the dielectric strength of that medium (or the minimum electric
field which starts ionization in a given non-conducting-medium is called its dielectric strength.).

For air the dielectric strength is nearly 3000 nY_m

Now, if we want to increase the capacity of the above mentioned sphere to store charge
(capacitance C), then place another, insulated conducting sphere near the first one. So, electric
charge is induced in this second sphere. See figure 2.14(b). If the second sphere is connected
to Earth, as in figure 2.14(c) electrons from Earth will flow to it and neutralize the positive
charge in it. Now due to negative charge on the second sphere the potential on the surface
of the first sphere and the electric field near it are decreased. Now the capacity to store
charge on the first sphere increases, as compared to earlier. In this condition also the ratio of
the electric charge Q and the p.d. (V) between two spheres at every stage is found to be
constant. This ratio is called the capacitance C of this system of two spheres. The value of
this capacitance depends on the dimensions of the spheres, their relative arrangement and the
medium between them.

“A device formed by two conductors insulated from each other is called a capaci-
tor.” These conductors are called the plates of the capacitor. The conductor with positive
charge is called the positive plate and the one with negative charge is called the negative plate.
The charge on the positive plate is called the charge on the capacitor and the potential
difference between the two conductors is called the potential difference (V) between the two

Q

plates of the capacitor. Here the capacitance of the capacitor is C = V-

The SI unit of capacitance is coulomb / volt and in memory of the great sceintist Michael
Faraday it is known as Farad. Its symbol is F. Farad is a large unit for practical purposes and
hence smaller units microfarad (1 UF = 10%F) nanofarad (1 nF = 10_9F) and picofarad
(1 pF = 107"?F) are used in practice.

A capacitor having a definite capacitance is shown by the symbol 4} and the one having

a variable capacitance is shown by the symbol .

Moreover, a single conducting sphere of radius R and having charge Q can also be
considered as a capacitor, because it also has ‘some’ capacity to store charge. For such a
capacitor other conductor (with —Q charge) is considered to be at infinite distance (separation).
Taking the potential at infinite distance from the sphere as zero, the potential on the surface

kQ

of this sphere is V = R

. Hence the potential difference between this sphere and the other

one imagined at infinite distance is also V = %
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. The capacitance of this sphere is C = % = % = % = 4neR (- K = 47[#80). Earth
can also be considered as a capacitor. You may calculate its capacitance.
2.14 Parallel Plate Capacitor

In such a capacitor, two conducting parallel plates of equal area (A) are insulated from
each other and kept at a separation of (d). (See figure 2.15)

Considering vacuum (or air) as the non-conducting medium between them, we shall obtain
the formula for its capacitance.

Suppose, the electric charge on this capacitor is Q. Therefore, the value of the surface

Q

density of charge on its plates is O = A The value of d is kept very small as compared to

the dimension of each plate. Due to this, the non-uniformity of the electric field near the ends

5
of the plates can be neglected and in the entire region between the plates the electric field E
can be taken as constant.

The uniform electric field in the region between two plates due

I:ﬁﬂ o
to the positive plate is E, = 2_50 in the direction from positive to
Ex=0i2€,
T negative plate. (2.14.1)
E =0le, Similarly the uniform electric field in the same region due to
—
the negative plate, is E, = 2%0 (2.14.2)

Figure 2.15 Parallel Plate

Capacitor . . . .. .
P (Also in the direction from positive to negative plate.)

Since these two fields are in the same direction, the resultant uniform electric field is

S s _ S
E =E +E, =% + 2 =% (2.14.3)
It is in the direction from positive to negative plate.
Q
. E = N (2.14.4)

In the regions on the other sides of the plates, E, and E, being equal but in opposite
direction, the resultant electric field becomes zero.

If the potential difference between these two plates is V, then V = Ed (2.14.5)
. From equations (2.14.4) and (2.14.5),
_
V = soAd (2.14.6)
From the formula C = %, we get the capacitance of parallel plate capacitor as
= %A
= = (2.14.7)

From equation (2.4.7), it is clear that if the distance between two plates each of

(8.85x107"%)(1)
107
If we want 1F capacitance, then the area of each plate kept at a separation of

I m X 1 mis I mm, its capacitance is C = = 8.85 x 107°F.

Cd 110~
I mm should be A = .~ =(X—,)12
0 8.85x10

breadth of each plate should be nearly 1 X 10* m = 10 km.
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2.15 Combinations of Capacitors

The system, formed by the combination of capacitors having capacitances C, C,, ...... , C
has some equivalent (effective) capacitance C. We shall discuss two types of combinations.
(a) Series Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C,, C,, C;, ..... , C

by conducting wires as shown in figure 2.16 is called the series combination of capacitors.

Gy G C3 Cn
o fopfofsfofy
Vi Va Vi Vi
| |
||I
*

Figure 2.16 Series Combination of Capacitors

In such a condition the charge on every capacitor has the same value Q. As (—Q) charge
is deposited by the battery on one plate, it induces (+Q) charge on the other plate. For this
(—Q) charge from the second plate will be deposited on the near plate of the next capacitor.
This induces +Q charge on the other plate. This continues further. Thus all capacitors have

equal charge. but the potential difference between the two plates of different capacitors is
different. From the figrue it is clear that

V = Vl + V2 + V3 + o + Vv, (2.15.1)
Q  Q  Q Q
= Cl + C2 + C3 + ... + Cn (2152)
_Q
(v C, = V) e etc.)
\Y 1 1 1 1
6:C_1+C_2+C_3+ ...... +C—n (2.15.3)

y_l (2.15.4)

1
E=a+c—2+c—3+ ...... + (2.15.5)
Thus the value of effective capacitance is even smaller than the smallest value of

capacitance in the combination.

[Note that here the formula obtained for series combination is similar to the formula for
effective (equivalent) resistance obtained for the parallel combination of the resistances.]

(b) Parallel Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C,, C,, C; by
conducting wires as shown in figure 2.17 is called the parallel combination of capacitors.
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In such a combination the potential difference (V) between
the plates of every capacitor is the same and is equal to the

b potential difference between their common points A and B. But
# 1= the charge Q on every capacitor is different.

he Here, Q, = C, V
¢ .;.; - Q,=C VvV
' Q, =C, Vv (2.15.6)
And the total electric charge

||
+]'=

\ Q=Q +Q, +Q
Figure 2.17 Parallel Combination =CV +CV +CV
of Capacitors ! 2 .

= +C +C)V (2.15.7)
If the effective capacitance of this parallel combination is C, then
- Q _
C = v = C, +C, +C, (2.15.8)
If such n-capacitors are joined in parallel connection, the effective capacitance is
C=C +C, +C, + ... + C, (2.15.9)

Here, as the values of capacitances are added the value of effective capacitance is even
greater than the largest value of capacitance in the connection.

[Note that the formula obtained here for parallel combination is similar to the formula for
effective (equivalent) resistance obtained for the series combination of resistances.]

Hlustration 8 : Prove that the force acting on one plate due to the other in a parallel plate

2
capacitor is F = % CTV
Solution : The electric field due to one plate is E, = ZGTO (1)

A second plate having charge GA is present in the above electric field.
. The force acting on the second plate is
F = (CA)E,

Substituting the value of E, from (1), we have,

2
F=92
€9
But0=%
Q2
=_ A
i 7 B, oEh g
: 2¢, T 25,A T 2A/d T 24C CTa T
L p= Lov? (v Q= CV)
T 274 ) N

Illustration 9 : Figure shows an infinite number of conducting plates of infinitesimal
thickness such that consecutive plates are sparated by a small distance dx spread over a
distance d to form a capacitor. Calculate the value of the capacitance of such an arrangement.
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Solution : The capacitance of each of the capacitors in the above arrangement, dC = O—x
All these capacitors are in series combination with each other.

Therefore the total capacitance C is obtained from

1 _ 1L e
c~a T ac *t- gy

= ZA (dx + dx + ... + dx)
1 _ 4
C ~ gA
_ §A € d 3
. C= Y]

This is equivalent to the capacitance of the capacitor formed by the first and the last plate
of the above arrangement.
2.16 Energy Stored in a Charged Capacitor

In order to establish a charge on the capacitor, work has to be done on the charge. This
work is stored in the form of the potential energy of the charge. Such a potential energy is
called the energy of capacitor.

Suppose the charge on a parallel plate capacitor is Q. In this condition each plate of the
capacitor is said to be lying in the electric field of the other plate.

The magnitude of the uniform electric field produced by one plate of capacitor is

(9
= g, (2.16.1)
where ¢ = % and A = area of each plate.

Hence by taking arbitrarily the potential on this plate as zero, that of the other plate at

distance d from it will be = [Q%OJCZ (2.16.2)

From this, the potential energy of the first plate is zero and that of the second plate will be
= (potential) (charge Q on it)

d
= [%%}Q (2.16.3)
~. Energy stored in the capacitor
_odQ _ (Q)dQ _
- Q
T (2.16.5)
g)A . .
where, C = - - capacitance of capacitor.
Moreover, C = % From equation (2.16.5) and this formula we can write
_ VQ
U, = - (2.16.6)
and U, = 3CV? (2.16.7)
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We have derived these equations (2.16.5), (2.16.6) and (2.16.7) for the parallel plate
capacitor, but in general they are true for all types of capacitor.
To show energy stored in the capacitor in the form of energy density :

The energy stored in the capacitor is Uy = %CVZ. This energy is stored in the region

between the two plates, that is, in the volume Ad, where A = area of each plate and
d = separation between them. Hence, if we write the energy stored per unit volume in the
region between the plates — that is energy density — as pg, then

1 2
_ U, Y
Pe = Voume = ~Ad (2.16.8)
1 {84 y2
_ E[ ¢ ]A_d (2.16.9)
_ 1. (VY(v
_ zgo(d)(g) (2.16.10)
_ 1 2 ... vV _
= 5&EB (v 5 =B (2.16.11)

Where % = E = electric field between the two plates. Thus the energy stored in the

capacitor can be considered as the energy stored in the electric field between its plates.
We have obtained this equation for a parallel plate capacitor but it is a result in general
and can be used for the electric field of any arbitrary charge distribution.

Illustration 10 : A capacitor of 4 UF value is charged to 50 V. The above capacitor is
then connected in parallel to a 2 WUF capacitor. Calculate the total energy of the above system.
The second capacitor is not charged prior to its connection with the 4 UF capacitor.

Solution : The energy stored in the capacitor of 4 UF will be
W, =

= 1 x4 x (50?2 =2 x 2500 = 5000 W

The two capacitors are connected in parallel. Let g, and g, be the electrical charges on

capacitors C, and C, respectively after connection. If V' is their common potential difference

4 9>

th itors. (V' = = &
across the capacitors. ( C, Cz)
4@ _ G
ot+q,  GtG6
o -G (D)
By the law of conservation of charge.
q, + 9, = Q (2)
Where Q is the initial charge
Now, Q = C,V = (4)(50)
= 200 pnC
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Putting equation (2) in equation (1) and substituting the value of Q, we have,

200  4+2)
q, 2
_200x2 200
49, = ¢ = 73 MC

From Equation (2)
q, = 200 — 20

3

Calculation of energy : The energy of the first capacitor

2
4 _ {400\’ 1
e = (T) x sl =22 W

The energy of the second capacitor
9 200)*,, _1
2—C2=(T)xm:1111m

The total energy of the system, after combination = 2222 + 1111 = 3333 = WJ

Thus the energy decreased by 5000 — 3333 = 1667 WJ. This energy is dissipated in the
from of heat.
2.17 Dielectric Substances and their Polarisation

Non-conducting materials are called dielectric. Faraday found that when a dielectric is
introduced between the plates of a capacitor, the capacitance of the capacitor is increased. In
order to understand how does this happen, we should know about the effects produced when
a dielectric is placed in an electric field. Dielectric materials are of two types (1) polar and
(2) non-polar.

A dielectric is called a polar dielectric if its molecules possess a permanent dipole moment

(e.g. HCI, H,O, .... etc.) If the molecules of the dielectric do not possess a permanent dipole
moment, then that dielectric is called a non-polar dielectric (e.g. H,, O,, CO,, ..... etc.)

(a) Non-polar Molecule : In a non-polar molecule,
the centre of the positive charge and the centre of the  when E =0 when E #0
negative charge coincide with each other. Hence they do »E,
not possess a permanent dipole moment. Now, when it is
placed in a uniform electric field (EO), these centres are S ¢ d 2
displaced in mutually opposite directions. Hence they now, b= qd =0 p=4q d+0

possess a dipole moment p = gd, where d = the distance

between centres of positive and negative charges after

being displaced, ¢ = the value of positive or negative Figure 2.18  Polarisation of a Non-

charge (See figure 2.18).

polar Molecule

Thus an electric dipole is induced in it. In other words due to an external electric field a
dielectric made of such molecules is said to be polarised. If the external electric field (Eo) is not

5
very strong, it is found that this dipole moment of molecule is proportional to E .

P = OE, (2.17.1)

where o is called the polarisability of the molecule.

. _> . . —
From units of ? and Ey the unit of o is C2m N
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(b) Polar Molecule : A polar molecule possesses a permanent dipole moment P, but such
dipole moments of different molecules of the substance are randomly oriented in all possible
directions and hence the resultant dipole moment of the substance becomes zero.

Now, on applying an external electric field a torque acts on every molecular dipole.
Therefore, it rotates and tries to become parallel to the electric field. Thus a resultant dipole
moment is produced. In this way the dielectric made up of such molecules is said to be
polarised. Moreover, due to thermal oscillations the dipole moment also gets deviated from being
parallel to electric field. If the temperature is T, the dipoles will be arranged in such an

equilibrium condition that the average thermal energy per molecule (%kBT) balances the

potential energy of dipole (U = —?.EO) in the electric field. At 0 K temperature since the

thermal energy is zero, the dipoles become parallel to the electric field. We shall only discuss

such an ideal situation.

(c) When there is air (or vacuum) between the charged plates of a capacitor, the electric

[0)

field between the plates is E, = S—f . (2.17.2)
0

+ -

where G, = value of surface charge density on each plate.

The charge on these plates is called the free charge, because
its value can be adjusted at our will (by joining proper battery).

Here, the area of each plate is = A. Now on placing a slab

of dielectric material (polar or non-polar) in the region between the

plates, the polarisation produced by the electric field Eo is shown

in the figure 2.19. We want to find the electric field inside the
dielectric.

It is clear from the Figure that the opposite charges in the
Figure 2.19 Polarisation in  successive dipoles inside the slab cancel the effect of each other,
Dielectric as they are very close to each other and a net (resultant) charge

resides only on the faces of the slab, close to the plates. These

charges are called induced charges or the bound charges or the polarisation charges. The

charge induced on the surface of the slab close to the positive plate is —G,A and that on the

surface close to the negative plate is +G,A, where —G, and +0C, are, the surface densities of
the bound charges on the respective surfaces. This induced charges form a dipole. Its dipole
moment is P = (0,A)d (2.17.3)

total
where, d = thickness of the slab = distance between two plates. (if sides of slab touch the
plates)
Here, Ad = volume of slab = V (2.17.4)
The dipole moment produced per unit volume is called the intensity of polarisation or in

short polarisation (P).

P (c,A)d
— total — b —
P= volume = Ad Gy (2.17.5)

Thus the magnitude of polarisation(P) in a dielectric is equal to the surface density of
bound charges (0,), induced on its surface. The electric field produced by these induced

5
charges is in the direction opposite to the external electric field E ;. Hence, now the resultant

electric field E inside the dielectric can be considered as produced due to (Gf — Gp).
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