QUESTIONS

1.	Which of the follow	wing is the decimal re	presentation of 1/7						
	(a) 0.241857	(b) 0.142857	(c) 0.142857	(d) 0.148257					
2 .	Which of the follow	wing equal to $1.\overline{27}$							
	(a) $\frac{19}{11}$	(b) $\frac{12}{11}$	(c) $\frac{15}{11}$	(d) $\frac{14}{11}$					
3 .	Which of the following statement is not true?								
	(a) Every integer is a	rational number							
	(b) Every integer is a	real number							
	(c) There can be infin	nite rational numbers bet	ween two rational numbe	ers					
	(d) Every rational number is a whole number								
4.	Which of the follow	wing is not a rational	number						
	(a) 0	(b) $-\frac{1}{4}$	(c) 23	(d) π					
5 .	Every integer is a number								
	(a) whole	(b) natural	(c) rational	(d) positive					
6.	Every number is smaller than 0.								
	(a) positive	(b) rational	(c) natural	(d) negative					
7 .	If a , $a+2$ and $a+4$ are prime numbers, then the number of possible solutions for a is								
	(a) one	(b) two	(c) three	(d) none of these					
8.	Find the multiplica	ative inverse of $\left(\frac{3}{8}\right)^{-1}$							
	(a) $\frac{3}{8}$	(b) $\frac{5}{8}$	(c) 1	(d) 0					
9.	$0.\overline{8} + 0.\overline{4} + 0.\overline{5} + 0.\overline{7}$ is equal to								
	(a) $2.\overline{4}$	(b) $2\frac{5}{9}$	(c) $2\frac{2}{3}$	(d) $2\frac{3}{9}$					
10.	The multiplication $(3+\sqrt{2})(3-\sqrt{2})$ results in a								
	(a) rational number								
	(b) irrational number								
	(c) neither rational nor irrational								
	(d) imaginary numbe	r							
11.	The rational number for $0.3\overline{51}$ is								
	(a) $\frac{351}{990}$	(b) $\frac{58}{165}$	(c) $\frac{352}{990}$	(d) $\frac{349}{3990}$					

	(a) 1.8	(b) $\frac{15}{9}$	(c) $\frac{7}{3}$	(d) 2				
13.	What should be subtr	racted from $\left(\frac{3}{4} - \frac{6}{16} + \right)$	$\left(\frac{5}{24}\right)$ to get $\left(\frac{7}{32}\right)$?					
	(a) $\frac{7}{12}$	(b) $\frac{35}{96}$	(c) $\frac{-5}{96}$	(d) $\frac{77}{96}$				
14.	Find the sum $\left(\frac{4}{5} + \frac{25}{15}\right)$	$\left(\frac{5}{5}-10\right)+\frac{21}{45}$						
	(a) $-\frac{1}{9}$	(b) $1\frac{1}{9}$	(c) $-7\frac{1}{15}$	(d) $4\frac{22}{27}$				
15 .	The rational number	lying between 85 and	90 is					
	(a) $\frac{355}{4}$	(b) $\frac{355}{2}$	(c) $\frac{355}{3}$	(d) $\frac{355}{5}$				
16.	Which one of the following rational number lies between $\frac{20}{30}$ and $\frac{40}{50}$?							
	(a) $\frac{11}{15}$	(b) $\frac{3}{5}$	(c) $\frac{41}{30}$	(d) $\frac{14}{15}$				
17 .	The real numbers are	either rational or irra	tional. The irrational n	umbers are the numbers which are				
	non-terminating and	non-repeating. Identif	y the numbers given b	pelow as non-terminating and non-				
	repeating.							
	(a) $\frac{1}{\sqrt{3}}$	(b) $\frac{4}{5}$	(c) $\frac{5}{2}$	(d) $\frac{\sqrt{36}}{3}$				
18.	The value of the given expression $\left(\frac{156}{24} + \left\{\frac{-24}{56} + \frac{26}{112}\right\} \times \frac{112}{44}\right)$ is given by							
	(a) $\frac{1}{6}$	(b) $\frac{2}{5}$	(c) $\frac{36}{6}$	(d) 216				
19.	What will be the addi	itive inverse of A if A=	$\frac{3}{5} - \frac{4}{27} + \frac{5}{18}$					
	(a) $\frac{127}{270}$	(b) $\frac{270}{127}$	(c) $\frac{-197}{270}$	(d) $\frac{270}{197}$				

(c) $\frac{1}{1024}$

(d) 1

The multiplicative identity of the rational number $\frac{455}{1024},$ is

(b) $\frac{1}{455}$

The value of $0.\overline{3} + 0.\overline{4} + 0.\overline{5} + 0.\overline{9}$

12.

20.

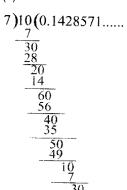
(a) $\frac{1024}{455}$

21.	The largest rational n	number among the follo	owing rational number	s is:
	(a) $\frac{44}{34}$	(b) $\frac{55}{85}$	(c) $\frac{76}{68}$	(d) $\frac{98}{102}$
22 .	Which one of the foll	owing is a natural num	iber?	
	(a) $\frac{14}{56}$	(b) $\frac{19}{57}$	(c) $\frac{91}{13}$	(d) $\frac{45}{135}$
23.	The multiplicative in	verse of $\frac{97}{89}$ is		
	(a) $\frac{97}{89}$	(b) $\frac{89}{97}$	(c) $\frac{1}{97}$	(d) $\frac{1}{89}$
24.	The additive identity	of the given number $\frac{5}{8}$	176 190 is	
	(a) 1	(b) $\frac{576}{890}$	(c) $\frac{890}{576}$	(d) 0
25.	The area of a rectang	rular room is $45\frac{1}{4}$ m ² .	If breadth is $9\frac{3}{7}$ m, the	en its length is
	(a) $\frac{255}{264}m$	(b) $\frac{1215}{28}m$	(c) $\frac{255}{28}m$	(d) $\frac{1267}{264}m$
26.	In a school, $\frac{5}{8}$ of the t	total students are boys	. If there are 360 girls,	then the number of students in the
	school is			
	(a) 960	(b) 500	(c) 360	(d) 920
27 .	Arwin earns Rs. 1200	per month, he spends	$\frac{1}{4}$ of his income on for	od, $\frac{13}{10}$ of the 410 remaining money
	on house rent and $\frac{5}{2}$	$\frac{5}{1}$ of the remaining m	oney on the education	of his children. How much money
	does he save in a mo	nth?		
	(a) Rs. 450	(b) Rs. 420	(c) Rs. 400	(d) Rs. 480
28.	Write four rational nu	umbers between $\frac{1}{3}$ and	$\frac{1}{2}$	
	(a) $\frac{5}{2}$, $\frac{29}{24}$, $\frac{11}{24}$, $\frac{21}{28}$		(b) $\frac{7}{12}$, $\frac{13}{12}$, $\frac{21}{24}$, $\frac{9}{24}$	
	(c) $\frac{5}{12}$, $\frac{9}{24}$, $\frac{11}{24}$, $\frac{21}{48}$		(d) $\frac{7}{24}$, $\frac{11}{24}$, $\frac{21}{48}$, $\frac{13}{24}$	
29.	Compare $\frac{2}{5}$ and $\frac{1}{2}$			
	(a) $\frac{2}{5} < \frac{3}{4}$	(b) $\frac{2}{5} > \frac{3}{4}$	(c) $\frac{2}{5} = \frac{3}{4}$	(d) $\frac{2}{5} \le \frac{3}{4}$

30 .	A number of the form	p/q is said to be a rati	ional number if				
	(a) p and q are integers		(b) p and q are integers a	and $q \neq 0$			
	(c) p and q are integers	and $p \neq 0$	(d) p and q are integers a	and $p \neq 0$ also $p \neq 0$			
31.	The value of $\frac{1}{\sqrt{6.25} + \sqrt{6.25}}$	$\frac{1}{\sqrt{5.25}} + \frac{1}{\sqrt{4.25} + \sqrt{3.25}}$	$+\frac{1}{\sqrt{5.25}+\sqrt{4.25}}+\frac{1}{\sqrt{3.25}}$	$\frac{1}{25 + \sqrt{2.25}}$ is			
	(a) 1.00	(b) 1.25	(c) 1.50	(d) 2.25			
32.	The value of $\sqrt{4\sqrt[3]{16}\sqrt{1}}$	$4\sqrt[3]{16\sqrt{4\sqrt[3]{16}}} \mathbf{up to} \ \infty$	is				
	(a) 2	(b) 2 ²	(c) 2 ³	(d) 2 ⁵			
33.	If m = $\sqrt{3 + \sqrt{3 + \sqrt{3}}}$	==== up to ∞					
	$\mathbf{n} = \sqrt{3 - \sqrt{3 - \sqrt{3 - \dots}}}$	≡ . up to ∞					
	Then among the following the relation between m and n holds is						
	(a) $m-n+1=0$	(b) $m+n-1=0$	(c) $m+n+1=0$	(d) $m-n-1=0$			
34. If $x = \frac{\sqrt{3}}{2}$, then the value of $\sqrt{1+x} + \sqrt{1-x}$ is							
	(a) $\sqrt{3}$	(b) $\frac{\sqrt{3}}{2}$	(c) $2 + \sqrt{3}$	(d) $2 - \sqrt{3}$			
35 .	If $A = 2^x$, $B = 4^y$ $c = 8$	where $x = 0.\overline{1}$, $y = 0$.	$\overline{4}, \mathbf{z} = 0.\overline{6}, \text{then } \mathbf{A} \times \mathbf{B} \times 6$	C is			
	(a) 8	(b) 2	(c) 16	(d) 4			
36 .	If $x = 2.\overline{3} - 0.\overline{9}$, $y = 2.\overline{3}$	$2.\overline{5} - 0.\overline{5}$, then $x^2 + y^2$	-2xy is				
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{5}$			
37 .	$\frac{4^{-3} \times a^{-5} \times b^{-4}}{4^{-5} \times a^{-8} \times b^{3}} =$						
	(a) $16\frac{a^3}{b^7}$	(b) $8\frac{a^2}{b^{-7}}$	(c) $2\frac{a^{-13}}{b^{-7}}$	(d) $\frac{a^8}{b^{-1}}$			
38.	If $7\sqrt[4]{162} - 5\sqrt[4]{32} + \sqrt[4]{1}$	$\overline{250}$ is simplified, then	n the resultant value is				
	(a) $6\sqrt[3]{2}$	(b) $6\sqrt[4]{2}$	(c) $6\sqrt[5]{2}$	(d) $16\sqrt[4]{2}$			
39 .	If $2^{x-1} + 2^{x+1} = 640$, if	he value of x is					
	(a) 7	(b) 8	(c) 9	(d) 6			
40 .	The largest among th	e numbers $2^{250}, 3^{150}, 5^{100}$	and 4 ²⁰⁰ is				

(a) 4²⁰⁰

(b) 5^{100}


(c) 2^{250}

(d) 2^{150}

ANSWER - KEY									
1. (c)	2. (d)	3. (d)	4. (d)	5. (c)	6. (d)	7. (a)	8. (a)	9. (c)	10. (a)
11. (b)	12. (c)	13. (b)	14. (c)	15. (a)	16. (a)	17. (a)	18. (c)	19. (c)	20. (d)
21. (a)	22. (c)	23. (b)	24. (d)	25. (d)	26. (a)	27 . (d)	28. (c)	29. (a)	30. (b)
31. (a)	32. (b)	33. (d)	34. (a)	35. (a)	36. (a)	37. (a)	38. (d)	39. (b)	40. (a)

Answers and Solutions

- 1. (c):

- (d) $1.\overline{27} = 1 + \frac{27}{99} = \frac{126}{99} = \frac{14}{11}$. 2.
- 3. (d) Not Available
- 4. (c) Not Available
- (d) Not Available **5**.
- (d) Not Available 6.
- **7**. (a): Only solution is a = 3

 \Rightarrow 3, 5, 7 are prime numbers.

After this same of such nos. become multiplied of these very prime nos.

Eg: 5, 7, 9 (9 is a multiple of 3)

11, 13, 15 (15 is a multiple of 3).

8. (a): Let 'a' be multiplicative inverse

Then,
$$a \times \left(\frac{3}{8}\right)^{-1} = 1$$

$$\Rightarrow a = \frac{3}{8}$$
.

(c): $\frac{8}{9} + \frac{4}{9} + \frac{5}{9} + \frac{7}{9}$

$$=\frac{8+4+5+7}{9}=\frac{24}{9}=\frac{8}{3}$$

(a): $(3+\sqrt{2})(3-\sqrt{2})$ **10**.

$$=9-2=7=$$
 rational number.

(b): $0.3\overline{51} = 0.3 + 0.0\overline{51}$ 11.

$$= 0.3 + \frac{1}{10} \times \left\{0.\overline{51}\right\}$$

$$= 0.3 + \frac{1}{10} \times \frac{51}{99}$$

$$= \frac{3}{10} + \frac{51}{990}$$

$$= \frac{297 + 51}{990} = \frac{348}{990} = \frac{116}{330} = \frac{58}{165}$$

12. (c):
$$\frac{3}{9} + \frac{4}{9} + \frac{5}{9} + \frac{9}{9}$$

= $\frac{21}{9} = 7/3$.

13. (b): Let 'x' be subtrahend

14. (c):
$$\frac{4}{5} + \frac{25}{15} - 10 + \frac{21}{45}$$
$$= \frac{36 + 75 - 450 + 21}{45}$$
$$= \frac{-318}{45} = \frac{-106}{15} = -7\frac{1}{15}.$$

- **14.** (a): Value should be between 85 & 90.
- 15. (a): Not Available
- 16. (a) Not Available
- 17. (a): Irreducible square root is an indication of irrational no. Here $\sqrt{3}$ cannot be further reduced whereas $\sqrt{36}$ can be reduced as $\sqrt{6 \times 6} = 6$.

18. (c)
$$\frac{15.6}{24} + \left\{ \frac{-24}{56} + \frac{26}{112} \right\} \times \frac{112}{44}$$

= $\frac{13}{2} + \left\{ \frac{-3}{7} + \frac{13}{56} \right\} \times \frac{28}{11}$

$$= \frac{13}{2} + \left\{ \frac{-24 + 13}{56} \right\} \times \frac{28}{11}$$
$$= \frac{13}{2} - \frac{1}{2} = 6 = \frac{36}{6}$$

19. (c)
$$A = \frac{162 - 40 + 75}{270} = \frac{197}{270}$$

Additive inverse =
$$\frac{-197}{270}$$
.

20. (a): Multiplicative Identity is always 1.

21. (a): Only
$$\frac{44}{34} > 1$$
.

22. (c):
$$\frac{91}{13} = 7 \in \mathbb{N}$$

23. (b): M.I.
$$=\frac{1}{97/89}=\frac{89}{97}$$
.

25. (d): length
$$\times$$
 breadth = area

$$\therefore \text{ length } = \frac{45\frac{1}{4}}{9\frac{3}{7}} = \frac{181}{4} \times \frac{7}{66}$$

$$=\frac{1267}{264}$$
.

26. (a):
$$\frac{5}{8}$$
 x are boys where x = total students $\Rightarrow \frac{3}{8}x$ are girls.

27. (d):
$$1200 - \frac{1}{4} \times 1200 = 900$$

$$900 - \frac{3}{10} \times 900 = 630$$

$$630 - \frac{5}{21} \times 630 = 480 \, \text{Rs} / \text{-.} \text{(savings)}$$

28. (c): Choose option in which all nos. are
$$> \frac{1}{3}$$
 but $< \frac{1}{2}$.

29. (a): You can take LCM & see which has greater numerator
$$\frac{2}{5} = \frac{8}{20}$$
 whereas $\frac{3}{4} = \frac{15}{20}$ Or else, $\frac{2}{5} = 0.4$ and $\frac{3}{4} = 0.75$.

$$\frac{\sqrt{6.25} - \sqrt{5.25}}{1} + \frac{\sqrt{4.25} - \sqrt{3.25}}{1} + \frac{\sqrt{5.25} - \sqrt{4.25}}{1} + \frac{\sqrt{3.25} - \sqrt{2.25}}{1} = \sqrt{6.25} - \sqrt{2.25} = 2.5 - 1.5 = 1$$

32. (b): Let expression be 'x'.

Squaring,
$$x^2 = 4 \times \sqrt[3]{16 \times \sqrt{4 \times \sqrt[3]{16}}}$$

$$x^6 = 64 \times 16 \times \underbrace{\sqrt{4 \times \sqrt[3]{16 \times}}}_{\bullet} \dots \dots$$

$$x^6 = 1024x$$

solving
$$x = 4 = 2^2$$
.

33. (d):
$$m^2 = m + 3$$

$$n^2 = 3 - n$$

Solving for m & n and then

Subtracting m & n

We get
$$m-n=1$$

$$\Rightarrow m-n-1=0.$$

34. (a): Let
$$y = \sqrt{1+x} + \sqrt{1-x}$$

$$v^2 = 2 + 2\sqrt{1 - x^2}$$

$$=2[1+\sqrt{1-3/4}]=3$$

$$\Rightarrow y = \sqrt{3}$$

35. (a):
$$A \times B \times C = 2^x \times (2^2)^y \times (2^3)^z$$

$$=2^{x+2y+3z}$$

$$\therefore x + 2y + 3z = \frac{1}{9} + \frac{8}{9} + \frac{18}{9}$$

$$=\frac{27}{9}=3$$

$$\therefore A \times B \times C = 2^3 = 8.$$

36. (a):
$$x^2 + y^2 - 2xy = (x - y)^2$$
 and solve

37. (a):
$$\frac{4^{-3} \times a^{-5} \times b^{-4}}{4^{-5} \times a^{-8} \times b^{3}}$$

$$=4^2 \times a^3 \times b^{-7} = \frac{16a^3}{b^7}$$
.

38. (d):
$$7 \times \sqrt[4]{81 \times 2} - 5 \times \sqrt[4]{16 \times 2} + \sqrt[4]{625 \times 2}$$

$$=7\times3\times2^{\frac{1}{4}}-5\times2\times2^{\frac{1}{4}}+5\times2^{\frac{1}{4}}$$

$$=2^{\frac{1}{4}} \left[21-10+5\right]$$

$$=16 \times \sqrt[4]{2}$$
.

39. (b):
$$2^{X-1} + 2^{X+1} = 640$$

$$=2^{x-1}+4\times 2^{x-1}=640$$

Put,
$$2^{x-1} = P$$

$$\Rightarrow$$
 5 $P = 640 \Rightarrow P = 128$

$$2^{x-1} = 128 \Longrightarrow x - 1 = 7$$

$$\Rightarrow x = 8$$
.

40. (a): Comparing between 2^{250} , 3^{150} , 4^{200} , the obvious result (for largest) is 4^{200} .

Now between $5^{100} \& 4^{200}$.

Taking log,

100 log 5 and 200 log4 have to be compared

Let us write 200 as 100×2 .

$$\therefore 200 \log 4 = 100 \times 2 \log 4$$

$$=100 \times \log 4^2$$

$$=100 \times log 16$$

Now comparing $100 \log 5$ and $100 \times \log 16$, latter is obviously greater

$$\Rightarrow$$
 100 log 16 = 200 log 4

$$\Rightarrow 4^{200}$$
 is the greatest.