

DPP No. 86

Total Marks : 27

Max. Time : 30 min.

Topics : Simple Harmonic Motion, Sound Waves, Center of Mass, Circular motion, Kinetic Theory of

Type of Questions Single choice Objective ('–1' negative marking) Q.1 to Q.5 Subjective Questions ('–1' negative marking) Q.6 Match the Following (no negative marking) (2 × 4)				(3 marks, 3 min.) (4 marks, 5 min.) (8 marks, 10 min.)	M.M., Min. [15,15] [4, 5] [8, 10]	
1.	Two pendulums differ in lengths by 22 cm. They oscillate at the same place so that one of them makes 30 oscillations and the other makes 36 oscillations during the same time. The lengths (in cm) of the pendulum are :					
	(A) 72 and 50	(B) 60 and 38	(C) 50 and 28	8 (D) 80 and 58		
2.		same amplitude have freque beats. The number of beats (B) 2			uperpose on one	
3.	A spherical ball of mass m_1 collides head on with another ball of mass m_2 at rest. The collision is elastic. The fraction of kinetic energy lost by m_1 is :					
	(A) $\frac{4m_1m_2}{(m_1 + m_2)^2}$	(B) $\frac{m_1}{m_1 + m_2}$	(C) $\frac{m_2}{m_1 + m_2}$	(D) $\frac{m_1m_2}{(m_1+m_2)}$	2	
4.	The spring is elonga	Two equal masses are connected by a spring satisfying Hooke's law and are placed on a frictionless table. The spring is elongated a little and allowed to go. Let the angular frequency of oscillations be ω . Now one of the masses is stopped. The square of the new angular frequency is :				
	(A) ω ²	(B) $\frac{\omega^2}{2}$	(C) $\frac{\omega^2}{3}$	(D) 2ω ²		
		`´2	3	. ,		
5.	When a compressib is heard after 2s. If b	2 ble wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m	om of sea from water is 2 × 10°			
5. 6.	When a compressib is heard after 2s. If b mean density of war (A) 1014 m	le wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m³, then depth	om of sea from water is 2 × 10 ⁹ n of sea will be (C) 2828 m	N/m ² , mean temperature (D) 3000 m	of water is 4° and	
	When a compressib is heard after 2s. If b mean density of war (A) 1014 m The speed of sound	ele wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m³, then depth (B) 1414 m	om of sea from water is 2 × 10 ⁹ n of sea will be (C) 2828 m	N/m ² , mean temperature (D) 3000 m	of water is 4° and	
	When a compressible is heard after 2s. If the mean density of wate (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme	ble wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K) nts in column-I with the sta	om of sea from water is 2 × 10 ⁹ n of sea will be (C) 2828 m es of He, n ₂ = 2	N/m² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat	of water is 4° and	
6.	When a compressible is heard after 2s. If b mean density of wat (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme Co	ble wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K)	tements in col	N/m² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat umn-II.	of water is 4° and ure T = $\frac{972}{5}$ K is	
6.	When a compressib is heard after 2s. If b mean density of war (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme Co (A) A tight string is sustaining stan	le wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K) nts in column-I with the sta lumn-I s fixed at both ends and ding wave	tements in col (p)	N/m ² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat umn-II. Column-II At the middle, antinode is in odd harmonic	of water is 4° and ure T = $\frac{972}{5}$ K is	
6.	When a compressib is heard after 2s. If b mean density of war (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme Co (A) A tight string is sustaining stan (B) A tight string is	ble wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K) nts in column-I with the sta lumn-I is fixed at both ends and ding wave is fixed at one end and	tements in col (p)	N/m ² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat umn-II. Column-II At the middle, antinode is in odd harmonic At the middle, node is for	of water is 4° and ure T = $\frac{972}{5}$ K is	
6.	When a compressible is heard after 2s. If b mean density of wat (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme Co (A) A tight string is sustaining stan (B) A tight string is free at the other	ble wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K) ints in column-I with the stato lumn-I is fixed at both ends and iding wave is fixed at one end and er end	tements in col (q)	N/m ² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat Column-II At the middle, antinode is in odd harmonic At the middle, node is for in even harmonic	of water is 4° and ure T = $\frac{972}{5}$ K is formed med	
6.	When a compressib is heard after 2s. If b mean density of war (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme Co (A) A tight string is sustaining stan (B) A tight string is free at the othe (C) Standing wave	ble wave is sent towards botto oulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K) ints in column-I with the stato lumn-I is fixed at both ends and dding wave is fixed at one end and er end is formed in an open organ	tements in col (p) (p) (p) (p) (p) (q) (p) (q)	N/m ² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat Column-II At the middle, antinode is in odd harmonic At the middle, node is for in even harmonic At the middle, neither nod	of water is 4° and ure T = $\frac{972}{5}$ K is formed med	
6.	When a compressib is heard after 2s. If b mean density of war (A) 1014 m The speed of sound $\eta \times 10$ m/s. Find η . Match the stateme Co (A) A tight string is sustaining stan (B) A tight string is free at the othe (C) Standing wave pipe. End corre	ble wave is sent towards botto bulk modulus of elasticity of v ter is 1000 kg/m ³ , then depth (B) 1414 m d in a mixture of n ₁ = 2 mole (Take R = $\frac{25}{3}$ J/mole-K) ints in column-I with the stato lumn-I is fixed at both ends and iding wave is fixed at one end and er end	tements in col (r) $\frac{1}{2828}$ m	N/m ² , mean temperature (D) 3000 m 2 moles of H ₂ at temperat Column-II At the middle, antinode is in odd harmonic At the middle, node is for in even harmonic	of water is 4° and ure T = $\frac{972}{5}$ K is formed med de nor	

Answers Key

DPP NO. - 86

- **1.** (A) **2.** (C) **3.** (A) **4.** (B) **5.** (B)
- 6. 90 7. (A) p,q,s (B) r,s (C) s (D) r,s

Hint & Solutions

DPP NO. - 86

1. $T_1 = 2\pi \sqrt{\frac{\ell_1}{g}}$ $T_2 = 2\pi \sqrt{\frac{\ell_2}{g}}$ $\frac{t}{T_1} = 30$ $\frac{T_2}{T_1} = \frac{5}{6}$ $\frac{t}{T_2} = 36$ $6T_2 = 5T_1$ $T_1^2 = \frac{88}{100} \times \frac{36}{11} \approx \frac{6 \times \sqrt{2}}{10} = \frac{6\sqrt{2}}{5}$ $\frac{6\sqrt{2}}{5} = 2\pi \sqrt{\frac{\ell_1}{q}}$ $\frac{36 \times 2}{25} = 4 \times 10 \times \frac{\ell_1}{10}$ Ans. (A) t = 0 0 0 t = 1 sec. 1/2 sec. 1/3 sec. T = 1sec. f = 1 hz. Ans. (C) **3.** $u = v_1 + \frac{m_2}{m_1}v_2$ (1) $v_2 - v_1 = u$ (2) $\frac{k_{f_1} - k_{i_1}}{k_{i_1}} = 1 - \left(\frac{v_1}{u}\right)^2 = \frac{4m_1m_2}{(m_1 + m_2)^2}$ Ans. (A)

4.
$$\frac{m}{m} - \frac{m}{m} + \frac$$

 (A) Number of loops (of length λ/2) will be even or odd and node or antinode will respectively be formed at the middle.

Phase of difference between two particle in same loop will be zero and that between two particles in adjacent loops will be π .

(B) and (D) Number of loops will not be integral. Hence neither a node nor an antinode will be formed in in the middle.

Phase of difference between two particle in same loop will be zero and that between two particles in adjacent loops will be π .