NERVOUS SYSTEM

INTRODUCTION

In all the multicellular animals above the level of sponges, the system meant to perceive stimuli detected by the receptors, to transmit these to various body parts, and to effect responses through effectors, is called *nervous system*. In vertebrates, it is highly specialized and plays at least three vital roles

(i) **Response to stimuli :** By responding to all sorts of stimuli, it acquaints the organism with them so that the organism may react and orient itself favourably in the surrounding environment.

(ii) **Coordination :** Along with endocrine system, the nervous system also serves to coordinate and integrate the activities of various parts of the body so that they act harmoniously as a unit. This makes possible the integrated control of the internal body environment (*homeostasis*). However, the nervous system brings about rapid coordination by means of nerves, whereas the endocrine system does so gradually and slowly by secreting hormones into blood.

(iii) **Learning :** By accumulating memories from past experiences, in higher vertebrates at least, the nervous system serves as a centre for learning. The branch of medical science dealing with the structure (anatomy), functions (physiology) and diseases (pathology) of nervous system is called *neurology*.

7.1 NERVOUS SYSTEM IN VARIOUS ANIMALS

(i) **Coelenterata :** True nerve cell or ganglion cells occur for the first time in coelenterates. They are derived from interstitial cells of epidermis, forming nerve net or nerve plexus below whole epidermis.

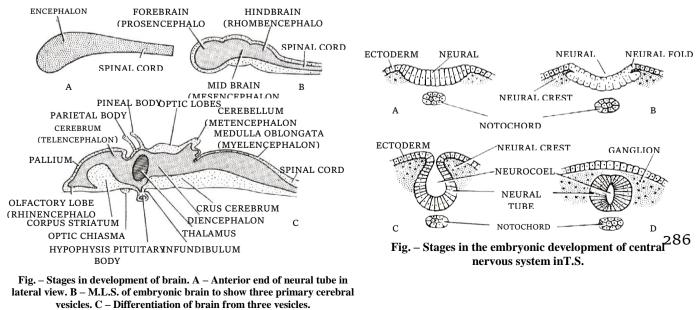
(ii) **Platyhelminthes :** Nervous system of planarians marks the beginning of a centralized nervous system encountered in higher animals. That is made up of brain or cerebral ganglia, two lateral longitudinal nerve chords, numerous peripheral nerves and transverse commissures or connectives. This is sometimes called the ladder type of nervous system. In addition to the centralized nervous system planaria also possesses a sub-epidermal nerve net like that of coelenterates. Brain receives stimuli from the sense organs and conveys them to different parts of body. Special receptors, as found in turbellarians, are lacking in tapeworm. However numerous free sensory nerve-endings are present throughout the body specially in the scolex.

In Nematoda (*e.g.* ascaris) these system made up of central nervous system, peripheral nervous system and rectal nervous system. Rectal nervous system more developed in male.

(iii) **Annelida :** Nervous system well developed and concentrated. It consists of three parts : central nervous system, peripheral nervous system and sympathetic nervous system, central N.S. made up of Nerve ring and ventral nerve cord. Nerves are of mixed type, consisting of both afferent (sensory) and efferent (motor) fibres.

(iv) **Arthopoda :** The nervous system of prawn or arthopods is of the annelidan type. However it is somewhat larger and has more fusion of ganglia. It consists of (i) The central nervous system including brain connected with a ventral ganglionated nerve cord through a pair of circumoesophageal commissures, (ii) The peripheral nervous system including nerves and (iii) The sympathetic nervous system.

(v) **Mollusca :** In gastropodes (*e.g.* pila) consists of paired ganglia, commissures and connective uniting them and nerves running from these central organs to all parts of the body. It has various type of ganglia as cerebral, buccal, pleuro-pedal, supraintestinal and visceral etc. In palecypoda nervous system is greatly reduced due to sluggish and sedentary mode of life and there is little evidence of the brain. But in cephalopoda shows a high grade of organization attained only by some insects and arachnids among the other invertebrates.'

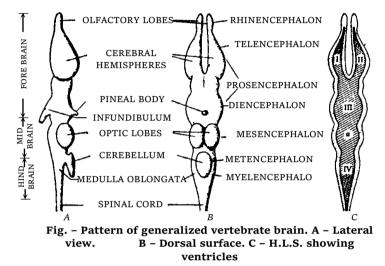

(vi) **Echinodermata :** Echinodermates has simple and primitive type nervous system. It has the form of a nerve net, consisting of nerve fibres and a few ganglion cells, all confined to the body wall except the visceral nerve plexus situated in the gut wall. At certain places the nervous tissue is concentrated to form distinct nerve cords. It is made up of (i) Superficial or ectoneural nervous system (ii) Hyponeural or deep nervous system (iii) Aboral or coelomic nervous system and (iv) Visceral nervous system.'

(vii)**Hemichordata :** Nervous system is of primitive type resembling that of coelenterates and echinodermates.

Chordates : Nervous system well developed and formed by ectoderm. It is formed by CNS, peripheral nervous system and autonomous N.S.

7.2 DEVELOPMENT OF CENTRAL NERVOUS SYSTEM IN HUMAN

The central nervous system of vertebrates includes the *brain* and the *spinal cord*. These are derived from a longitudinal mid-dorsal ectodermal thickening of the embryo, called the *meduallary* or *neural plate*. This neural plate or neural groove is converted by fusion into a closed mid-dorsal longitudinal *neural tube* lying above the notochord. Histologically, the embryonic neural tube exhibits three zones of cells.



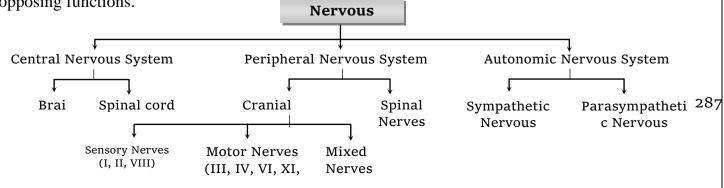
(i) **Germinal layer :** These are actively dividing cells lining the neural canal. They form the connective tissue lining of neural canal, called *ependyma*, and also proliferate into mantle layer cells.

(ii) Mantle layer : It consists of embryonic neurons or *nematoblasts*, forming the gray matter.

(iii) **Marginal layer :** It consists of nerve fibres, mostly surrounded by fatty myelin sheaths, and forms the *white matter*. Neurons and fibres are supported by a special connective tissue of ectodermal origin, the *neuroglia*, cells of which become increasingly abundant and diversified in higher vertebrates.

Development of brain : The anterior end of embryonic neural tube is already enlarged forming the embryonic brain, called encephalon. By differential growth and two constrictions, it is divided into a linear series of three primary cerebral vesicles, termed the forebrain, midbrain and hindbrain. These give rise to the three major divisions of the adult brain – (1) prosencephalon (forebrain), (2) mesencephalon (midbrain), and (3)rhombencephalon (hindbrain). These further become subdivided into 5 subdivisions. The

various parts of the adult brain in different vertebrates are formed by modifications. That is, by thickenings and foldings of these 5 subdivisions. The adult brain has a series of cavities, called *ventricles*, which are in continuation with the central canal of the spinal cord and filled with a cerebro-spinal fluid.


7.3 PARTS OF NERVOUS SYSTEM

Nervous system is divided into three parts

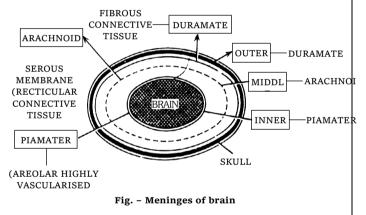
(i) **Central nervous system (CNS) :** In all the vertebrates including man, CNS is dorsal, hollow and non-ganglionated while in invertebrates when present, it is ventral, solid and ganglionated. CNS is formed of two parts : **Brain** – Upper and broader part lying in the head; and **Spinal cord** – Lower, long and narrow part running from beginning of neck to trunk.

(ii) **Peripheral nervous system (PNS) :** It is formed of long, thin, whitish threads called nerves which extend between CNS and body parts (muscles, glands and sense organs). It controls the voluntary functions of the body. It has cranial and spinal nerves.

(iii) Autonomic nervous system (ANS) : It is formed of nerve fibres extending upto visceral organs and controls the involuntary functions of visceral organs of body like heart beat, peristalsis etc. It is again formed of two systems: sympathetic and para-sympathetic nervous system which have opposing functions.

(i) **Central nervous system :** Central nervous system is made up of brain and spinal cord. CNS is covered by 3 meninges and its wall has two type of matter.

Types of matter : CNS of vertebrates is formed of two types of matter -


(a) Grey matter : It is formed of cell-bodies and non-medullated nerve fibres.

(b) White matter : It is formed of only medullated nerve fibres which appear white due to presence of medullary sheath.

Meninges : The meninges are connective tissue membranes which surround the brain and spinal cord of CNS. In the fishes, there is only one meninx called meninx primitiva. In amphibians, reptiles and birds, the brain is covered by two meninges or membranes : inner pia-arachnoid and outer dura mater. In mammals, CNS is covered by three meninges or membranes

(a) **Duramater (Dura = tough; mater = mother):** Outermost, thick, fibrous, 2-layered meninge. The outer layer adheres to skull at many places while the inner layer follows the major convolutions (sulci and gyri) of the brain and spinal cord. Meningeal artery traverses via duramater. The two layers

of duramater are widely separated at some places to form the large sinuses called venous sinus. This drains deoxygenated (= venous) blood from the brain to the large veins that return it to the heard. The space between duramater and the next meninge in succession is called sub-dural space is filled with cerebrospinal fluid and has arachnoid villi in the region of dural space. Similarly the space between the skull and durameter is called epidural space.

Duramater extends in the form of straight sulcus between cerebrum and cerebellum posteriorly. Here it is called tentorium.

(b) **Arachnoid** (= **spider-like web**) : It is closely related to duramater on its outside and with piameter on the inside. The space between the arachnoid and piameter is called sub-arachnoid space and is filled with cerebro-spinal fluid.

(c) **Piameter** (**Pia** = **soft** = **tender**) : This is the innermost meninge and follows the convolutions of the outer surface of brain and spinal cord. It is highly vascular and penetrates deeply in certain places bringing it with its vasculature and placing it in contact with the ventricles of the brain and neurocoel of spinal cord.

Cerebrospinal fluid : All the ventricles of the brain are continuous and lined by a columnar, ciliated epithelium, the ependyma. They contain lymph-like extracellular fluid called the cerebrospinal fluid (C.S.F.). This fluid is secreted by the choroid plexuses by filtration of blood. The choroid plexuses

consist of loose connective tissue of pia mater covered internally by a simple cuboidal epithelim of secretory (glandular) nature. The cerebrospinal fluid slowly flows toward the fourth ventricle by secretion pressure and passes into the spinal cord. Some fluid escapes into the subarachnoid spaces through three pores in the roof of the fourth ventricle in the medulla. From the subarachnoid spaces, the cerebrospinal fluid is transferred to the blood of the venous sinuses. Nervous tissue is without lymphatic vessels.

The cerebro-spinal fluid (CSF) provides

(a) Protection to brain from mechanical socks.

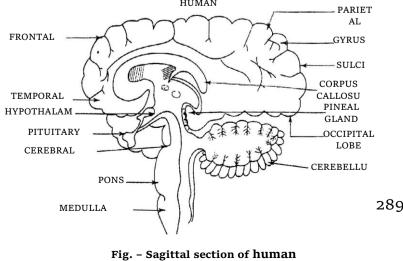
(b) Optimum physiological fluid environment for neural functions *e.g.* conduction of nerve impulses, transport of aminoacids, sugars, O_2 etc.

(c) 'Relief' mechanism for the increase in intracranial pressure that occurs with each arterial pulse of blood to brain.

(d) 'Sink' like facility for metabolites of brain.

(e) The blood CSF barrier for selective transport process between blood and CSF.

Major site of CSF formation is choroid plexus, and mid ventricular wall and sub-arachnoid wall also contribute. CSF is cell free, slightly alkaline, and is isotonic to plasma. Rate of formation of C.S.F is 80 *ml/hour* approx, 1/2 *litre* per day. Total amount present in and around CNS is 150 *ml* it means there is atleast 3 times renewal of C.S.F. every day.


Blood brain barrier facilitate maintenance of stable internal environment. Its acts as physiological and pathological barrier as well. Hydrocephalus : The enlargement of head, a pathological condition characterized by an abnormal accumulation of cerebrospinal fluid resulting headache, vomiting, pain and stiffness of the neck.

- □ Increased cerebrospinal fluid may result Meningites.
- □ Meningites may appear due to infection and inflamation of meninges or injury of meninges.

Infection may be viral, bacterial or both. The most common cause of meningitis in the infection of streptococcus and neumoniae,
HUMAN
HUMAN

neisseria meningitidis and haemophilus influenzae.

□ Lumber puncture is done for drainage of excess of cerebrospinal fluid during meningitis.

□ Cerebro-spinal fluid is formed by choroid plexus (ACP and PCP).

There are three choroid plexus in humans

- (a) Lateral choroid plexus : It is in the roof of I and II ventricle.
- (b) Anterior choroid plexus : It is in the roof of III ventricle (diacoel).
- (c) Posterior choroid plexus or pelochoroida : It is in the roof of IV ventricle.

Oxygen and glucose requirements : Brain controls the functions of our body organs and also provides the qualities of mind – learning, reasoning, and memory. For these activities, brain needs a large and constant energy supply. At any given time, the activities of the brain account for 20% of the body's consumption of oxygen and 15% of its consumption of blood glucose. Brain deprived of oxygen for just 5 minutes is permanently damaged. Mental confusion results if brain is deprived of glucose.

(a) **Brain (Encephalon) :** It is soft, whitish, large sized and slightly flattened structure present inside cranial cavity of cranium of the skull. In man, it is about 1200-1400 *gm* in weight and has about 10,000 million neurons. Brain is made up of 3 parts

(1) Fore brain (Prosencephalon)

(i) Olfactory lobe - Rhinencephalon

(ii) Cerebrum - Telencephalon

(iii) Diencephalon – Diencephalon

(2) Mid brain (Mesencephalon)

(i) Optic lobes – Mesencephalon

(3) Hind brain (Rhambencephalon)

 $(i) \ Cerebellum-Metencephalon$

(ii) Medulla oblongata – Myelencephalon

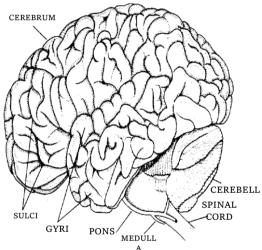


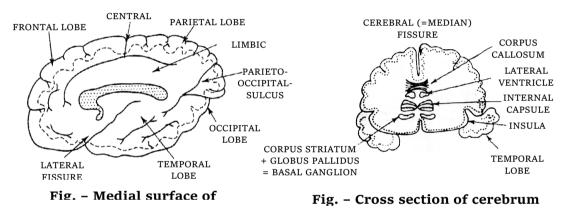
Fig. – Main parts of human brain visible

(1) Fore brain or Prosencephalon : It forms anterior two-third of brain and is formed of three parts.

(i) **Olfactory lobes :** These are one pair, small sized, club-shaped, solid, completely covered by cerebral hemisphere dorsally. Each is differentiated into two parts –

(a) Olfactory bulb : Anterior, swollen part, and

(b) **Olfactory tract :** Posterior and narrow part which ends in olfactory area of temporal lobe of cerebral hemisphere.


Function : These control the smell.

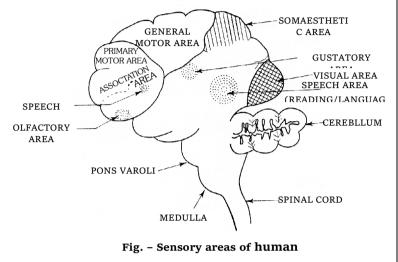
- □ It is normal in frog, rabbit and man.
- □ It is well developed in dog. So power of smell is more in dog.

□ These are also well developed in dog fish and name dog fish is on the basis of well developed olfactory lobes.

(ii) **Cerebrum :** (a) **Structure** is divided into 5 lobes (i) frontal (ii) parietal, (iii) occipital, (iv) temporal and (v) limbic. A lobe called insula is hidden as it lies deep in the sylvian fissure. The cerebral hemisphere are separated from olfactory lobes by rhinal fissure. The median fissure divides the cerebrum into a right and a left cerebral hemisphere.

A few sulci are well developed and form three deep and wide fissures which divide each cerebral hemisphere into four lobes : anterior frontal lobe, middle parietal lobe, posterior occipital lobe and lateral temporal lobe *e.g.* Fissure lying between the frontal and parietal lobes is central fissure, that lying between the parietal and occipital lobes is parieto-occipital fissure and that demarcating frontal and parietal lobes from the temporal lobe is lateral or Sylvian fissure. Each cerebral hemisphere is with a fluid-filled cavity called lateral ventricle or paracoel.

Two cerebral hemispheres are interconnected by thick band of transverse nerve fibres called corpus callosum. The peripheral portion of each cerebral hemisphere is formed of grey matter and is called cerebral cortex, while deeper part is formed of white matter and is called cerebral medulla. Cerebral cortex is the highest centre for many sensations and activities and is with a number of sensory areas.


Area	Location	Function
Premotor area	Frontal lobe	The highest centre for involuntary movements of
		muscles and ANS.
Motor area	Frontal lobe	Controls voluntary movements of the muscle
Broca's area	Frontal lobe	Motor speech area
Somesthetic area	Parietal lobe	Perception of general sensation like pain, touch
		and temperature
Auditory area	Temporal lobe	Hearing

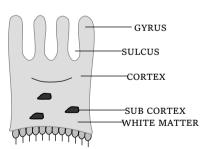
Important areas	in	the	human	brain
------------------------	----	-----	-------	-------

Olfactory area	Temporal lobe	Sense of smell
Wernicke's area	Temporal lobe	Understanding speech written and spoken
Gustatory area	Parietal lobe	Sense of taste
Visual area	Occipital lobe	Sensation of light

(b) **Histology of cerebrum :** The whole brain possess grey matter outside and white matter inside around ventricle.

(1) **Grey matter :** In cerebrum grey matter is very much developed, it is on an average 3.5 *mm*. thick but at poles its thickness is 1.3 *mm*. It is thickest at pre central gyrus (4.5 *mm* thick). Grey matter of cerebrum is called cortex or pallium. Phyllogenetically or evolutionarily cortex is divided into 3 parts –

(i) Allocortex or paleocortex : It is the


cortex of olfactory area of frontal lobe and olfactory bulbs. In lower vertebrates (cartilagenous fish) olfact lobes occupy most of the part of cerebrum. So in these animals sense of olfaction is very-very much developed. Sense of olfaction is oldest sense.

(ii) Mesocortex : It is relatively not much older in development.

(iii) **Neocortex or neopallium or isocortex or neencephalon :** It is most recent cortex and is developed maximum only in human. It is in prefrontal cortex or prefrontal region (organ of mind), precentral and precentral gyrus etc. The neocortex is having 6 (six) layer of neurons while remaining cortex possess only 5 layers.

The cerebral cortex is having area of about 2200 cm^2 while the cranial cavity is only 1450 cm^3 , so to accomodate cerebrum there appears foldings in the cortex. The ridges are called gyrus (or gyri) or convolution while the depression are called sulcus (sulci in plural).

(2) White matter : It is inner part of brain. Its fibres are divide into 3 categories –

(i) **Commissural fibers :** These neurons connect gyri of 2

hemispheres, such as corpus callosum. habenular commissure, anterior commissure, posterior commissure.

(ii) Associate fibres : They connect gyri of same hemispheres.

(iii) **Projection neuron :** They are infact assending and descending nerve tract, they connect one part of brain to another part of brain or to spinal cord. (In spinal cord they were called as columo).

(c) Associated structures of cerebrum : Cerebrum has following specific structure.

(1) **Sub cortex :** Nuclei on white matter. It is cluster of grey neurons in depth of white matter, they are formed in whole brain and are named differently.

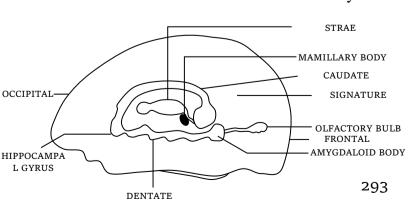
(2) **Basal granules or central nucleus :** Basal ganglia is the name given to many sub cortical structure of walls of paracoel, hypothalamus and mid brain –

(i) **Corpus striatum :** Corpus striatum is the name given to caudate nucleus and lenticular nucleus. Caudate is tail shaped while the lenticular nucleus is lenti shaped. The lenticular nucleus is sub-divided in putamen (outer shell) and globus pallidus (ball).

(ii) **Claustrum :** It is the name given to grey matter present between insula and patamen.

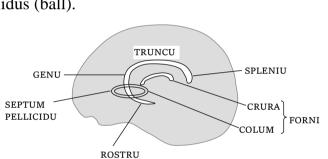
(iii) **Epistriatum or Amygdaloid body :** It is structure present at the end of caudate nucleus.

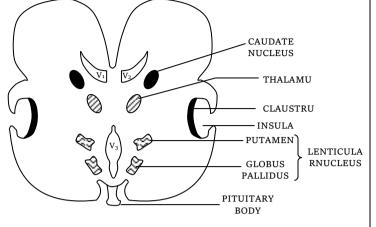
(iv) **Red nucleus** and **substantia nigra** of ^{PELLIC:} mid brain.


The basal ganglia controls automatic movements of skeletal muscles like swinging, walking etc.

(3) **Corpus callosum :** It is the band of white neurons present between both cerebral hemisphere and connect them on medial surface. It is present only mammal. It has anterior part genu, middle part trunchus and last part splenium.

Below corpus callosum there are two fused band of white neurons called fornix. There anterior part is called column and posterior part is called crura. Between column and genu a membrane is called septum lucidum or septum pellicidum. Septum lucidum encloses a space called V_5 or Pseudocoel, because it is not possessing C.S.F. *i.e.* why it is called pseudocoel.


(4) **Limbic system :** It is also called emotional brain or animal brain. Limbic system controlling emotion, animal behaviour like


chewing, licking, sniffing, rage, pain, plessure, anger, sexual feelings, grooming. It has following structure

GYRUM

(i) **Singulate gyrus :** It is a region of pre central gyrus.

(ii) **Hippocampal gyrus :** It is a region of temporal lobe near colossomarginal sulcus. These two structure are combinely called limbic lobe.

(iii) **Amygdaloid body :** It is the end of caudate nucleus.

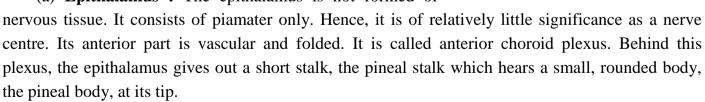
(iv) **Olfactory bulb :** They are on the inferior anterior surface of brain. Olfactory nerve ends in these bulb.

(v) **Mammillary body :** They are found in hypothalamus. Olfactory bulb and mammillary body both are centre of olfaction.

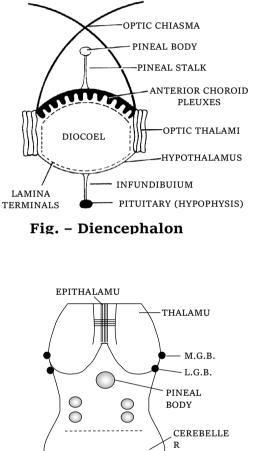
From a evolutionary point of view, the cerebral hemisphere are the highly evolved structure and this is manifested by

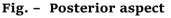
(a) Great increase in the number of feed back circuits between cerebral cortex and sub cortical elements.

(b) The ability of man and other primates to perform variety of complex function.


(c) The lobe of cerebrum are delineated by fissure and sulci.

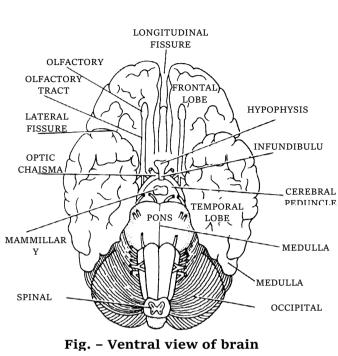
(d) A corpus callosum connects the left and right cerebral hemisphere. This is a unique property of mammals as it facilitates flow of information between the 2 hemispheres.


(e) The cortical layer of cerebrum is thrown into folds (= gyri) separate by sulci. All the larger mammalian brains exhibit well developed gyri. The degree of convolutions of the cortex is a fairly reliable indicator of the evolutionary stages of development of brain. The roof of cerebrum is called pallium while the ventrolateral walls are thick and are called corpora striata.


(vi) **Diencephalon cavity is called, III vertricle or diacoel :** The thin roof of this cavity is known as the epithalamus, the thick right and left sides as the thalami, and floor as the hypothalamus.

(a) **Epithalamus :** The epithalamus is not formed of

(b) **Thalami :** A pair of mass of grey matter formes the major part of the wall and floor of diancephalon. Its nuclei have complex connection with the sensory area of the cerebral cortex. It receives and integrates sensory impulses from the eye, ear and skin. It has nerve connection with



motorcortex and act as relay centre. Habenular commissure is a band of nerve fivers connecting two thalami. On the inferior surface of each thalamus there are two rounded bodies of grey matter.'

(1) Median geniculate body (M.G.B) : It receives hearing impulse and relay into cerebral cortex.

(2) Lateral geniculate body (L.G.B) : They are concern with vision (optic nerve) and relay visual impulse towards cerebral cortex.

(c) **Hypothalamus :** The hypothalamus is visible in the ventral view of the brain and forms the floor of diencephalon. Hypothalamus also gives a nervous process called infundibulum (forms pars nervosa) which meets a rounded non-nervous pharyngeal outgrowth called **hypophysis**. Both collectively form master gland called **pituitary body**. A stalked outgrowth of infundibulum combines with a pouch-like epithelial outgrowth (Rathke's pouch) of the roof of embryonic mouth

(= stomodaeum), forming a pituitary gland or hypophysis. Which secretes a number of hormones. In front of hypothalamus, there is cross of two optic nerves called optic chiasma. Behind the

hypothalamus, there is one pair of small, rounded, nipple-like bodies called mammilary bodies or corpora mammillares. The hypothalamus consists of many masses of grey matter, called hypothalamic nuclei, scattered in the white matter.

In man and some other mammals, most fibres of optic nerves cross, but some fibres do not cross and innervate the eyes of their own respective sides. This arrangement enables man and these mammals to have a **binocular vision**. Rabbits simply have a **monocular vision**.

THINKING PRIMARY MOTOR ARM PARETAL LOBE WERNIKE'S FRONTAL LOBE SPEECH MEMORY OCCIPITA LOBE FACE INTELLIGENC BROCA'S VISUAL CORTEX RIGHT HAND SMELL TASTE BALANCE AUDITORY Fig. - Man-different areas in brain(functional and

Pineal gland is a pine cone-shaped gland. It is located in the center of brain with which it loses all nerves connection after birth. It is innervated by sympathetic nerves. It has a photosensory role in amphibian and primitive reptiles and is called 'Third eye'. Pinealocytes secretes melatonin. Mammalian pineal does not act as photoreceptor but it produces the hormone called melatonin which is anti FSH, and anti LH. It inhibits reproductive function. Melatonin secretions decrease after puberty.

Function of fore brain

(1) **Olfactory lobe :** It is centre of smell.

(2) Cerebrum : Cerebral cortex is made up of grey matter and differentiated into -

- (i) Sensory area
- (ii) Motor area

(iii) Associated area

Sensory and associated area confirm, recognise and evaluate for shape, colour, sound, taste and smell for sensory cells in relation with object.

Broca's area : Known as sensory speech area or motor speech area. Translate thought into speech. Located into frontal lobe towards left side. It is associated with language area and also interpriate translation of written words into speech. Damage or injury in Broca's area (sensory or motor speech area) may result

(i) Aphasia(Inability to speak) (ii) Word deafness, (iii) Word blindness

Cerebrum is a centre for

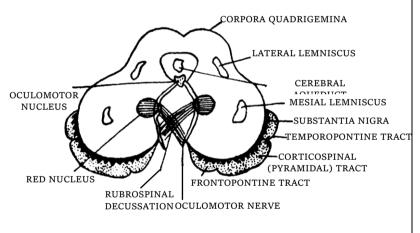
(i) Intelligence	(ii) Emotion	(iii) Will po	ower	
(iv) Memory	(v) Consciousness	(vi) Imagin	ation	
(vii) Experience	(viii) Knowledge	(ix) Reason	ing	
(x) Voluntary controls	(xi) Weeping and lat	ughing (xii) Mictur	rition	
(xiii) Defecation				
If cerebrum is removed anir	nal becomes simple rej	flax animal.		
(3) Diencephalon : It is cen	tre for			
(i) Carbohydrate metabolist	n	(ii) Fat metabolism	n	
(iii) It relays impulses from posterior region of brain and also to posterior region of brain.				
(iv) Its secretes neurohormone (v) From part of pituitary gland				
(vi) Secrete cerebrospinal fluid				
Hypothalamus : It is floor o	f diencephalon and cer	ntre for		
(i) Hunger	(ii) Thirst		(iii) Sweating	
(iv) Sleep	(v) Fatigue		(vi) Temperature	
(vii) Anger	(vii) Anger (viii) Pleasure,		(ix) Satisfaction	
(x) It is also centre to release factors for endocrine glands.				
(xi) It also control A.N.S (autonomic nervous system)				
(-:;) Contant for more lation of non-contractive (contractive contractive Without stimulated it contractive				

(xii) Centers for regulation of parasympathetic (cranio-sacral) activity. When stimulated, it causes slowing down of heart beat, contraction of the visceral muscles.

(4) Mid brain or mesencephalon : It is also completely covered by cerebral hemisphere. It is formed of two parts –

(i) **Optic lobes :** These are one pair, large sized lobes present on dorsal side. Each is divided transversely into upper and larger superior coliculus and lower and smaller inferior coliculus. So there are four optic lobes, so called optic quadrigemina (only in mammals). In frog these are known as bigemina. Valve of vieussens It joins the optic lobe with TEGMENTUM OR CEREBRAL TECTUM cerebellum.

(a) Superior optic lobe or superior celliculus : They are concerned with reflex action of eye, head and neck in response to visual stimulus.


Fig. -Lateral

(b) Inferior calliculus : They are concerned with movement of head and trunk in response to hearing stimulus.

(ii) Cerebral peduncle (crura cerebri): They are the pair of thick bands of longitudinal nerve fiber present on the floor or ventral side of mid brain. The dorsal part of cerebral peduncle (white matter) is

called Tagmentum while most ventral part (gray matter) is called crura cerebrae or crus of cerebrum. Dorsal thick wall of mid brain is known as optic tectum. Iter is between tegmentum and tectum. Cerebral peduncle are infect possessing assinding and desending tracts, connecting upper and lower region of brain.

In white matter of cerebral peduncle these are following sub cortical structure

(a) **Red nucleus or rustrum nucleus :** They are red because rich blood supply and iron containing pigment or haemoglobin.

(b) Substantia nigra : It is black because of much deposition of melanin.

(c) Occulomotor nucleus : It is origin point of 3rd cranial nerve (occulomotor) from this region 4th (Trochlear) nerve also originates.

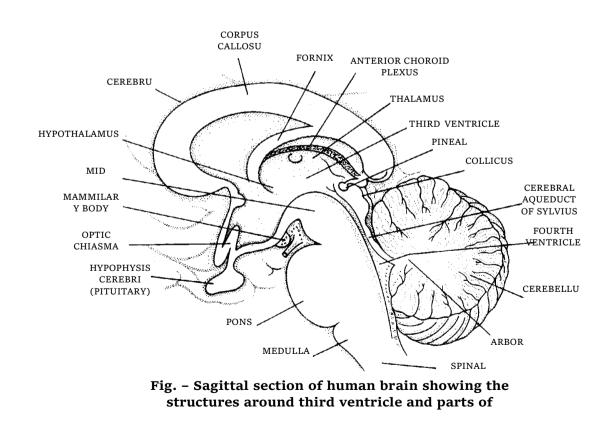
Reticular activating system : A diffuse network of nerve cell bodies and nerve tracts extends through the brain stem. It is called reticular activating system (RAS). It screens sensory information so that only certain impulses reach the cerebrum. For example, when you are alternatively listening to a lecture in the classroom, you are unaware of rustle of papers from those around you and from the touch of your clothes to the skin. The RAS is also important in overall activation and arousal. When certain neurons in RAS are active, we are awake, when they are inhibited by other neurons, we sleep. The pons

and medulla have sleep centres that cause sleep when stimulated. Midbrain has an **arousal centre** which causes arousal.

Function of Mid brain

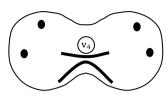
(a) Pair of anterior optic lobes (which are also known as superior collici) is related with vision.

- (b) Pair of posterior optic lobe (known as inferior collici) related with auditory.
- (c) These act as coordination centres between hind and fore brain.


(5) Hind brain : Consists of (i) cerebellum and (ii) medulla oblongata (iii) Pons varolii.

(i) **Cerebellum** (Sandwitched brain) : *Cerebellum* is highly convoluted and well developed in mammals. It controls the most intricate movements of the body. It coordinates sensory information received from muscles/joints, visual, auditory and equilibrium receptors as well as flow of impulses from cerebral cortex.

Cerebellum is made up of –


(a) Vermis, (b) Cerebellar lobes (= floccular lobes), (c) Lateral lobes, (d) Pons.

The pons is a thick band of transverse nerve fibers. Cerebellum is joined to parts of brain by afferent and efferent fibres. Mid brain, pons and medulla have several similar functions and they constitute the brain stem. Peripheral part is formed of grey matter and is called cerebellar cortex while the central part is formed of white matter and is called cerebellar medulla. The white matter forms a tree-like branching pattern called arbor vitae, so the cerebellum is solid internally.

(ii) Medulla oblongata

Medulla oblongata is the hindest and posterior most part of brain. Cavity is known as IVth ventricle (metacoel). Which is continuous with central canal of spinal cord. It has a pair of lateral Foramina of Luschka and a median foramen magendic. Cerebrospinal fluid come in contact by these apertures

from internal cavity of the brain to outer fluid of meninges. A arrangement on its ventral surface there are buldgings of ascending and descending tract which are called pyramids. On the ventral surface these pyramids cross each other which is

called deccusatn of pyramids. On the dorsal side of medulla there are two nuclei which are called nucleus gracitis (long) and nucleus cunaeus. On floor of V_4 there is groove called calamus scroptosious.

In the medulla oblongata, most of the sensory and motor fibres cross from one side to the other. Thus, the left cerebral hemisphere controls the right side of the body and *vice versa*. The reason for this is not known. The lower end of medulla passes into the spinal cord. There is no demarcation between the two. However, the medulla is considered to start at the level of the foramen magnum of the cranium.

(iii) **Ponus Varolii :** An oval mass, called the pons varolii, lies above the medulla oblongata. It consists mainly of nerve fibres which interconnect the two cerebellar hemispheres and also join the medulla with highrt brain centres, hence its name pons means bridge. Pons possess pneumotoxic and apneustic areas or centre. From pons 5, 6, 7 and 8th cranial nerve originate.

Function of hind brain

(1) Cerebellum –

(i) Poorly developed in frog but well developed in mammal.

(ii) It is centre for co-ordination of muscular movement.

(iii) It is primary centre for balancing, equilibrium, orientation.

(2) Medulla oblongata contain centre for

(i) Heart beats	(ii) Respiration	(iii) Digestion
(iv) Blood pressure	(v) Gut peristalsis	(vi) Swallowing of food

(vii) Secretion of gland

(viii) Involuntory function – e.g. vomiting, coughing vasoconstrictor, vasodilater, sneezing, hiccouping.

(ix) It control urination, defecation.

Differences between C	Cerebrum and	Cerebellum
-----------------------	--------------	------------

Cerebrum	Cerebellum
(1) It is the largest part of the brain, forming	(1) It is the second largest part of the brain,
four-fifths of its weight.	forming one-eighth of its mass.
(2) It covers the rest of the brain.	(2) It covers the medulla oblongata only.

(3) It is a part of the forebrain.	(3) It is a part of the hindbrain.
(4) It consists of 2 cerebral hemispheres each	(4) It consists of two cerebellar hemispheres and
comprising 4 lobes : frontal, occipital, parietal,	a median vermis.
temporal.	
(5) It encloses 2 lateral ventricles.	(5) It is solid.
(6) White matter does not form arbor vitae.	(6) White matter form arbor vitae.
(7) It initiates voluntary movements, and is a seat	(7) It maintains posture and equilibrium.
of will, intelligence, memory etc.	

Cavities or ventricles the brain : The ventricles consist of four hollow fluid filled space inside the brain and same duct for connection between these ventricte.

(i) Olfactory lobe - Rhinocoel

(ii) Cerebrum – I and II ventricle or lateral ventricle or paracoel.

(iii) Foramen of monero : I and II ventricle communicating with IIIrd ventricle by foramen of monero. They are two in human and single in rabbit and frog.

(iv) Diencephalon : Third ventricle or Diocoel.

(v) Iter or cerebral aquiduct or aquiduct of sylvius : It is very narrow cavity between III and IV ventricle.

(vi) Optic lobe : Optocoel.

(vii) Cerebellum : Solid.

(viii) Medulla oblongata : 4th ventricle or metacoel.

Cavities of brain and spinal cord are modified neurocoel. They are lined by low columnar ciliated epithelium called ependyma. OLFACTORY CEREBRUM FORAMEN OF MONRO THIRD VENTRICLE LATERAL VENTRICLE OPTIC LOBES ITER CEREBELLUM FOURTH VENTRICLE MEDULLA

Fig. Ventricles of brain

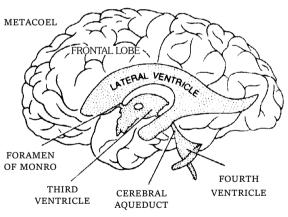


Fig. Diagram showing ventricles of human brain

	Subdivisions, parts and associated structures of a vertebrate brain				
Divisions	Subdivisions	Parts	Cavity	Associated	
				strcutures	
	(1) Telencephalon	Rhinencephalon	I Ventricle	Olfactory bulbs	
			(Rhinocoel)	Olfactory tracts	
				Olfactory lobes	
				Palaeocortex on	
				pallium	
		Cerebral	II or Lateral	Corpora striata or	
		hemispheres	Ventricles	basal ganglia	
			$(Paracoels)$ \downarrow	Corpus callosum	
			Formen of Monro	Neocortex on	
				pallium	
				Paraphysis	
(I)	(2) Diencephalon	Epithalamus	\downarrow IIIVentricle (<i>Diacoel</i>)	Habenulae	
Prosencephalon		(roof)		Pineal apparatus	
(Forebrain)				Parapineal or	
				parietal	
		Thalamus (sides)			
		Hypothalamus		Hypothalamic	
		(floor)		nuclei	
				Optic chiasma	
				Median eminence	
				Infundibular stalk	
				Pituitary	
				Saccus vasculosus	
				Mamillary bodies	
				Anterior choroid	
				plexus	
(II) Mesencephalon	_	Crura cerebri (floor)	Iter or cerebral aqueduct	Optic lobes Auditory lobes Tectum	
(Midbrain)			1	Cerebral	
				peduncles	

Subdivisions, parts and associated strutures of a vertebrate brain

(III)	(1)	Cerebellum		Trapezoid body
Rhombencephalo	Metencephalon			Pons
n (Hind brain)	(2)	Medulla	IV Ventricle	Restiform bodies
	Myelencephalon	oblongata	(Metacoel)	Pyramids

Salient or mammalian features of human brain

The salient or mammalian features in the human brain are

(1) Relatively small, solid olfactory lobes.

(2) Very large cerebral hemispheres divided into lobes and with highly folded surface, fully cover the rest of the brain.

(3) Corpus callosum interconnecting the cerebral hemispheres.

(4) Very small pineal body.

(5) A pair of mammillary bodies joined to hypothalamus.

(6) Relatively small, solid optic lobes divided into 4 corpora quadrigemina.

(7) Large, solid cerebellum, with highly folded surface and divided into lobes.

(8) Pons varolii present anterior to the cerebellum.

Important Tips

- Tela choroidea is the term used for epithalamus and piamater fused.
- Tela choroidea is made up of epithelium and blood vessels.
- Ataxia mean lacks of muscle coordination. Damage to cerebellum is characterized by ataxia.
- Dyslexia involves an inability of an individual to comprehend written language.
- Multiple sclerosis is the destruction of myelin sheath of neurons of CNS.
- An American scientist Roger Sperry got Nobel Prize in 1981 for his outstanding work on split brain theory.
- *•* Parkinson's disease or **Paralysis agitans** is a defect of brain.
- Parkinsonism is characterised by tremors and progressive rigidity of limbs caused by a degeneration of brain neurons and a neurotransmitter called **dopamine**.
- Avian brain has large sized optic lobes to see the objects on the earth while flying so is called eye brain, while fish brain has large sized olfactory lobes to smell the prey from a distance so is called nose brain.
- In fishes : Cerebrum is not differentiated in two cerebral hemispheres.
- Hypothalamus has additional lobes to note pressure changes.
- In reptilian brain, pineal eye (parietal body) present in front of pineal body.

- *•* In birds, instictive behaviour is well developed so corpora striata are well developed.
- Grey matter of spinal cord of frog is rectangular white it is butterfly-shaped in mammals.
- Central canal : Cavity of spinal cord.
- Optic bigemina : Two optic lobes in brain and are found from fishes to birds.
- Optic lobes of man are solid and have no optocoel but those of frog have optocoel.
- Optic tectum : Dorsal thick wall of optic lobe.
- Cerebellum is also called little brain.
- Thalami of diencephalon act as relay centres as well as gate keepers of brain.
- Optic chiasma is meant for binocular vision.
- Olfactory lobes of human brain have no rhinocoel while those of frog have rhinocoel.
- Man and birds are less dependent upon smell so olfactory lobes are small sized but are large sized in cartilage fishes (dog fish), dogs and reptiles as are more dependent upon smell.
- Cerebellum is large sized in fishes, birds and rabbit due to their multidirectional movements and increased dependency on balance.
- Stimulus for hunger : In February 1998, an American scientist Dr. Masashi Yanagisawa reported that a drop of sugar level in blood stimulates the apettite centres of lateral hypothalamus to release oraxin hormone (Gr. Oraxis = hunger) which stimulates hunger.
- Mervous disorders

Agnosia : Failure to recognize;

Alexia : Failure to read;

Agraphia : Failure to write;

Aphasia : Failure to speak (due to injury to Broca's area)

Analgesia : Loss of sensation of pain;

- Anaesthesia : Loss of feeling;
- Insomnia : Inability to sleep;

Amnesia : Partial or complete loss of memory;

Coma : Complete loss of consciousness.

Aproxia : Inability to carry out purposeful movements.

Multiple sclerosis : Progressive degenerative disease of CNS and is characterized by many hard scar tissues.

- Caudal equamma : Bundle of roots in last segment of spinal cord.
- *•* Brain stem : Diancephalon + mid brain + pons medulla.
- ☞ Cerebro vascular accident (C.V.A) or stroke : Blocking of blood supply of a part of brain.
- Alzeimer : It is the disease appearing usually after 65 year. It is characterized by dementia usually. Usually in this disease is ACH producing neurons of cerebral cortex and hippocampal lobe are degenerated. It is also seen that a amyloid protein is accumulated in the brain. It is the matter of research.
- *•* **Comissure :** The band of neurons connecting similar structure of brain or spinal cord.
- *•* **Connective :** The band of neurons connecting two different structure of brain and spinal cord.
- Associate fibres : If joining fiber are joining two similar structure in same halves then, they are

called associate fiber.

Spinal cord : Present in spinal canal or vertebral canal of vertebral column. It is extended from foramen magnum to between I and II lumber vertebra. Spinal cord is swollen in cervical and lumber region which are called cervical and lumber enlargement.

Structure of spinal cord

Conus medullaris : It is last tapering ends of spinal cord, its ciliated central canal is called Vth ventricle.

Cauda equine : Nearly upto birth the length of spinal cord corresponds the length of V.C. but after birth there is vertically no growth of spinal cord but vertebral column grow upto I lumber vertebra in adult. Spinal nerve come out through their respective intervertebral foramen, form horse tail hair like cluster below conus medullaris it is called cauda equine.

Filum terminales : It is extension of piamater below conus up to coccyx. In frog spinal cord also extends upto end of vertebral column.

Cisterna terminalis : It is last dilation of subarachnoid space below 1st lumbar vertebra. It is a proper site for lumber puncture or spinal tap, which is done to drain C.S.F out (5 to 10 *ml*). This C.S.F is used in diagnosing many diseases of CNS like meningitis, cyphalis, inter cranial pressure, menningococcal inferaction etc.

Meninges : Like brain, spinal cord is also enclosed with in three membranes. In this case duramater does not remain attached with the vertebra, instead there is a space between duramater and vertebra called **epidural space**. The epidural space is filled with a fluid. The distribution of duramater and piamater in spinal cord is the same as that of brain.

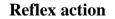
The cross section of spinal cord reveals the following structures

(1) **Central canal :** In the centre of spinal cord, there is a canal called central canal. It is filled with cerebrospinal fluid.

(2) **Dorsal fissure :** In the mid dorsal line, there is a groove extending throughout its length.

(3) **Ventral fissure :** It is also a groove situated in the mid ventral line throughout the length of spinal cord.

(4) **Dorsal septum :** It is a partition extending from dorsal fissure to central canal.


(5) **Grey matter :** It lies around the central canal in the form of a butterfly.

(6) **Dorsal horns :** It is like horn of grey matter on the dorsal side.

(7) **Ventral horns :** On the ventral side of the grey matter are horn like structures the ventral horns.

(8) **Lateral horns :** These are horns on the lateral side of grey matter.

(9) White matter : White matter is present around grey matter. Spinal cord provides pathway for the impulses from the brain and to the brain.

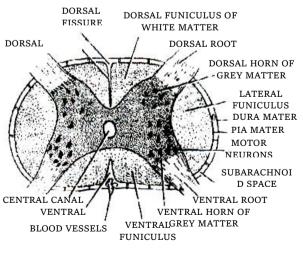


Fig - T.S. of the spinal cord of mammal

First of all Marshal Hall (1833) studied the reflex action. Best and Taylor defined reflex action "simplest form of irritability associated with the nervous system is reflex actions or a reflex reaction is an immediate involuntary response to a stimulus." The reflex actions are involuntary actions because these are not under the conscious control of the brain. The spinal cord and brain stem are responsible for most of the reflex movements. A few examples of the reflex actions are withdrawal of hand or leg if pricked by a pin, secretion of saliva as soon as one thinks of delicious food or mere its sight causes salivation, if the body part is touched with acid or hot object it is automatically, without thinking and planning is withdrawn, cycling, motor driving etc. Central nervous system is responsible for the control of reflex action.

Reflex arc is formed by the neurons forming the pathway taken by the nerve impulses in reflex action. The simplest reflexes are found in animals involving a single neuron and the following pathway

Stimulus \rightarrow Receptor $\xrightarrow{\text{Neuron}}$ Effector \rightarrow Response

The reflex areas in all the higher animals than coelenterates, include at least two neurons, an afferent or sensory neuron carrying impulses from a receptor towards aggregation of nervous tissue which may be a ganglion, nerve cord or central nervous system and an efferent or motor neuron carrying impulses away from the aggregation to an effector.

(a) **Component of reflex action :** The whole of the reflex are includes six parts

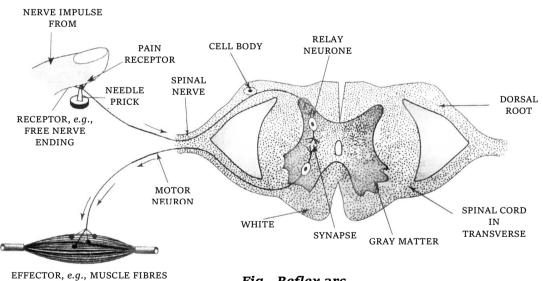


Fig. Reflex arc

(1) **Receptor organs :** Receptors are windows of the body or guards of the body. These are situated on all, important organs, for example – eyes, nose, ear, tongue, integument etc. These perceive the stimuli from out side the body.

(2) Sensory neurons : These are also termed afferent neurons. These carry the stimuli from receptors to spinal cord. These neurons are situated in the ganglion on the dorsal side of spinal cord.

(3) Nerve centre : Spinal cord is termed as nerve centre. Synaptic connections are formed in it.

(4) **Association neurons :** These are also called intermediate neurons or interstitial neurons. These are found in spinal cord. They transfer the impulses from sensory neurons to motor neurons.

(5) **Motor neurons :** These are situated in the ventral horn of spinal cord. These carry the impulses to effector organs.

(6) **Effector organs :** These are the organs, which react and behave in response to various stimuli, for example – muscles and glands.

(b) **Mechanism of reflex action :** The time taken by a reflex action is too short, for example – in frog it is 0.3 meter per second and in man 5-120 meter per second. Whenever, a part of the body is stimulated by any stimulus, for example – pin pricking, then the stimulus is converted into impulse. This impulse is perceived by the dendrites of sensory neurons. From here, the stimulus reaches the spinal cord through axonic fibres. In the spinal cord, this stimulus passes through synaptic junctions and reaches the intermediate neurons, from where this stimulus reaches the effector organs through visceral motor nerve fibres. As soon as the stimulus reaches the effector organs, it is stimulated and that part of the body is immediately withdrawn. The whole reflex action takes place so rapidly and quickly that we know it when it is completed.

(c) Type of reflexs : The reflexes are of following types -

- (1) Monosynaptic reflex (2) Poly
 - (3) Polysynaptic Spinal/Brain Reflexes
- (2) Polysynaptic Spinal Reflex
- (4) Unconditioned or Simple reflex

(5) Conditioned or Acquired reflexe

(1) **Monosynaptic reflex :** This is the simplest reflex found in vertebrates. The simplest reflex found in vertebrates. The sensory neuron synapses directly on to the motor neuron cell body. In this case the reflex action takes place without the involvement of brain.

(2) **Polysynaptic spinal reflex :** This has at least two synapses situated within the spinal cord. It involves a third type of neuron also – the internuncial or inter-mediate relay neuron. The synapses take place between the sensory neuron and intermediate neuron, and between intermediate neuron and the motor neuron. These two reflex arcs allow the body to make automatic, involuntary, homeostatic adjustments, to changes in the external environment, such as the iris pupil reflex and balance during locomotion, and also in the internal environment such as breathing rate and blood pressure.

(3) **Polysynaptic spinal/brain reflexes :** In this case the sensory neuron synapses in the spinal cord with a second sensory neuron, which passes to the brain. The latter sensory neurons are part of the ascending nerve fibre tract and have their origin in preintermediate neuron synapse. The brain is capable of identifying this sensory information and stores it for further use. The motor activity may be initiated by the brain anytime and the impulses are transmitted down the motor neurons in descending nerve fibre tract, to synapse directly with spinal motor neurons in the postintermediate synaptic region.

(4) **Simple reflex :** Simple reflex is also known as **unconditioned reflex**. It is inborn, unlearned, reflex to a stimulus. Simple reflex is mostly protective in function. Example of simple reflex are

(a) **Knee jerk** – Tendon of patella tapped.

(b) **Corneal reflex** (blinking reflex) – closing of eyelids.

(c) Rapid withdrawal of hand while burned or pricked.

(d) Quick recovery of balance while falling.

(e) **Scratch reflex** of frog – in pitched frog with acetic acid.

(f) Coughing, sneezing and yawning.

(5) **Acquired reflex :** Acquired reflex is also known as conditioned reflex. It is not inborn, but acquired and dependent on past experience, training and learning. Demonstration of conditioned reflex was first made by Russian physiologist Ivan Petrovitch Pavlov (1846-1936) in hungry dog. Pavlov rang the bell while feeding dog, thus associated the unconditioned response with additional stimulus. Examples of conditioned reflex are learning of dancing, cycling, swimming, singing,, driving, etc. These actions are under cerebral control during learning.

(ii) **Peripheral nervous system :** It is formed of a number of long, thin, whitish threads called nerves extending between central nervous system and body tissues. Each nerve is formed of bundles of nerve fibres, fasciculi, held together by connective tissue and surrounded by a white fibrous connective tissue sheath called epineurium.

The nerve fibres are classified into two categories on the basis of presence or absence of myelin (white fatty) sheath.

(a) Medullated or Myelinated nerve fibres.

(b) Non-medullated nerve fibres.

On the basis of function, the nerves are of three types

(a) Sensory nerve	(b) Motor nerve	(c) Mixed nerve	
(1) It contains only sensory	(1) It contains only motor nerve	(1) It contains both sensory and	
nerve fibres.	fibres.	motor nerve fibres.	
(2) It conducts nerve impulses	(2) It conducts nerve impulses	(2) It conducts both sensory and	
from sense organs to CNS to	from CNS to some muscles or	motor impulses.	
produce sensation.	glands to control their activities.	e.g. All spinal nerves,	
<i>e.g.</i> Optic nerve, auditory	<i>e.g.</i> Occulomotor nerve,	trigeminal nerve.	
nerve.	hypoglossal nerve.		

On the basis of their origin, nerves are of two types

(a) Cranial or cerebral nerves which either arise from or end into brain.

(b) Spinal nerves which arise from spinal cord.

(a) Cranial nerves

(1) 10 pairs of cranial nerves are present in an anamniote (fishes and amphibians).

- (2) Number of cranial nerves found in frog is ten pairs (20).
- (3) 12 pairs of cranial nervers are present in an amniote (reptiles, birds and mammals).

(4) Number of cranial nerves found in rabbit and man is 12 pairs (24).

(5) The first 10 pairs are common for frog and rabbit. The additional pairs found in rabbit are spinal accessory and hypoglossal.

(6) The smallest cranial nerbe is trochlear in human beings, but all animals smallest cranial nerve is abducens.

(7) The largest cranial nerve is trigeminal in human beings but vagus is largest cranial nerve in all animals.

(8) Vagus supplies the regions other than head.

(9) The sensory cranial nerves are

I Olfactory	_	Smell
II Optic	_	Vision
VIII Auditory	_	Hearing and equilibrium

(10) The motor cranial nerves are : III, IV, VI, XI and XII.

(11) Extraocular muscle nerves are : III, IV and VI.

(12) The mixed cranial nerves are : V, VII, IX and X (4 pairs).

Cranial nerves of mammal at a glance

	Name	Nature	Origin	Distribution	Function
(1)	Olfactory Nerves	Sensory	Olfactory lobe	Sensory epithelium of olfactory sacs	Receive stimuli from the sensory epithelium of olfactory sac and carry them to olfactory lobes
(2)	Optic nerves	Sensory	Optic lobes	Retina in Eyes	Stimulus of light is carried to optic lobes
(3)	Occulomotor nerves	Motor	Crura cerebri	Eye ball muscles, except superior oblique muscle	Carry the impulses from crura cerebri to the eye muscles
(4)	Trochlear nerves	Motor	From in between the optic lobes and cerebellum	Superior oblique muscle of eye ball	Carry the impulses from the brain to superior oblique muscles of the eye
(5)	Trigeminal nerves	Mixed	From the gassarion galglia situated on the lateral side of medulla oblongata		
(i)	Ophthalmic nerve	Sensory	,,	Skin of lips	

(ii)	Maxillary	Sensory	,,	Upper lip, skin of nose, lower eye lid.	Carry the stimuli from these organs to brain
(iii)	Mandibular nerve	Mixed	"	Lower lip and skin of jaw	Carry the stimuli from these organs to brain
(6)	Abducens nerves	Motor	Medulla	Eye muscles	Carry the impulses from the brain (medulla) to eye muscles
(7)	Facial nerves	Mixed	Behind trigeminal nerve, from geniculate ganglion		
(i)	Palatinus	Sensory		In the roof of mouth cavity	Carry the impulses from roof of mouth cavity
(ii)	Hyoman dibular	Motor		Muscles of low jaw, muscles of neck and pinna (external ear)	Carry the impulses from brain muslces of lower jaws, neck and pinna.
(iii)	Chordotympa ni	Mixed		In salivary glands and taste buds	Receives the stimuli from the taste buds and carry the stimulus to salivary gland.
(8)	Auditory nerves	Sensory	Medulla		
(i)	Vestibular nerve	"	"	Utriculus, sacculus, semicircular canals and Cochlea.	Receives impulses from the internal ear and carry to brain.
(ii)	Cochlear nerve	"	,,	Cochlea	
(9)	Glossopharyn geal nerve	Mixed	,,	Taste buds present in tongue and muslces of oesphagus	Carry sound impulses to brain, to muscles of oesophagus and carry the taste impulse of tongue to the brain

(1 0)	Vagus nerve	Mixed	After arising from medulla, 9 th and 10 th cranial nerves unite to form vagus nerve but become separate and divide into branches		
(i)	Superior laryngeal nerve	Motor		Glottis	Carry the impulse to muscle of glottis
(ii)	Recurrent laryngeal nerve	Motor		Glottis	"
(iii)	Cardiac nerve	Motor		Heart Muscles	From brain to heart muscles
(iv)	Pneumogastri c	Motor		In the abdominal cavity, in stomach and lungs.	Carry impulse from these organs to brain and from brain to muscles of these organs.
(v)	Depresser nerve	Motor		Diaphragm	Carry the impulse to diaphragm
(1 1)	Spinal accessory	Motor	Medulla	Muscles of neck and shoulders	From brain to muscles of neck and shoulder
(1 2)	Hypoglossal nerve	Motor	,,	Muscles of tongue and neck	From brain to their muscles

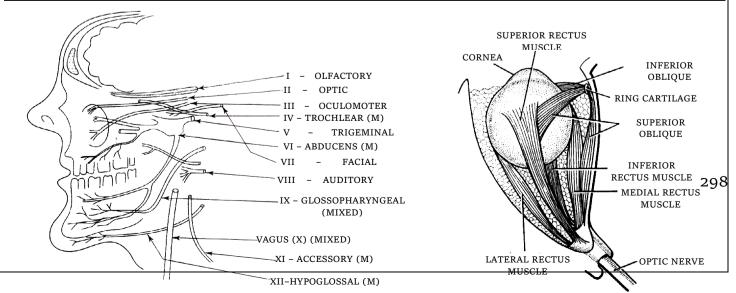


Fig. Diagrammatic presentation of 12 (paired) cranial

Eyeball muscle	Nerve supply
Superior rectus	Oculomotor
Inferior rectus	Oculomotor
Internal rectus	Oculomotor
External rectus	Abducens
Superior oblique	Trochlear
Inferior oblique	Oculomotor

(b) **Spinal nerves :** Spinal nerves arise from gray matter of spinal cord. There are 31 pairs of spinal nerves in man (37 pairs in rabbit). All spinal nerves are mixed. The spinal nerves in man are divided into 5 groups.

(1) Cervical (C)	\rightarrow	8 pairs	 in Neck region
(2) Thoracic (T)	\rightarrow	12 pairs	 in thoracic region
(3) Lumbar (L)	\rightarrow	05 pairs	 upper part of abdomen
(4) Sacral (S)	\rightarrow	05 pairs	 lower part of abdomen
(5) Coccygeal (CO)	\rightarrow	01 pairs	 represent

the tail nerves

31 pairs

Number of spinal nerves in frog is 10 pairs. In some frog like Rana tigrina, 10th pair may reduced or absent. The first pair of spinal nerves in frog is hypoglossal. The last pair of cranial nerves of mammals has the same name. Brachial plexus is formed by 2nd and 3rd spinal nerves in frog. Sciatic plexus is formed by 7, 8 and 9 spinal nerves in frog. Glands of

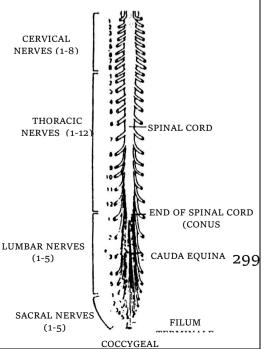


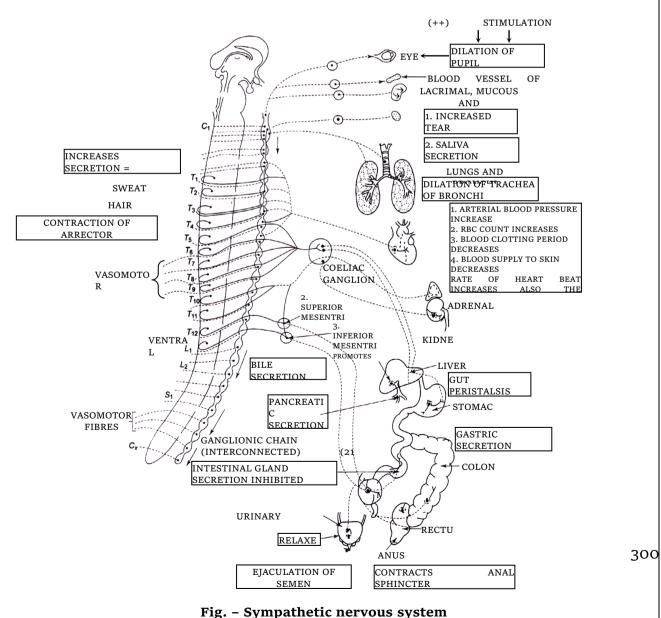
Fig. - Spinal cord and

Swammerdam are calcareous glands found at the places of emerging of spinal nerves in frog.

Spinal nerve formula can be written as : C_8 , T_{12} , L_5 , S_5 , CO_1 , Spinal nerves exit via intervertebral foramen. Each spinal nerve arises from spinal cord by 2 roots

(1) *Dorsal* (= *Afferent* = *Sensory* = *Posterior*) *root* is a continuation of dorsal horn and is formed of gray matter. It presents a ganglionic swelling in middle, called dorsal root ganglion. These transmit sensory nerve impulses from the sense organs to spinal cord (touch, pain, temperature). They activate involuntary reflexes.

(2) *Ventral* (= *Efferent* = *Motor*) root are continuation of ventral root and is also formed of gray matter. No ganglion are present. It is formed of only


efferent nerve filers. They transmit motor nerve impulses to effector organs e.g., glands and muscles. Each spinal nerve has 3 branches –

(i) **Ramus dorsalis :** Supplies to skin and muscles of dorsal side.

(ii) **Ramus ventralis :** Supplies to skin and muscles of ventral and lateral sides and also to upper

and lower limbs. Ventral root of certain spinal nerve form 5 nerve plexi on either side, i.e., cervical, thoracic, lumber, sacral, caudd.

(iii) Ramus communicans : It joins sympathetic ganglion of autonomic nervous system.

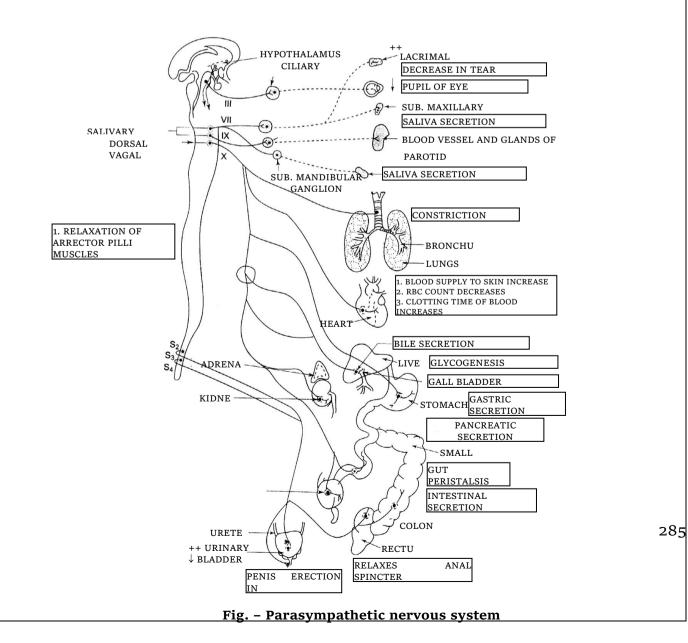
(iv) Autonomic nervous system : As mentioned before, the visceral part of peripheral nervous system regulates and co-ordinates the activities of internal or visceral organs. Autonomic nervous system was discovered by Langley. Autonomic nervous system (ANS) automatically regulates the activities of smooth muscles, cardiac muscles and glands. This co-ordination is involuntary. Autonomic nervous system usually operates without conscious control. Autonomic nervous system is entirely motor. All autonomic axons are efferent fibres. Efferent neurons are preganglionic with myelinated fibres and postganglionic with unmyelinated fibres. Autonomic nervous system is regulated by centres in brain like cerebral cortex, hypothalamus and medulla oblongata. Autonomic fibres release chemical transmitters at synapse. On the basis of the transmitter produced, these fibres may be classified as cholinergic or adrenergic. Cholinergic fibres release acetylcholine. Adrenergic fibres produce norepinephrine (noradrenaline), also called sympathetin.

Nature of autonomic control : The autonomic nervous system regulates and co-ordinates such vital involuntary activities like heart beat, breathing, maintenance of the composition of body fluids (= homeostasis) and body temperature, gut peristalsis, secretion of glands, etc. For this control, a visceral organ is normally innervated by two, instead of only one, postganglionic fibres having antagonistic excitatory effects; while one fibre promotes the activity of an organ, the other fibre retards it.

Autonomic nervous system consists of two divisions

- (a) **Sympathetic** (= Thoracolumbar out flow)
- (b) **Parasympathetic** (= Cranio-sacral out flow)

(a) Sympathetic ANS


- □ Thoraco Lumber out flow (all thorocic + 3 lumber)
- □ Preganglionic nerve small.
- □ Post ganglionic nerve long.
- □ Preganglionic nerve secrete acetyl choline.
- Destganglionic nerve secrete sympathatin. (*nor-epinephrine*)
- □ It shows sympathy (generally increase the function).
- □ Expenditure of energy takes place.
- □ It increase defence system of body against adverse condition.
- □ It is active in stress condition, pain, fear and anger.

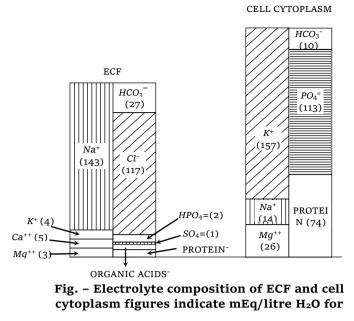
(b) Parasympathatic

□ ANS Cranio sacral outflow (cranial-III, VII, IX, X Nerves)-(sacral-II, III, IV Nerves)

- □ Preganglionic nerve long.
- □ Postganglionic nerve small.
- □ Secrete acetyl choline only.
- □ It provide relaxation, comfort, pleasure, at the time of rest.
- □ Restoration and conservation of energy takes place.
- □ Collateral ganglia present in sympathetic nervous system.
- □ Horner's syndrome results from the damage of sympathetic trunk of one side.

□ A patient of Horner's syndrome exhibits lack of sweating (on affected side), sunken eyes and constricted pupil.

S.No	Name	Sympathetic	Para sympathetic
. (1)	Secretion	Acetyl choline and + sympathiatin	Acetyl choline only
(2)	Blood pressure	Increase	Dedrease
(3)	Blood vessel to skin	Constrict	Dilate
(4)	Blood vessel to heart	Dilate	Constrict
(5)	Blood vessel to lung and muscle	Dilate	Dilate
(6)	Pupil	Dilate	Constrict
(7)	Lacrymal glan	Stimulate	Inhibits
(8)	Heart beat	Increase	Decrease
(9)	Adrenal secretion	Stimulate	Inhibit
(10)	Breathing and BMR	Increase	Decrease
(11)	Nostrils	Dilate	Constrict
(12)	Urinary bladder	Relax	Constrict
(13)	Iris	Constrict	Dilate
(14)	Salivary gland	Decrease	Increase
(15)	Digestive gland	Decrease	Increase
(16)	Gut peristalsis	Decrease	Increase


Cutting of sympathetic or parasympathetic nerve to heart will not stop functioning of heart. Heart will beat but without any nervous control. Autonomic nervous system functions rapidaly to alter visceral functions (3-5 seconds). It is activated mainly by centers located in spinal cord, brain stem and hypothalamus. Limbic cortex also influences its function often this system function via visceral reflexes *i.e.* sensory signal \rightarrow enter autonomic ganglia \rightarrow spinal cord \rightarrow brain stem \rightarrow or hypothalamus can elicit reflex responses back to visceral organs to control their activities.

7.4 BIOCHEMICAL ASPECT OF NERVOUS PHYSIOLOGY

Nerve cells (= neurons) : Irritability is a basic characteristic of the "living substance", *i.e.*, the

protoplasm. Consequently, every living cell becomes excited when stimulated. However, the nerve cells and muscle fibres are specialized excitable cells of body, capable of transmitting or conducting excitations along their membranes. Of these, muscle cells are further specialized for contraction while nerve cells are further specialized for receiving stimuli (as sensory or receptor cells) and transferring excitations from one to the other.

A typical neuron consists of a nucleated cell body (= cyton, soma or perikaryon), five to seven short, slender and branched (= arborized) dendrites, and a single, relatively thicker and

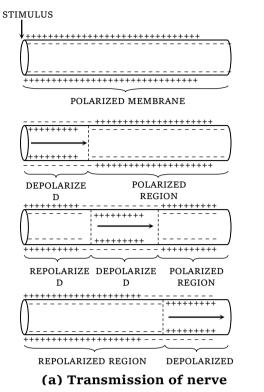
longer fibrous axon. The latter is terminally branched into short telodendria. Each telodendron bears a terminal **knob** or **bouton**. Boutons of one neuron lie upon dendrites or cytons of adjacent neurons (figure), or upon muscle fibres or glands.

Nerve fibres : Although, all parts of a neuron transmit excitations (= impulses), but the transmission is always unidirectional. The dendrites and cytons usually constitute the impulse receiving parts which receive impulses directly from receptors, or from other adjacent neurons. The axons are specialized as fibres conducting impulses away from the receiving parts. Thus, the reaction or response impulses are always carried to the effectors by axons. That is why, the term **'nerve fibres'** is usually applied to the axons. The latter are 0.1 *mm* to one or more (upto 10) *metres* long and about 0.025 *m* thick on an average.

Main properties of nervous tissue : The nervous tissue has two outstanding properties excitability and conductivity.

(1) **Excitability :** It is the ability of the nerve cells and fibres to enter into an active state called the **state of excitation** in response to a stimulus. Excitation arises at the receptors on account of various stimuli such as light, temperature, chemical, electrical or pressure which constantly act on the organisms.

(2) **Conductivity :** The excitation does not remain at the site of its origin. It is transmitted along nerve fibres. The transmission of excitation in a particular direction is called conductivity.

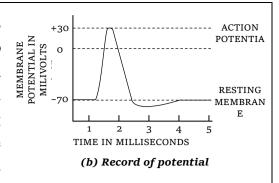

Definition of nerve impulse : A wave of reversed polarity or depolarization (action potential) moving down an axon is called a nerve impulse.

Mechanism of conduction of nerve impulse : Most accepted mechanism of nerve impulse conduction is ionic theory proposed by Hodgkin and Huxley. This theory states that nerve impulse is an

electro-chemical even governed by differential permeability of neurilemma to Na^+ and K^+ which in turn is regulated by the electric field.

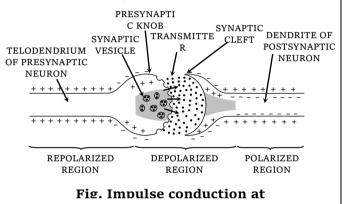
(i) Transmission of nerve impulse along the nerve fibre

(a) **Polarization (Resting membrane potential-RMP)** : In a resting nerve fibre (a nerve fibre that is not conducting an impulse), sodium ions (Na^+) predominate in the extracellular fluid, whereas potassium ions (K^+) predominate in the intracellular fluid (within the fibre). Intracellular fluid also contains large number of negatively charged (anions) protein molecules. Na^+ are 10 times more outside the neuron and K^+ ions are 25 times more inside the cell. Thus it makes a considerable difference between the ion concentration outside and inside the plasma membrane. It also causes a difference in electrical charges on either side of the membrane. The plasma membrane is electrically positive outside and negative inside. This difference is called potential difference. The potential difference across the plasma membrane is known as resting potential. This potential averages -70 mm(-60 to -90 mm) in inper side of m



potential averages -70 mv (-60 to -90 mv) in inner side of membrane in respect to outer side.

Due to different concentrations of ions on the two sides of the membrane, sodium ions tend to diffuse into the nerve fibre and potassium ions tend to diffues out of the nerve fibre. The membrane of a resting nerve fibre is more permeable to potassium than to sodium. So potassium leaves the nerve fibre faster than sodium enters it. This results in a higher concentration of cations outside the membrane compared to the concentration of cations inside it. This state of the resting membrane is called polarised state and makes its inner side electronegative to its outerside.


(b) **Depolarization (Action membrane potential or AMP) :** When the nerve fibre is stimulated mechanically, electrically, thermally or chemically a disturbance is felt at the point of stimulation which gives rise to a local excitatory state. The membrane becomes permeable to sodium ions. Suddenly sodium ions rush inside the nerve fibre and potassium ions diffuse out of the axon membrane. Due to the diffusion of ions, more sodium ions enter the axon than potassium ions leave it, so that the positive and negative charges on the outside and inside of the axon membrane are reversed. The membrane is negatively charged on the outside and positively charged on the inside. The membrane with reversed polarity is said to be depolarized. The depolarization of the membrane suddenly passes as a wave along the nerve fibre. Thus the impulse is propagated as a wave of depolarization (reversed polarity). This wave of depolarization travelling down a nerve fibre is called **action potential**. Infact, the action potential "moves" in the manner of a spark moving along a fuse. This "moving" action potential constitutes the **nerve impulse**. The action potential (impulse) is the basic means of communication within the nervous system. The action potential of + 45 mv on inner side of axolemma in respect to its outer side is also called spike potential.

(c) **Repolarization :** With the increase of sodium ions inside the nerve cell, the mebrane becomes less permeable to sodium ions whereas the permeability membrane to potassium ions increases. The sodium ions are pumped out of the cell and potassium ions are pumped into the cell until the original resting state of ionic concentration is achieved. Thus this makes the membrane negative on inside and positive on outside. This process is called repolarization.

The last movement of ions is thought to take place by an active transport mechanism called sodium potassium pump (also called sodium potassium exchange pump or sodium pump). The sodium-potassium pump is a process of expelling out sodium ions and drawing in potassium ions against concentration and electrocemical gradient. The entire process of repolarization requires some time during which the nerve cannot be stimulated again. This period is called **refractory period**. During repolarization, as the cell returns to its resting potential, the neuron is ready to receive another stimulus.

(ii) **The synapse :** The synapse is an area of functional contact between one neuron and another for the purpose of transferring information. Synapses are usually found between the fine terminal branches of the axon of one neuron and the dendrites or cell body of another. This type of neuron is called axodendrite synapse. Sir Charles Sherrington (1861-1954) was the first person who used the term 'synapse' to the junctional points between two neurons.

Structure of synapse : A typical (generalized synapse) consists of a bulbous expansion of a nerve terminal called a pre-synaptic knob lying close to the membrane of a dendrite. The cytoplasm of the synaptic knob contains mitochondria, smooth endoplasmic reticulum, microfilaments and numerous synaptic vesciles. Each vescile contains neurotransmitter (chemical substance) responsible for the transmission of the nerve impulse across the synapse. The membrane of the synaptic knob nearest the synapse is thickened and forms the presynaptic membrane. The membrane of the dendrite is also thickened and is called the post synaptic membrane. These membranes are separated by a gap, the synaptic cleft. It is about 200 Å across The post synaptic membrane contains large protein molecules which act as receptor sites for neurotransmitter and numerous channels and pores.

The two main neurotransmitters in vertebrate nervous system are acetylcholine (ACh) and noradrelaine although other neurotransmitters also exist. Acetylcholine (ACh) was the first neurotransmitter to be isolated and obtained by Otto Loewi in 1920 from the endings of parasympathetic neurons of the vagus nerve in frog heart. Neurons releasing acetylcholine are described as cholinergic neurons and those releasing noradrenaline are described as adrenergic neurons.

Mechanism of transmission of nerve impulse at a synapse : The process of chemical transmission across synapses was discovered by Henry Dale (1936). The physiological importance of

synapse for the transmission of nerve impulses was established by McLennan in 1963. A brief description of the mechanism of synaptic transmission is given below

(i) When an impulse arrives at a presynaptic knob, calcium ions from the synaptic cleft enter the cytoplasm of the presynaptic knob.

(ii) The calcium ions cause the movement of the synaptic vesicles to the surface of the knob. The synaptic vesciles are fused with the presynaptic membrane and get ruptured (exocytosis) to discharge their contents (neurotransmitter) into the synaptic cleft.

(iii) The synaptic vesicles then return to the cytoplasm of the synaptic knob where they are refilled with neurotransmitter.

(iv) The neurotransmitter of the synaptic cleft binds with protein receptor molecules on the post synaptic membrane. This binding action changes the membrane potential of the postsynaptic membrane, opening channels in the membrane and allowing sodium ions to enter the cell. This causes the depolarization and generation of action potential in the post-synaptic membrane. Thus the impulse is transferred to the next neuron.

(v) Having produced a change in the permeability of the postsynaptic membrane the neurotransmitter is immediately lost from the synaptic cleft. In the case of cholinergic synapses, acetylcholine (ACh) is hydrolysed by an enzyme acetylcholinesterase (AChE) which is present in high concentration at the synapse.

(vi) The products of the hydrolysis are acetate and choline which are reabsorbed into the synaptic knob where they are resynthesized into acetylcholine, using energy from ATP.

Neuromuscular junction : Impulses are conducted from a neuron to a muscle cell across an area of contact called neuromuscular junction. When a nerve fibre ends on a muscle fibre, it forms motor end plate. The motor end plates have vesicles and mitochondria. The vesicles secrete neurotransmitter. When the motor impulse from the nerve is reveived on the motor end plates, a local depolarization occurs there resulting in the excitation of the muscle fibre.

Neuroglandular junction : It is an area of contact between a neuron and glandular cells. There is also a gap which is bridged at the time of the transmission of the impulse by a neurontransmitter.

Neurotransmitters : As explained in the discussion of synapses, neurotransmitters are chemicals released from a presynaptic neuron that interact with specific receptor sites of a postsynaptic neuron. At least thirty chemicals thought to have the capacity to act as neurotransmitters have been discovered.

Excitory	Inhibitory				
(1) Acetylcholine	(1) Gamma amino butyric acid				

	(GABA)
(2) Norepinephrine (NE)	(2) Glycine
(3) Serotonin	
(4) 5-hydroxy tryptamine (5-HT)	
(5) Dopamine	
(6) Histamine	
(7) Glutamate	

Synapse, A one-way valve : The synapse cannot transmit an impulse in the reverse direction as the dendrites cannot secrete a neurotransmitter. Thus, the synapse acts as a one-way valve, allowing the conduct of impulse from axon to dendron only.

Synaptic delay : Transmission of an impulse across a synapse is slower than its conduction along a neuron. This is because of the time needed for the release of a neurontransmitter, its diffusion through the synaptic cleft, and its action on the postsynaptic membrane. The difference in the rate is called **synaptic delay**. It amounts to about half a millisecond at body temperature $(37^{\circ}C)$.

Synaptic fatigue : Repeated stimulation of the presynaptic knob may deplete the neurotransmitter, and this may fail to stimulate the postsynaptic membrane. This condition of the synapse is termed synaptic fatigue. It lasts for several seconds during which the neurotransmitter is resynthesized. Synaptic fatigue is the only fatigue that affects the nervous tissue. Conduction of the nerve impulse along the neurons is not subject to fatigue.

"All or None law" (Keith Lucas, 1905) : When stimulated, the axon membrane (= axolemma) does not respond for a moment due to its resistance or threshold to stimulation. However, when its threshold is broken, the stimulation is conducted through its whole length as a strong impulse. If the stimulation is too weak to break the axon's threshold, impulse is not established, but if the intensity of stimulation is much more than the threshold value, impulse conduction remains normal. Thus, the action potential obeys "all or none law". In other words, impulse conduction is such a triggered phenomenon which, though occurs in a twinkling, like an explosion, but only when it reaches "ignition point" or firing level".

Important tips

- The rate of conduction in myelinated fibre of a mammal is very high because action potential jumps from node to node.
- The jumping of action potential from node to node (of Ranvier) in a fiber is called saltatory conduction.
- Nissl's or trigoid granules are present in the neuron and are made up of RNA, ribosome and RER.
 These granules help is excretion and nutrition.
- The Intelligence quotient (I.Q.) is the ratio of mental age to chronological age multiplied by 100.

- The Corpora striata, genu and splenium is found in cerebrum.
- P Neurons stops dividing after birth.
- Toptocoel is not found in mammalian brain.
- The pneumotoxic centre is found in medulla.
- Transmission of nerve impulse can be recorded with the help of oscilloscope.
- The ramus communicans of the spinal nerve joins the sympathetic chain.
- Autonomous nervous system has paired chain ganglia.
- The Paralysis of jaw muscles is due to loss of function of Vth cranial nerve.
- The Bipolar nerve cell and ganglia cell are found in the retina.
- Tateral funiculi have motor type of ganglia.
- The Six separate layers of neurons present in cerebral cortex.
- The Arbor vitae are composed of white matter.
- TIIrd, IVth and VIth cranial nerves control eye-ball movement.
- The A cavity in the ventricle of a brain is known as cerebral aqua.
- TII, IX, X, XI and XIIth cranial nerve originating from medulla oblongata.
- Tycling is an example of conditioned reflex.
- The ganglia of sympathetic and central nervous system in frog develops from the neural crest cells.
- The cerebellum of post brain involved in loss of control when a person drinks alcohol.
- The maximum current required to stimulate a nerve is called rheophase or threshold current or firing level of impulse. It is about 15 mv.
- The A fibres is the largest mammalian fiber.
- The Hyperpolarization of a dendrite is due to presynaptic inhibition.
- The Amygaloid nucleus, hippocampus and fornix is the part of limbic system.
- The Posterioplegia is the paralysis of both lower limb due to damage of spinal cord.
- The Earthworm has both sensory and motor neurons.
- The glial cells that form the blood brain barrier by lining brain capillaries are the astrocytes.
- The Axo-axentic is the condition when direction of nerve impulse is reversed.
- The Neurocyton is located in cortex of the brain.
- The cervical swelling is the anterior enlargement of spinal cord.
- Hydra has false nervous system but not brain.
- The A polar nerve cells are found in vertebrates embryo.
- Saltatory conduction is found in all vertebrates.
- \mathcal{T} In frog, the nerve impulses for hearing start from lagena basilaris.
- $\ensuremath{\mathscr{T}}$ Corpus callosum is absent in the brain of prototherians.
- Degeneration or imperfect development of corpus callosum in human brain results in a neurological disorder called schizophrenia.
- $\ensuremath{\mathfrak{T}}$ γ -amino butyric acid is a neurotransmitter.

- The Acetylcholine is the cardian inhibitor.
- ☞ 5'-hydroxytryph amine is a chemical transmitter.
- Typike phase of action potential is 2 m. sec.
- Tylvian fissure divides the brain of rabbit into frontal lobe and temporal lobe.
- Torsal root has the ganglion made of unipolar neurons.
- The All cell bodies of afferent fibres lie in the dorsal root ganglion.
- EEG Electro-Encephalo gram : Electrical tracing of the cerebral cortex is call ECG Berger in 1929 was first to record ECG. Instrument for the recording is Electroencephalograph or cathode ray oscillosco.
- T is record of brain wave. Brain waves are of following type
 - (i) α-wave : These are rhythmic waves (10-12 cycles per second. These are produced normal awaking condition. These disappear in sleep.

(ii) β -wave ; 15-16 cycle per second. These are produced when nervous system is active e.g. Mental work

- (iii) θ -wave : 5-8 cycle per second. Produced in children.
- (iv) δ -wave : 1-5 cycle per second. In normal condition these are produced in awake infants. These are produced in deep sleep. In damage condition of the brain waves may produce in awaking condition in adults.
- The sensation of sight in human brain is perceived by occipital lobe.
- The sensation from skin one perceived in the cerebrum in parietal lobe.
- Fundamental character of chaordates is the presence of dorsal hollow nerve chord.
- The Somesthatic & test area present in parietal lobe of cerebrum

ASSIGNMENT

MENINGES, CEREBROSPIRAL FLUID AND VENTRICLE

Basic Level

Dusit Level					
	1.	The membranes enclose	sing the brain and spinal c	ord are known as	
		(a) Meninges	(b) Meningitis	(c) Nephron	(d) Axon
	2.	The outermost layer of	f brain is called		
		(a) Piamater	(b) Duramater	(c) Pericardium	(d) Grey matter
	3.	The duramater and pia	mater are referred as		
		(a) Peritoneal epitheliu	ım (b)Serosa	(c) Endothelium	(d) Meninges
	4.	The arachnoid membra	ane covers the		
		(a) Spinal cord	(b) Otic capsule	(c) Piamater	(d) None of the above
	5۰	The innermost meninx	surrounding the central n	ervous system in frog an	d man respectively are
(a) Piamater and piamater (b)Arachnoid and piamater					
(c) Piamater and duramater (d)Arachnoid and duramater					
	6.	All the meninges of br	es of brain are interrupted at the structure known as (b) Anterior choroid plexus only		
		(a) Neuropore		(b) Anterior choroid pl	exus only
			(d) Anterior and poster	sterior choroid plexus	
7. The correct sequence of meninges from outer to the inner side is					
-		(a) Arachnoid – piama	ter – duramater	(b) Arachnoid – duramater – piamater	
			(d) Duramater – arachi	noid – piamater	
	8.	-	s found in between arachn		
		(a) Piamater	(b) Duramater	(c) Blastocoel	(d) None of the above
	9.		wing cells secrete cerebro	-	< 1) > T 11
		(a) Ependymal cells	(b) Neurons	(c) Schwann cells	(d) Neurilemma
	10.	Cerebrospinal fluid is j	· ·	(a) Nouroglial calls	(d) Nourons
	11	(a) Ependymal cells The ventricles of the b	(b) Choroid plexus	(c) Neuroglial cells	(d) Neurons
	11.	(a) Cerebro-spinal flui		(c) Blood	(d) Amniotic fluid
	12.	Thirs ventricle is prese		(0) 51000	
		(a) Heart	(b) Brain	(c) Kidney	(d) Liver
	13.	Lateral ventricles are found in		(1)	
		(a) Heart	(b) Brain	(c) Thyroid	(d) Brain and heart
	14.	. ,	g communicates with the o	•	
	14.	(a) Lateral ventricles	(b) Third ventricle	(c) Fourth ventricle	(d) Fifth ventricle
	15		lined by the cells called	(e) i ourun ventriere	
	15.	(a) Ependymal cells	(b) Neurons cells	(c) Neuroglea	(d) Schwann's cells
		(a) Epondymai cons		(c) neurogica	(u) Sellwalli 5 Cells

16.	The medulla oblongat	a encloses the		
	(a) Fourth ventricle	(b) Second ventricle	(c) Optic lobe	(d) Otic capsule
17.	Third ventricle of rabb	oit's brain is called		
	(a) Rhinocoel	(b) Rhombocoel	(c) Diocoel	(d) None of these
18.	The iter lies			
	(a) In the third ventric	le	(b) In the second ven	tricle
	(c) Between the third	and the fourth ventricles	(d) In the lateral vent	ricles
19.	19. Foramen of Monro is			
	(a) Gap in pelvic girdle of rabbit (b)Foramen in the skull of frog			
	(c) Space in brain of f	rog and rabbit (d)Pore in	the inter-auricular septu	m in a mammalian heart
20.	Valve of vieussens joi	ns the		
	(a) Olfactory lobe to c	erebrum	(b) Cerebrum of dien	cephalon
	(c) Diancephalon to op	ptic lobe	(d) Optic lobe to cere	bellum
Adv	ance Level			
21.	In which part of the fo	ollowing, the anterior plex	tus is situated	
	(a) Diocoel	(b) Metacoel	(c) Olfactocoel	(d) Optocoel
22.	Metacoel is the cavity			
	(a) Cerebral hemisphe	eres (b)Diencephalon	(c) Cerebellum	(d) Medulla oblongata
23.	Foramen of Monro is	an aperture between		
	(a) 2nd and 3rd ventrie	cle (b)Diocoel abnd me	etacoel	
		coel (d)3rd and 4th vent		
24.		g is not found in mamma		
	(a) Subdural space	(b) Sub-arachnoid spac		(d) Duramater
25.		g connect lateral ventricle		
	(a) Iter	(b) Foramen of Monro		(d) Filum terminale
26.	-	ovides a passage connecti	-	
	(a) Brain and spinal co		, ,	ith third ventricles in brain
	(c) Fourth ventricles v	vith optic ventricle	(d)Middle ear with pha	rynx
27.	Cerebral aqua is			
	(a) A cavity in the ver		-	posterior chamber of eye
	(c) A fluid filled in the	e sacculus of ear	(d)An aperture in the au	ricle of heart
28.	In the anatomy of mar	aqueduct of sylvius occu	ars in	
	(a) Ventricle of heart		(b) Eye	
	(c) In between middle	and internal ear	(d) Brain	
29.	Most important function	on of CSF is		

	(a) Drainage of metabo	olities	(b) Supply of nutrition			
	(c) Mechanical buffer		(d) O_2 supply			
30.	The roof of the third an	nd fourth ventricle of the	brain contains a structure	brain contains a structure called		
	(a) Anterior and posterior choroid plexus		(b) Mammillary body			
	(c) Meninges		(d) Corpus albicans			
31.	The space between the	cranium and duramater	of the brain is called			
	(a) Sub-arachnoid	(b) Sub-dural	(c) Epidural	(d) Foramen of Monro		
32.	Third ventricle lies in					
	(a) Medulla oblongata	(b) Mid brain	(c) Diencephalon	(d) Cerebrum		
33.	Iter is located in					
	(a) Spinal cord	(b) Forebrain	(c) Midbrain	(d) Hindbrain		
34.	Aqueduct of Sylvius co	onnects the				
	(a) Paracoels with 3rd	ventricle	(b) Paracoels with 4th ventricle			
	(c) Paracoels with mesocoel		(d) Diacoel with myelocoel			
35.	35. Aqueduct of Sylvius is another name for					
	(a) Aqueous chamber	(b) Central canal	(c) Foramen of Monro (d) Iter			
36.	Thin and vascular and	in and vascular and folded roof of medulla oblongata is termed as				
	(a) Pallium		(b) Anterior choroid plexus			
	(c)Posterior choroid ple		(d) Optic thalami			
37.	Pineal stalk is a fine tu	C C		-		
	(a) Roof of fourth vent		(b)Roof of third ventricle			
	(c) Roof of lateral vent	ricle	(d) Floor of third ventricle			
		FOREE				
Bas	ic Level	TORE				
38.	Brain is					
0	(a) Ectodermal	(b) Mesodermal	(c) Endodermal	(d) Mesendodermal		
39.	Corpus callosum is fou					
	(a) Elephant	(b) Pigeon	(c) Crocodile	(d) Frog		
40.	The nervous strip conn	ecting both the cerebral	hemispheres in the rabbit	is		
	(a) Corpus callosum	(b) Corpus albicans	(c) Corpus stratum	(d) Corpus spongiosum		
41.	In mammals, the corpu	s callosum connects				
	(a) Bone to a muscle		(b) Bone to a bone			
	(c) The two cerebral he	emispheres	(d) The two optic lobes			

⁽b) Hypothalamus (a) Olfactory lobe (c) Corpus callosum (d) Cerebellum 43.

	(a) Diencephalon	(b) Medulla oblongata	(c) Cerebellum	(d) Cerebrum
44.	Learning is related to v	which part of the human b	rain	
	(a) Medulla oblongata	(b) Hypothalamus	(c) Cerebrum	(d) Cerebellum
45.	Cerebral hemisphere is		· · - ·	
	(a) Thinking	(b) Will power	(c) Reasoning	(d) All of these
46.	Cerebral hemispheres a		(a) Small	(d) Teste
4-	(a) Thinking Which part of human h	(b) Balance	(c) Smell	(d) Taste
47.	(a) Medulla oblongata	orain is more developed in	(c) Cerebellum	(d) Optic Johas
	-		(c) Cerebenum	(d) Optic lobes
48.	Which is correct about			
	(a) It is covered by two			
	(b) There is no blood-b			
		cranial nerves originate fr	om cerebral hemisphere	
	(d) Cerebral cortex is h	ighly developed		
49.	The largest number of	neurons are found in		
	(a) Brain	(b) Retina	(c) Spinal cord	(d) Tongue
50.	Which part of the huma	an brain controls homeost	asis	
	(a) Cerebrum	(b) Cerebellum	(c) Medulla oblongata	(d) Hypothalamus
51.	The control of blood su	gar level, osmoregulation	n and thermoregulation a	re the function of
	(a) Medulla oblongata	(b) Cerebellum	(c) Hypothalamus	(d) Diencephalon
52.	The apetite and satiety	centres in the brain of ma	in are located in the region	on of the
	(a) Cerebral hemispher	re(b) Cerebellum	(c) Medula oblongata	(d) Hypothalamus
53.	The thermoregulatory of	centre is situated in		
	(a) Spinal cord	(b) Pituitary body	(c) Cerebellum	(d) Hypothalamus
54.	In homeotherms, the br	rain centre which regulate	s body temperature is	
	(a) Cerebellum	(b) Cerebral lobes	(c) Hypothalamus	(d) Medulla oblongata
55.	Diencephalon is not a c			
	(a) Heart beat	(b) Anger	(c) Hate	(d) Love
56.	An injury to diencepha	-		
	(a) Loss of understandi	-	(b)Loss of learning	
	(c) Loss of intelligence		(d) Loss of heat sensati	ion
57.	Neurohypophysis secre			
	(a) Vassopressin and es	-	(b) Oxytocin and estro	-
	(c) Oxytocin and vasso	-	(d) Vassopressin and g	rowin normone
58.	Other name of diencep	1141011-18		

	(a) Thalamencephalon	(b) Telencephalon	(c) F	Rhombocephalon	(d) Metencephalon
59.	Which of the following	structures is in the dienc	ephalo	n	
	(a) Cerebral cortex	(b) Olfactory bulb	(c) H	Iypothalamus	(d) Basal ganglia
60.	Which of the following	s is not a part of forebrain			
	(a) Rhinencephalon	(b) Rhombencephalon	(c) [Diencephalon	(d) Telencephalon
61.	Pineal stalk arise from				
	(a) Ventral surface of d	liencephalon	(b)Dorsal surface of	fdiencephalon
	(c) Both dorsal and ven	tral surfaces of dienceph	alon (d)Anterio-ventral s	urface of diencephalon
62.	Which part of brain con	ntrols emotions like love,	anger	and pleasure	
	(a) Medulla oblongata	(b) Hypothalamus	(c) (Cerebrum	(d) Cerebellum
63.	Which of the following	brain structures is not co	onsider	ed to be part of lim	bic system
	(a) Amygaloid nucleus	(b) Hippocampus	(c) (Corpora quadrigem	ina (d)Fornix
64.	Corpus callosum is abs	ent in the brain of			
	(a) Prototherians	(b) Eutherians	(c) N	Aetatherians	(d) All of the above
65.	-	ation when he puts his har	nd ove	r flame; the part of	the brain which has
	damaged is				
	(a) Cerebellum	(b) Medulla oblongata	(c) [Diencephalon	(d) Hypothalamus
66.	Nearly 80% of the hum	-			
	(a) Cerebellar cortex	(b) Cerebral cortex	(c) N	Aedulla oblongata	(d) Meninges
67.	Pallium is				
	(a) Thick walled	(-)		Non-nervous	(d) None of the above
68.		n human brain is perceiv		× • • 111	
	(a) Optic lobes	6 4 1 1 1		Decipital lobes	C · . 11 1
	(c) Association area of		(d) Somaesthetic area of parietal lobes		
69.		re perceived in the cerebr		Parietal lobe	(d) Frontal lobe
	(a) Occipital lobeFloor of third ventricle	(b) Temporal lobe	(C) P	rarietal lobe	(d) Fromal lobe
70.	(a) Optic thalami	(b) Pallium	(c) F	Jypothalamus	(d) Enithalamus
		l characters of chordates		Iypothalamus	(d) Epithalamus
71.	(a) Presence of limbs	i characters of chordates		sance of dereal an	d hollow nervous system
	(c) Presence of haemog	lohin		esence of heart	u nonow nervous system
70	Broca's motor speech a		(u)110	sence of near	
72.	_		(a) E	Frontal John	(d) Dianaanhalan
	(a) Temporal lobe The location of filum te	(b) Medulla oblongata	(C) F	Frontal lobe	(d) Diencephalon
73.		erminale is	(1-) T		
	(a) In the skull			n the thorax	
	(c) In the lumbar verter	orae	(d) li	n the pelvic girdle	
74.	Rathke's pouch is				
1					

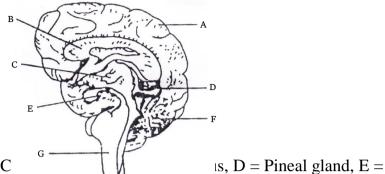
	(a) Infundibulum	(b) Hypophysis	(c) Pituitary body	(d) None of the above
75.	Crus cerebrum is			
	(a) The posterior part of cerebrum		(b) The anterior part of	f cerebrum
	(c) The part of mesence	cephalon	(d) None of the above	
76.	Somaesthetic or post-c	central area is responsible f	for	
	(a) Initiation of motor	impulses for voluntary mu	iscles	
	(b) Initiation of motor	impulses for involuntary n	nuscles	
	(c) Perception of pain,	touch and temperature	(d) Coordination of spe	eech
77.	Premotor area ocurs in	1		
	(a) Frontal lobe	(b) Parietal lobe	(c) Occipital lobe	(d) Temporal lobe
78.	Premotor area of brain	is the highest centre of		
	(a) Thinking		(b) Autonomous nervo	us system
	(c) Movements of invo	oluntary muscles	(d) Both (b) and (c)	
7 9 .	Grey matter is compos	sed of		
	(a) Ependymal cells	(b) Nerve cells	(c) Nerve fibres	(d) Nissl granules
80.	The function of nervou	us tissue is		
	(a) Irritability	(b) Sensitivity	(c) Responsiveness	(d) Contraction
81.	'Brain sand' is found r	normally in		
	(a) Pituitary	(b) Hypothalamus	(c) Pineal gland	(d) Thalamus
82.	In a new born, spinal c	cord ends at		
	(a) L_1	(b) L_2	(c) L_3	(d) L_4
83.	70% of body heat is lo	ost through skin. This heat	control is done by	
	(a) Corpuscles of the s	skin (b)Dermis of skin	(c) Hypothalamus	(d) Medulla oblongata
84.	Somaesthelic area is p	resent inof cerebral	hemisphere	
	(a) Temporal lobe	(b) Frontal lobe	(c) Parietal lobe	(d) Occipital lobe
85.	Taste area lies in the			
	(a) Frontal lobe	(b) Occipital lobe	(c) Temporal lobe	(d) Parietal lobe
86.	Cholesterol content is	maximum in		
	(a) Grey matter of brai	in (b) White matter of brain	n (c) Kidney	(d) Liver
87.	Weight of the human b			
	(a) 2.5 <i>Lbs</i>	(b) 3.5 <i>Lbs</i>	(c) 4.0 <i>Lbs</i>	(d) 4.5 <i>Lbs</i>
88.	Tela choroidea is made	e up of		
	(a) Nervous tissue		(b) Epithelium and blo	od vessels

	(c) Epithelium only		(d) (a) and (b) both				
89.	The pineal body is cons	sidered as					
	(a) An endocrine gland		(b) An organ concerned	l with voluntary actions			
	(c) An organ concerned with vision		(d) A vestige of third e	ye and endocrine gland			
90.	Tela choroidea is the te	erm used for					
	(a) Fused piamater and	grey mater	(b) The middle coat of	eye			
	(c) Epithalamus and pia	amater fused	(d) None of the above				
91. Genu and splenium are							
	(a) Anterior and posterior	ior ends of corpus callosur	n				
	(b)Posterior and anterio	or ends of corpus callosum	l				
	(c) Anterior and posterior ends of corpora striata (d) Posterior and anterior ends of corpora striat						
Adv	ance Level						
92.							
	(a) Movement of tongu	e	(b)Breathing and hiccup				
	(c)Movement of vocal	cords	(d) Both (a) and (c)				
93.	How many separate lay	vers of neurons are present	t in the cerebral cortex				
	(a) 1	(b) 3	(c) 6	(d) 10			
94.	The centre for sense of	smell in brain is					
	(a) Cerebellum	(b) Cerebrum	(c) Olfactory lobes	(d) Midbrain			
95.	Which part of the brain	can distinguish the perfu	me smell				
	(a) Olfactory lobe	(b) Olfactory bulb	(c) Olfactory tract	(d) Temporal cortex			
96.	The anterior choroid pl	exus in the brain of man c	overs				
	(a) Corpora bigemina	(b) Medulla oblongata	(c) Diencephalon	(d) Mesencephalon			
97.	The genu and splenium	in brain are associated wi	ith				
	(a) Cerebellum	(b) Cerebrum	(c) Medulla oblongata	(d) Vermis			
98.	Corpora striata is found	l in					
	(a) Paracoel	(b) Metacoel	(c) Cerebrum	(d) Diocoel			
99.	Olfactory lobe of rabbi	t is					
	(a) Fused and solid	(b) Fused and hollow	(c) Free and solid	(d) Free and hollow			
100.	The nervous system and	d endocrine glands are					
	(a) Antagonistic	(b) Synchronous	(c) Independent	(d) Interdependent			
101.	Wernike's centre in bra	in is related with					
	(a) Hearing		(b) Vision				
	(c) Understanding spee	ch	(d) Speech making				

102.	Which of the following	g divides the brain of r	abbit into frontal lobe and	temporal lobe	
	(a) Hippocampal fissur	re(b) Sylvian fissure	(c) Central sulcus	(d) Rhinal fissure	
103.	Neopallium forms the	dorsal wall of			
	(a) Medulla	(b) Cerebellum	(c) Cerebrum	(d) Diencephalon	
104. Hypothalamus is the principal intermediary between					
	(a) Nervous system and muscles (b)Endocrine system and chromatophores			romatophores	
	(c) Nervous system and	d endocrine system (d)Nervous system and the	conscious state of the body	
105.	105. Broca's area in cerebrum is concerned with				
	(a) Maintenance of bal	ance	(b) Learning and me	(b) Learning and memory	
	(c) Translation of thou	ght into speech	(d) Perception of spe	(d) Perception of speech, music or noise	
106.	5. Which of the following is not a function of hypothalamus				
	(a) Hunger and satiety		(b) Thermoregulation	n	
	(c) Libido		(d) Creative thinking	and consciousness	
107.	Identify the part of for	ebrain in humans whic	h contains the auditory ce	ntre	
	(a) Temporal lobe	(b) Parietal lobe	(c) Occipital lobe	(d) Hippocampal lobe	
108.	Hypothalamus contain	s regulatory center for			
	(a) Feeding and satiety	7	(b) Thermoregulation	(b) Thermoregulation and water balance	
	(c) Sex drives ('libido'	['])	(d) All of the above	(d) All of the above	
109.	Each cerebral hemisph	ere is divided into lobe	esin number by sulci		
	(a) 3	(b) 4	(c) 5	(d) 6	
110.	•	*	orpus callosum in human b	orain results in a	
	neurological disorder of				
	(a) Somnabulism	(b) Annorexia nervos	sa (c) Parkinson's disea	ase (d) Schizophrenia	
111.	Match the pairs of the	human being listed une	der Column I with the fun	ctions given under Column	

II; choose the choice which gives the correct combination of the alphabets of the two column

	Column I (Parts of the brain)		Column II (Functions)
А	Cerebral hemisphere	p	Relaying impulses
В	Thalamus	q	Posture and balance
С	Cerebellum	r	Movement of heart, stomach, lungs, etc.
D	Medulla oblongata	Medulla oblongata s R	
		t	Voluntary control, intelligence, hearing,
			speech, etc.


(a) A = t, B = q, C = p, D = s

(b) A = t, B = p, C = q, D = s

(c) A = r, B = s, C = q, D = t

(d)
$$A = r, B = q, C = p, D = s$$

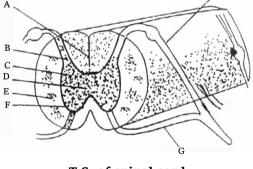
112. In the diagram of section of brain given below, different parts are indicated by alphabets; choose the answer in which these alphabets have been correctly matched with the parts they indicate

- (a) A = Cerebral hemisphere, B = C $\langle V \rangle$ Cerebellum, F = Pituitary, G = Medulla oblongata
- (b) A = Cerebral hemisphere, B = Thalamus, C = Corpus callosum, D = Pineal gland, E =Pituitary, F = Medulla oblongata, G = Cerebellum
- (c) A = Corpus callosum, B = Cerebral hemisphere, C = Pituitary, D = Pineal gland, E = Thalamus
- (d) A = Cerebral hemisphere, B =Corpus callosum, C = Thalamus, D = Pineal gland, E =Pituitary, F =Cerebellum, G = Medulla oblongata

MID AND HIND BRAIN

Basic Level

113.	Main function of cereb	ellum is		
	(a) Balancing	(b) To see	(c) To hear	(d) Remembering
114.	In which part of the fol	lowing, the vomitting cen	tre is situated	
	(a) Cerebrum	(b) Cerebellum	(c) Medulla oblongata	(d) Hypothalamus
115.	Which of the following	g is not correctly matched		
	(a) Rhinocephalon – O	lfaction	(b) Hypothalamus – Pit	tuitary
	(c) Cerebellum – Balar	nce	(d) Medulla oblongata	– Temperature regulation
116. In rabbit, optic lobes are small because the eye sig			ght is controlled by	
	(a) Temporal lobe	(b) Occipital lobe	(c) Frontal lobe	(d) Parietal lobe
117.	Medulla oblongata con	trols		
	(a) Blood pressure	(b) Synapse	(c) High temperature	(d) Low temperature
118.	Which part of the brain	is directly concerned with	h the control of heart	
	(a) Cerebrum	(b) Diencephalon	(c) Pons verolii	(d) Medulla oblongata
119.	Breathing is controlled	by		
	(a) Lungs	(b) Trachea	(c) Medulla oblongata	(d) Hypothalamus
120.	Ventilation is controlle	d by		
	(a) Cerebellum	(b) Medulla oblongata	(c) Cerebrum	(d) Mesencephalon
	· ·	Č,	· ·	


121.	Refluxes for maintaini	ng vital functions like blo	od pressure are localised	in	
	(a) Hind brain	(b) Mid brain	(c) Fore brain	(d) Cerebrum	
122.	Crura cerebrae is foun	d in			
	(a) Hind brain	(b) Fore brain	(c) Mid brain	(d) Spinal cord	
123.	The branched tree like	structure present in cereb	ellum is		
	(a) Arbor vitae	(b) Arboreal	(c) Archenteron	(d) Areole	
124.	Cerebellum coordinate	es			
	(a) Creative thinking a	nd consciousness	(b) Hand-eye movemen	nt	
	(c) Peristalis of gastroi	intestinal tract	(d) Pupil constriction in	n response to dim light	
125.	Hind brain consists of				
	(a) Olfactory lobe and		(b)Occipital and pariet		
	(c) Cerebellum and me		(d) Hippocampal lobe and diencephalon		
126.	Cerebellum controls and coordinates				
	(a) Knee-jerk reaction		(b) Blinking of eye		
	(c) Muscle function		(d) Dilation and constr	iction of pupil	
127.					
	(a) Occipital and temp		(b) Temporal and parie		
	(c) Frontal and parieta		Occipital and parietal 1	obe	
128.	_	n controls involuntary bre			
	(a) Diencephalon	(b) Hypothalamus	(c) Medulla oblongata	(d) Cerebellum	
Adv	ance Level				
	Foramen of magendie	is situated in			
129.	(a) Right auricle		(b) Base of skull		
	(c) Medulla oblongata	of brain	(d) Posterior end of humerus		
120	_	in rabbit is directly vision		inci us	
130.	(a) Corpus albicans	(b) Hippocampal lobe	(c) Corpus callosum	(d) Corpora	
quad	liregemina	(b) hippocampariooc	(c) Corpus canosum	(u) corpora	
_	-	n is involved in loss of co	ntrol when a person drink	s alcohol	
	(a) Cerebellum	(b) Cerebrum	(c) Medulla oblongata		
132.		nmalian brain controls mu	· · · ·		
	(a) Cerebrum	(b) Medulla oblongata	(c) Cerebellum	(d) Corpus callosum	
122	Hearing is controlled b	_	(e) corobonum	(a) corpus currosum	
133.		,y			

	(a) Cerebral lobes	(b) Hypothalamus	(c) Temporal lobe	(d) Cerebellum	
134.	The cerebellum is con	cerned with the			
	(a) Co-ordination of muscular movements		(b) Perception		
	(c) Memory		(d) Vision		
135.	The hind brain consists of				
	(a) Pons + cerebellum		(b) Hypothalamus + o	cerebellum	
	(c) Medulla oblongata + cerebellum		(d) Medulla oblongat	a + cerebellum + pons	
136. The part of brain without its ventricle is					
	(a) Cerebrum	(b) Cerebellum	(c) Medulla	(d) Diencephalon	
137.	Identify the correctly	matched pair			
	(a) Cardiac centre – medulla oblongata		(b) Thermoregulatory	v centre – cerebellum	
	(c) Respiratory center – hypothalamus		(d) Hunger – olfactor	y lobe	
138. Which of the following is a structure		g is a structure in the me	esencephalon		
	(a) Inferior colliculi	(b) Thalamus	(c) Cerebellum	(d) Mammillare body	
139.	9. Arbor vitae is composed of				
	(a) Gray matter	(b) White matter	(c) Neuroglia cells	(d) Pons varolii	
140.	Which of the following is not a structure of the hindbrain				
	(a) Medulla oblongata	(b) Thalamus	(c) Cerebellum	(d) Pons	
141.	The habernular comm	-			
	(a) Optic thalami	(b) Olfactory lobes	(c) Optic lobes	(d) Optic chiasma	
142.				a	
	(a) Longitudinal band		(b) Transverse bands of nerve fibres(d) Bands of nerve fibres that cross each other		
	(c) Oblique bands of r	ierve fibres			
143.	•		(b) Optopools		
	(a) Optic lobes(c) Lateral thick walls	of diencenhalon	(b) Optocoels(d) None of these		
144	Vermis is	or thenetephaton	(d) None of these		
-44.	(a) A tiny worm		(b)Cavity of medulla		
	-	obe of cerebellum in ma	mmals (d)A portion of mid brain		
	(-, ge meetuil)				
		SPINAL CORD	AND REFLEXES		
Basi	ic Level				
145.	Which one of the follo	owing occurs without the	help of brain		
	(a) C_{max}	(1-) Curiu -1 Class			

	(a) Cranial reflex	(b) Spinal reflex	(c) Efferent reflex	(d) Afferent reflex
146.	Simple two neuron refle	ex arc involves		
	(a) Sensory neuron	(b) Spinal cord	(c) Effector neuron	(d) All the above

When no intervention i	s done by the brain, the re	esponse is due to		
(a) CNS	(b) Voluntary actions	(c) Spinal reflex	(d) Cerebral reflex	
Which one is not a refl	ex action			
(a) Closing of eye lids	against fricking	(b) Release of saliva se	eing sweets	
(c) Perspiration due to	heat	(d) Obeying the order		
49. Pioneer work on conditioned reflex was done by				
(a) Karmer	(b) Pavlov	(c) Darwin	(d) Lamark	
Reflex action in a verte	brate is an essential displa	ay exhibited by		
(a) Sympathetic nerve	(b) Motor nerve	(c) Sensory nerve	(d) Autonomic response	
Which of the following	g is an example of reflex a	ction		
(a) To shoot the bird after aiming		(b)Watering of the mouth on seeing good edibles		
(c) To obey the order		(d)To read the story		
Effect of the reflex acti	ion due to the taste of food	d is the release of		
(a) Vagal impulse	(b) Appetite juice	(c) Alakaline mucosa	(d) Spasm of stomach	
	. 1 • 1			
	•			
		(c) Medulla oblongata	(d) Optical lobe	
Spinal cord is located i	n			
(a) Cranium	(b) Optic vesicle	(c) Otic capsule	(d) Vertebral column	
Lateral funiculi possess	s ganglia			
(a) Sensory	(b) Motor	(c) Both (a) and (b)	(d) None of these	
In the diagram of T.S.	of the spinal cord given at	oove, certain parts have b	een indicated by	
alphabets; choose the a	nswer in which these alph	abets have been correctly	y matched with the parts	
	 (a) CNS Which one is not a refl (a) Closing of eye lids (c) Perspiration due to Pioneer work on condition (a) Karmer Reflex action in a vertee (a) Sympathetic nerve Which of the following (a) To shoot the bird affect of the reflex action (a) Vagal impulse Reflex action immediation (a) Spinal cord Spinal cord is located if (a) Sensory In the diagram of T.S. 4 	(a) CNS(b) Voluntary actionsWhich one is not a reflex action(a) Closing of eye lids against fricking(c) Perspiration due to heatPioneer work on conditioned reflex was done by(a) Karmer(b) Pavlov(a) Karmer(b) PavlovReflex action in a vertebrate is an essential displation of the following is an example of reflex at(a) To shoot the bird after aiming(c) To obey the orderEffect of the reflex action due to the taste of food(a) Vagal impulse(b) Appetite juiceReflex action immediately involves(a) Spinal cord(b) CerebellumSpinal cord is located in(a) Cranium(b) Optic vesicleLateral funiculi possess ganglia(a) Sensory(b) MotorIn the diagram of T.S. of the spinal cord given at	Which one is not a reflex action (a) Closing of eye lids against fricking (b) Release of saliva se (c) Perspiration due to heat (d) Obeying the order Pioneer work on conditioned reflex was done by (a) Karmer (a) Karmer (b) Pavlov (c) Darwin Reflex action in a vertebrate is an essential display exhibited by (a) Sympathetic nerve (b) Motor nerve (c) Sensory nerve Which of the following is an example of reflex action (a) To shoot the bird after aiming (b)Watering of the mout (c) To obey the order (d)To read the story Effect of the reflex action due to the taste of food is the release of (a) Vagal impulse (b) Appetite juice (c) Medulla oblongata Spinal cord (b) Cerebellum (c) Medulla oblongata Spinal cord is located in (a) Cranium (b) Optic vesicle (c) Otic capsule	

of which they indicate

T.S. of spinal cord

- (a) A = Dorsal septum, B = Dorsal horn, C = Grey mater, D = Central cavity, E = White mater, F = Ventral horn, G = Ventral root, H = Dorsal root and ganglion
- (b) A = Dorsal septum, B = Dorsal horn, C = Central cavity, D = Grey mater, E =Ventral horn, F = White mater, G = Dorsal root and ganglion, H = Ventral root

	 (c) A = Dorsal septum, B = Dorsal horn, C = G = Ventral root, G = Dorsal root and ganglior 	•	mater, E = Central cavity, F	
	(d) A = Dorsal septum, B = Dorsal horn, C = C = White mater, G = Dorsal root and ganglion	entral cavity, D = Grey	mater, $E = Ventral horn, F$	
157.	The sensory ganglion concerned in spinal reflex		forming 1 agend	
	(a) Cutaneous sense organ	(b)Gray matter of	•	
	(c) Dorsal root of spinal nerves	(d)Ventral root of	i spinar nerves	
158.	Brain of a mammal differs from that of frog in h	laving		
	 (a) No corpus callosum (b) A well developed modulle oblangets with none versition 			
	(b) A well developed medulla oblongata with pons varoli			
	(c) Large cerebral hemispheres divided into lobes by means of fissures			
	(d) Hollow olfactory lobes			
159.	59. Each spinal nerve in a mammal arises from the spinal cord by two roots, a dorsal and ventral. Of these the ventral root is composed of			
(a) Somatic motor and visceral motor fibres (b) Somatic sensory and viscera		and visceral motor fibres		
	(c) Somatic motor and visceral sensory fibres	es (d) Somatic sensory and visceral sensory		
160.	60. Which of the following is a richly vascular layer with lots of blood capillaries			
	(a) Durameter of brain (b) Piamater of spinal c	ord		
	(c)Epidermis of skin (d) Epithelial lining of t	trachea		
161.	Dorsal root ganglion are			
	(a) Mixed (b) Motor	(c) Sensory	(d) None of these	
162.	The spinal cord extends from the brain through			
	(a) Foramen magnum	(b) Iter		
	(c) Anterior commissure	(d) Foramen of Mon	ro	
163.	The ramus communicans of the spinal nerves	· · ·		
	(a) Joins the sympathetic chain	(b) Joins the parasyn	npathetic chain	
	(c) Remains independent	(d) Joins the brachial	•	
164.	What is found in the periphery of spinal cord		r · ···	
-	(a) Grey matter (b) Myelinated nerve	(c) White matter	(d) Notochord	
165.				
	(a) Somatic motor fibres (b)Visceral motor fi	bres		
	(c) Somatic sensory fibres (d)Visceral sensory			
166.			on	
	(a) Sensory nerves	(b) Motor nerves		
	• • •	· ·		

	(c) Sympathetic nervous system	(d) Central nervous system		
Adv	ance Level			
	If frog's brain is crushed, even then it's leg mo	ves in ninnointing. It is c	alled	
107.	(a) Simple reflex	(b) Conditional reflex		
(c) Neurotransmitter function		(d) Autonomic nerve		
168. Conditioned reflexes are different than unconditioned reflexes in that(a) Conditioned reflexes are limited to brain(b) Unconditiond reflexes are limited				
			exes are limited to brain	
	(c) Both (a) and (b)	(d) None of the above		
169. Which of the following is an example of conditioned reflex				
			d on touching a hot plate	
	(c) Watering of mouth at smell of food	(d) Flowing of tears w	C 1	
170. The cytons of reflex in central nervous system		-	-	
1/01	(a) Sensory (b) Mixed	(c) Motor	(d) All of these	
171.	Which is a wrong relation			
1/10	(a) Conditioned reflex – <i>Hodgkins</i>	(b)Blood circulation – W. Harvey		
	(c) DNA double helix model – <i>Watson and Cri</i>	•		
172.	One common example of simple reflex is			
	(a) Tying your shoe laces while talking to anoth	ner person and not lookin	g at them	
	(b) Watering of mouth at the sight of a favourit	-	•	
	(c) Climbing up a stairs in dark without stumbl	ing		
	(d) Closing of eyelids when an object suddenly	approaches the eye		
173.	In reflex action the reflex arc is formed by			
	(a) Brain – spibnal cord – muscles	(b)Receptor – spin	al cord – muscles	
	(c) Muscles – receptor – brain	(d)Muscles – spina	al cord – muscles	
174.	A boy learns typewriting and harmonium at the	same time. He finds har	monium more easy to	
learn. This is				
	(a) Conditioned reflex	(b) Short term homeo	stacio	
	(a) Conditioned reflex	(b) Short term homeos	stasis	
185	(c)Long term homeostasis	(d) Residual learning	stasis	
175.	(c)Long term homeostasis Anterior to enlargement of spinal cord is known	(d) Residual learning n as		
	(c)Long term homeostasisAnterior to enlargement of spinal cord is known(a) Filum terminate(b) Conus terminate	(d) Residual learningn as(c) Cervical swelling	stasis (d) Cauda equina	
	 (c)Long term homeostasis Anterior to enlargement of spinal cord is known (a) Filum terminate (b) Conus terminate From which part of spinal cord, motor root orig 	(d) Residual learningn as(c) Cervical swellingginates	(d) Cauda equina	
176.	 (c)Long term homeostasis Anterior to enlargement of spinal cord is known (a) Filum terminate (b) Conus terminate From which part of spinal cord, motor root original (a) Ventral root (b) Dorsal root 	(d) Residual learningn as(c) Cervical swelling		
	 (c)Long term homeostasis Anterior to enlargement of spinal cord is known (a) Filum terminate (b) Conus terminate From which part of spinal cord, motor root orig 	 (d) Residual learning n as (c) Cervical swelling ginates (c) Gray matter 	(d) Cauda equina	

	(c) Calcareous bodies p	protecting the ganglia in fr	og (d)None of these	
178.	The reflex action was o	liscovered by		
	(a) Marshall	(b) Best	(c) Taylor	(d) Pavlov
179.	Foramen magnum is th	e exit point for		
	(a) Filum terminale	(b) Cranial nerves	(c) Spinal nerves	(d) Spinal cord
180.	Spinal cord is covered	by highly vascularised		
	(a) Epithelial layer	(b) Arachnoid	(c) Piameter	(d) Durameter
181.	÷	on between brain and spina		eg of such a frog is
		dle. Then it is most likely	that the animal will	
	(a) Not show any react	ion	(b)Move the leg that is	pricked
	(c) Move the leg and fe	eel the pain	(d)Do not move that le	g but feel the pain
182.	One of the following is	s not a reflex action		
	(a) Knee jerk	(b) Boxing	(c) Coughing	(d) Eye lid closing
183.	Immediate involuntary	response to stimulus is		
	(a) Reflex action		(c) Action control	(d) None of these
184.	In vertebrates, simple r	eflex action is		
	(a) Trisynaptic	(b) Monosynaptic	(c) Polysynaptic	(d) Bisynaptic
185.	An H-shaped region pr	resent around the central ca	anal of spinal cord is ma	de up of
	(a) White matter	(b) Grey matter	(c) Sensory fibres	(d) Motor fibres
186.	Foramen of Magendie	is		
	(a) Another name of fo	ramen of Monro	(b) An aperture of myelocoel	
	(c) An aperture of meta	acoel	(d) An aperture of mesocoel	
187.	The filum terminale is	composed of		
	(a) Piamater	(b) Duramater	(c) Ganaglion cells	(d) White matter
188.	What is called the end	of the spinal cord		
	(a) Cauda equina	(b) Conus medullaries	(c) Filum terminale	(d) Funiculus
		CRANIAL AND SP	<u>INAL NERVES</u>	
Basi	ic Level			
189.	The eighth cranial nerv	ve (auditory) of vertebrates	s leads from brain to	
	(a) Ear	(b) Eye	(c) Nose	(d) Tongue
190.	The number of spinal r	nerves in rabbit is		
	(a) 27 pairs	(b) 31 pairs	(c) 37 pairs	(d) 47 pairs
191.	The cranial nerve whic	h brings impulses from the	e internal ear is	
	(a) Hyomandibular	(b) Vagus	(c) Auditory	(d) Trochlear

192.	Which of the cranial ne				
	(a) Optic	(b) Olfactory	(c) Vagus	(d) Trochlear	
193.	The second cranial ner				
	(a) Optic	(b) Trigeminal	(c) Olfactory	(d) Abducens	
194.	Heart is innervated by				
	(a) Trigeminal	(b) Vagus	(c) Glossopharyngeal	(d) Facial	
195.	IV, V and IX cranial ne	erves are			
	(a) Olfactory, spinal ac	cessary and vagus	(b) Trigeminal, vagus a	and glossopharyngeal	
(c) Occulomotor, trigeminal and hypoglos		ninal and hypoglossal	(d) Pathetic, trigeminal and glossopharyngeal		
196.	Twelve pairs of ribs an	d twelve pairs of cranial n	erves are found in		
	(a) Fish	(b) Frog	(c) Lizard	(d) Man	
197.	The site from which the	e nerve impulse for hearin	g originates		
	(a) Ear ossicles	(b) Cochlea	(c) Auditory nerve	(d) Ear drum	
198.	Vagus nerve is				
	(a) Spinal nerve	(b) Sympathetic nerve			
	(c) X-cranial nerve	(d) Parasympathetic nerv	/e		
199.	Pneumogastric nerve is	s known as			
	(a) Vagus	(b) Glossopharyngeal	(c) Spinal accessory	(d) Hypoglossal	
200.	Which of the following	g are the two extra cranial	nerves found in rabbit		
	(a) Glossopharangeal a	nd hypoglossal	(b) Glossophyrangeal and spinal accessory		
	(c) Spinal accessory an	d hypoglossal	(d) Pneumogastric and hypoglossal		
201.	Which of the following	cranial nerve of man is b	oth sensory and motor		
	(a) Olfactory	(b) Trigeminal	(c) Optic	(d) Auditory	
202.	The number of spinal n	erves in man is			
	(a) 27 pairs	(b) 31 pairs	(c) 37 pairs	(d) 47 pairs	
203.	The vagus nerve innerv	vates the			
	(a) Eyes	(b) Reproductive organs	(c) Ears	(d) Heart	
204.	How many cranial nerv	ves found in the amniota			
	(a) 6 pairs	(b) 8 pairs	(c) 12 pairs	(d) 10 pairs	
205.	Name the cranial nerve	es of humans being viz. II,	VII, VIII, IX		
	(a) Optic, auditory, fac	ial, hypoglossal			
	(b) Oculomotor, audito	ry, abducens, hypoglossal			
	(c) Optic, facial, audito	ory, glossopharyngeal	(d) Optic, facial, abduc	ens, glossopharyngeal	
206.	Fifth cranial nerve of fr	rog is called			
	(a) Optic nerve	(b) Vagus nerve	(c) Trigeminal nerve	(d) Opthalmic nerve	
207.	Dicondyllic skull and 1	0 pairs of cranial nerves a	re found in		

	(a) Reptilia	(b) Aves	(c) Amphibia	(d) All of these	
208.	The vagus neve is the c	cranial nerve numbering			
	(a) 10	(b) 9	(c) 7	(d) 5	
209.	Which is a sensory ner	ve			
	(a) Trigeminal	(b) Vagus	(c) Opthetic nerve	(d) Auditory nerve	
210.	The nerve related with	diaphragm is			
	(a) Vagus	(b) Phrenic	(c) Trigeminal	(d) Glossopharyngeal	
211.	Which cranial nerve ca	rries in excitation from the	e ear		
	(a) Optic	(b) Auditory	(c) Olfactory	(d) Trigeminal	
212.	The cranial nerves which	ch are exclusively sensory	in function are		
	(a) Olfactory and optic		(b) Optic and oculomot	tor	
	(c) Hypoglossal and optic		(d) Hypoglossal and ol	factory	
213.	The lungs, heart, intest	ine etc. are supplied by cra	anial nerve		
	(a) Trigeminal	(b) Vagus	(c) Abducens	(d) Oculomotor	
214.	A motor nerve carries i	mpulses from			
	(a) CNS to the effectors		(b)Effectors to the CNS (central nervous system)		
	(c) Cranial nerves to the effectors		(d)Effectors to the cranial nerves		
215. Purely motor nerve is					
	(a) Optic	(b) Abducens	(c) Opthalamic	(d) Palatinus	
216.	The number of cranial	nerves in rabbit/mammal	is		
	(a) 10 pairs	(b) 12 pairs	(c) 24 pairs	(d) 36 pairs	
217.	The largest cranial nerv	ve of the body is			
	(a) Hypoglossal	(b) Vagus	(c) Glossopharyngeal	(d) Olfactory	
218.	The smallest cranial ne	rve is		-	
	(a) Trochlear	(b) Opthalmic	(c) Abducens	(d) Vagus	
219.	The only cranial nerve	which does not supply the	e cranial region but to vis	sceral region is	
	(a) Vagus	(b) Trigeminal	(c) Hypoglossal	(d) Abducens	
220.	Which of the following	cranial nerve controls fac	cial expression and masti	cation of food, etc.	
	(a) Fourth	(b) Fifth	(c) Seventh	(d) Ninth	
221.	Heart muscles are inner	rvated by			
	(a) Vagus	(b) Trigeminal	(c) Abduncens	(d) Accessory	
222.	Which of the following				
	(a) Trochlear	(b) Spinal accessory	(c) Abducens	(d) Olfactory	
223.	Facial nerve is		/		
	(a) Sensory	(b) Mixed	(c) Motor	(d) None of the above	
1					

224.	Vagus and trigeminal a	ire			
	(a) Motor nerve	(b) Sensory	(c) Mixed	(d) All of the above	
225.	Cranial nerve which su	pplies regions of body oth	her than the head and is le	ongest	
	(a) Auditory	(b) Oculomotor	(c) Vagus	(d) Trochlear	
226.	Tongue is under the co	ntrol of			
	(a) Trigeminal	(b) Facial	(c) Autonomic system	(d) Glossopharyngeal	
227.	Which nerve is exclusi	•			
	(a) Trigeminal	(b) Facial	(c) Vagus	(d) Spinal accessory	
Adva	ance Level				
228.	How many pairs of cra	nial nerves in mammals a	re purely sensory		
	(a) Five	(b) Four	(c) Three	(d) Two	
229.	Glands of Swammerda	ms which are calcareous g	glands, are found		
	(a) Below the cerebrun	n in brain			
	(b) In the liver of the ve	ertebrates			
(c) At the junction of medulla oblongata and spinal cord					
(d) At the places of emerging of spinal nerves					
230.	Paralysis of jaw muscle	es is due to loss of functio	n of which cranial nerve		
	(a) III	(b) V	(c) VII	(d) X	
231.	The trigeminal nerve (V cranial nerve) arises from	m brain in the region of		
		rides into palatine, chorda			
		s into palatine, chorda tyn		ſ	
		ides into ophthalmic, max	-		
	(d) Medulla and divide	s into ophthalmic, maxilla	ry and mandibular		
232.	In man which one of th	e following cranial nerve	is associated with the se	nse of body balance	
	(a) VI	(b) VII	(c) VIII	(d) IX	
233.	The largest of the spina	al nerves is constituted by	the		
	(a) First pair	(b) Brachial nerves	(c) Third pair	(d) Fourth pair	
234.	The hypoglossal nerves	s are theof the spinal	nerves		
	(a) Second pair	(b) Ventral roots	(c) First pair	(d) Twelfth pair	
235.	The spinal cord termina	ates in			
	(a) Corpus terminale	(b) Coput terminale	(c) Cauda terminale	(d) Filum terminale	
236.	Which of the following	g nerve innervates upper ja	aw of frog		
	(a) Maxillary	(b) Pathetic	(c) Palatine	(d) Occulomotor	
237.	Which cranial nerves h	as the highest number of l	oranches		
	(a) Trigeminal	(b) Facial nerve	(c) Vagus nerve	(d) None of these	
		. /		. /	

	238.	The 3rd, 6th and 11th c	ranial nerves are				
		(a) Occulomotor, triger	ninal, spinal	(b) Optic, facial, spinal			
		(c) Occulomotor, abdue	cens, spinal	(d)	Trichlear, abducens,	vagus	
	239.	Which of the following	cranial nerves is present	in tł	ne rabbit but absent ir	the frog	
		(a) Glossopharyngeal	(b) Hypoglossal	(c)	Olfactory	(d) Optic	
	240.	The cranial nerves which	ch control eye-ball moven	nent	are		
		(a) 4, 6 and 7	(b) 3, 4 and 6	(c)	2, 3 and 5	(d) 5, 8 and 9	
	241.	If the sympathetic nerv	e to the heart is cut-off, th	e he	eart beat will		
		(a) Increase	(b) Decrease	(c)	Remains same	(d) Stop	
	242.	Cranial nerves origination	ing medulla oblongata are				
		(a) III, VII, IX	(b) IX, X, XI, XII, III	(c)	VII, VIII, IX, X	(d) VII, IX, X, XI, XII	
	243.	VI cranial nerve of rabl	bit is				
		(a) Abducens	(b) Optic	(c)	Olfactory	(d) Oculomotor	
244. The second cranial nerve in human originates from							
(a) Ciliary muscles of eye(b)Retina only(c) Retina and lens(d)Occular muscles of							
					e		
	245.	Gasserian ganglion is f	ormed by the				
		(a) Vagus nerve	(b) Trigeminal nerve	(c)	Trochlear nerve	(d) Cervical nerve	
	246.	All spinal nerves are					
		(a) Motor	(b) Sensory	(c)	Mixed	(d) None of the above	
	247.	The mixed nerve is					
		(a) Auditory	(b) Occulomotor	(c)	Facial	(d) Abducens	
	248.	Which of the following	cranial nerves are involve	ed in	n the movement of ey	·	
		(a) Optic, occulomotor,	, abducens	(b) Occulomotor, abducens, trochlear			
		(c) Trochlear, abducens	s and optic	(d) Abducens, optic, trochlear, occulomotor			
	249.		y cranial nerves in rabbit				
		(a) Eight	(b) Six	. ,	Three	(d) Four	
	250.		nerves in a mammal inclu	-			
		(a) 10	(b) 12	(c)	24	(d) 36	
	251.	Number of cranial nerv	-				
		(a) 10	(b) 12	. ,	24	(d) 20	
	252.		nent regarding spinal nerv				
			ry and ventral root is moto			tor and sensory both	
			r and ventral root is sensor	•		nsory and motor both	
	253.		nal nerves are present in R				
		(a) 9	(b) 11	(c)	12	(d) 8	

254.	Superior oblique muscl	e of the human eye is inne	ervated by	
	(a) Trochlear	(b) Abducens	(c) Oculomotor	(d) Optic nerve
255.	Which of the following	is not a branch of the trig	eminal nerve	
	(a) Opthalmic	(b) Glossopharyngeal	(c) Mandibular	(d) Maxillary
256.	The following cranial n	erve plays an important re	ole in regulating heart be	at
	(a) IX	(b) VII	(c) X	(d) VIII
257.	Which one of the follow	wing is spinal nerve		
	(a) Hypoglossal	(b) Trigeminal	(c) Olfactory	(d) None of these
258.	Seventh cranial nerve e	enters		
	(a) Jugular ganglion	(b) Geniculate ganglion	(c) Gasserian ganglion	(d) Femoral ganglion
259.	Jacobsons nerve is a br	anch ofcranial nerve		
	(a) V	(b) VIII	(c) IX	(d) X
260.	Musicians nerve is			
	(a) Axillary	(b) Median	(c) Ulnar	(d) Radial
261.	Thickest nerve of the b	ody		
	(a) Radial	(b) Median	(c) Sciatic	(d) Axillary
262.	Labourer's nerve is			
	(a) Median	(b) Ulnar	(c) Radial	(d) Sciatic
263.	Vagus nerve is compos	ed mainly of parasympath	etic fibres. The pregangl	ionlc fibres form a
	network in the walls of	the organs. This network	is known as	
	(a) Choroid plexus	(b) Nervous plexus	(c) Auerbach plexus	(d) Brachial plexus

AUTONOMOUS (SYMPATHETIC & PARASYMPATHETIC) N.S

Basic Level

264.	4. Which is activated in stress condition				
	(a) Sympathetic	(b) Parasympathetic	(c) Somatic	(d) Whole ANS	
265.	265. The autonomic nervous system has control over				
	(a) Reflex action	(b) Skeletal muscles	(c) Sense organs	(d) Internal organs	
266.	266. If parasympathetic nerve of the rabbit is cut then heart beat				
	(a) Unaffected	(b) Decreases	(c) Increases	(d) Stop	

267.	Contraction of involuntary muscles, secretion of	digestive glands and rat	e of heart beats are under	
	the control of	(b) Deflex system		
	(a) Cranial system	(b) Reflex system	stom	
- 60	(c) Autonomic nervous system	(d) Central nervous sys		
268. Increase in gastro-intestinal secretion and movement after ingestion of food is main about by		i lood is mainly brought		
	(a) Sympathetic nervous system	(b) Parasympathetic ne	ervous system	
	(c) Central nervous system	(d) Hormone secreted	by thyroid	
269.	Which one is the function of parasympathetic ne	rvous system in mamma	ıls	
	(a) Acceleration of heart beat	(b) Constriction of pup	pil	
	(c) Stimulation of sweat glands (d) Contraction of arrector pilli muscles			
270.	270. The self governing nervous system is known as			
(a) Central nervous system (b) Peripheral nervous system		system		
(c) Autonomic nervous system (d) Sympathetic nervous system		us system		
271.	271. Two systems which exert opposite influence on the same organs or set of organs are			
(a) Endocrine and exocrine gland systems (b) Muscular and nervous sy		vous system		
	(c) Endocrine and nervous system (d) Sympathetic and parasympathetic s		arasympathetic systems	
272.	272. The following hormones are neurotransmitters			
(a) Acetylcholine and secretin (b) Cholecystokinin and acetylcholin		nd acetylcholine		
	(c) Adrenalin and acetylcholine	(d) Cholecystokinin an	nd adrenalin	
273.	Parasympathetic nervous system			
	(a) Increases heart beat	(b) Decreases heart beauting	at	
	(c) Originates heart beat	(d) Has no effect upon	heart beat	
274.	Neural stimulation in visceral organ in human be	eing is done by		
	(a) Sympathetic and parasympathetic nerves and	is under involuntary act	tion	
	(b) Sympathetic nerves and is under voluntary ac	ction		
	(c) Sympathetic and parasympathetic nerves and	is under voluntary actio	on	
	(d) Parasympathetic nerves and is under voluntar	ry action		
275.	Preganglionic fibre is long in			
	(a) Sympathetic (b) Parasympathetic	(c) Equal in both	(d) None of above	
276.	Conservation of energy takes place by			
	(a) Sympathetic (b) Parasympathetic	(c) Reflex action	(d) All of above	
277.	Identify the chemical which is antagonistic to ad	renaline in relation to he	eart beat	
	(a) Serotonin (b) Melatonin	(c) Inhibin	(d) Acetylcholine	
278.	Contraction of blader is regulated by		-	
	(a) Parasympathetic system	(b)Sympathetic system	1	
	(c)Spinal cord	(d) Medullary nerve ce		
1				

279.	Axons of preganglionic regions of the spinal co	c neurons in the human syn ord	mpathetic nervous system	n emerge from which		
	(a) Cranial and sacral	(b) Thoracic and lumber	(c) Cranial and thoracio	c (d) Lumber and sacral		
280.	What will happen if the	e heart is perfused by acety	l choline			
	(a) Heart beat stops con	mpletely	(b) Acceleration of hea	rt beat occurs		
	(c) Heart beat becomes	serratic	(d) Pace setter is destro	yed		
281.	81. What should be administered to a person who complains of sinking heart and has a dangerous low blood pressure					
	(a) Adrenaline	(b) Insulin	(c) Glucagon	(d) Acetylcholine		
Adv	ance Level					
	282. Sympathetic nerves in mammals arise from					
	(a) Sacral region		(b) Cervical region			
	(c) Thoraco-lumbar reg	gion	(d) 3rd, 7th, 9th and 10	th cranial nerves		
283.	83. Function of sympathetic system is to					
	(a) Decrease heart beat	-	(b) Increase heart beat			
	(c) Contract respiratory	y organ	(d) Secrete saliva			
284.	The sympathetic nervo	us system is other wise cal	lled			
	(a) Visceral system		(b) Mesenteric system			
	(c) Thoraco lumber sys	stem	(d) Cervico-sacral syste	em		
285.	Autonomic nervous sys	stem is				
	(a) Paired chain gangli	a (b) Brain and spinal cord	(c) Sense organs	(d) Cerebral		
hem	ispheres					
286.	Parasympathetic nervo	us system increases the act	tivity of			
	(a) Gut, iris and urinar	y bladder	(b) Heart, adrenal and s	sweat gland		
	(c) Heart, pancreas and	l lachrymal gland	(d) Lachrymal gland an	id sweat gland		
287.	Spot out the parasympa	athetic effect				
	(a) Increasing blood pr	essure	(b) Dialating pupil			
	(c) Secretion of digesti	ve juice	(d) Increasing cardiac of	output		
288.	Parasympathetic nerve	s increase the mobility in				
	(a) Small intestine	(b) Heart	(c) Brain	(d) None of the above		
289.	Preganglionic sympath	etic fibres are				
	(a) Adrenergic	(b) Cholinergic	(c) Synergic	(d) Hypergonic		
290.	Cholinergic neurons se	crete at their nerve termination	al			
	(a) Acetyl CoA	(b) Acetylcholine	(c) Adrenaline	(d) Prostaglandin		

291.	Damage of sympathetic	c trunk of one side of the b	oody results in			
	(a) Turner's syndrome	(b) Horner's syndrome	(c) Cushing syndrome	(d) Simmond's disease		
292.	On stimulation, sympat	hetic nervous system				
	(a) Increases sweat sect	retion	(b) Increases tear secre	tion		
	(c) Decreases saliva		(d) All of these			
293.	3. Sympathetic fibres of the autonomic nervous system					
	(a) Stimulate the function	on of a visceral organ by	secreting epinephrine			
	(b) Inhibit the function	of a visceral organ by sec	reting epinephrine			
	(c) Stimulate the functi	on of a visceral organ by	secreting acetylcholine			
	(d) Inhibit the function	of a visceral organ by sec	reting acetylcholine			
294.	Which of the following	s is not a neurotransmitter				
	(a) Y-aminobutyric acid	d (b) 5'-hydroxy tryptamir	ne (c)Acetylcholine	(d) Melatonin		
295.	Which of the following	s is a neuro transmitter				
	(a) Melatonin	(b) Thymosin	(c) Y-amino butyric aci	d (d)Interleukin I		
296.	Parasympathetic nervo	us system also termed as				
	(a) Visceral	(b) Thoraco-lumber	(c) Cranio-sacral	(d) Meseuteric		
297.	Autonomous nervous s	ystem regulates all except				
	(a) Blood circulation	(b) Respiration				
	(c) Excretion	(d) Learning and memory	У			
298.	Sympathetic nervous sy	ystem				
	(a) Promotes glycogen	formation	(b)Promotes sugar relea	ase		
	(c) Contract gall bladde	er	(d)Dilates arferies			
299.	Post ganglionic parasyn	mpathetic fibers are coline	ergic and thus secrete			
	(a) Noradrenaline	(b) Acetylcholine	(c) Thyroxine	(d) Insulin		
300.	Each sympathetic chair	n consists of				
	(a) 19 ganglia	(b) 21 ganglia	(c) 20 ganglia	(d) 22 ganglia		
301.	Collateral ganglia are p	present in				
	(a) Sympathetic nervou	is system	(b) Parasympathetic			
	(c) Both (a) and (b)		(d) None of the above			

PHYSIOLOGY OF NERVOUS SYSTEM

Basic Level

- **302.** The rate of conduction of impulses in motion nerve of a mammal is (b) 10 *m/sec*
 - (a) 4 *m/sec*

(c) 50 *m/sec*

303.	Resting potential of the membrane is				
	(a) -60 to -70 mV (b) -100 to -10 mV	(c) 50 to 100 mV (d) -20 to $-30 mV$			
304.	When an impulse passes, the membrane is depole	arized and the charge of the cells is			
	(a) Outside positive and inside negative	(b) Inside positive and outside negative			
	(c) Both sides have zero potential	(d) Both sides are electronegative			
305.	The potential difference in the membrane which	is responsible for the conduction of an impulse is			
	brought about by a change in the membrane				
	(a) Permeability (b) Structure	(c) Anions (d) Concentration			
306.	Conduction of an impulse along the axon is asso	ciated with the			
	(a) Resting potential	(b) <i>Cl</i> ⁻ concentration			
	(c) Strength of an impulse	(d) Action potential			
307.	In a resting nerve there is a mechanism known as	s sodium pump which results in			
	(a) Na^+ being pumped out	(b) Na^+ being pumped in			
	(c) Exchange of Na^+ and K^+	(d) Na^+ being pumped into the cell			
308.	During the transmission of nerve impulse, which	of the following takes place			
	(a) Flux of Na^+ inwards and K^+ outwards	(b) Flux of K^+ inwards and Na^+ outwards			
	(c) Flux of K^+ inwards and Na^+ inwards	(d) Flux of K^+ outwards and Na^+ outwards			
309.	Na^+ concentration is about 10X higher 'outside'	the cell then inside when the neuron is in			
	(a) Resting phase	(b) A state of constant impulse transmission			
	(c) Refractory phase immediately after transmitti	ng nerve impulse (d) Polarised state			
310.	Transport of Na^+ and K^+ across the neuronal mer	nbrane after depolarisation to restore potential			
	difference is facilitated by				
	difference is identitated by				
	(a) Passive diffusion	(b) ATP directed Na^+ and K^+ pump			
	·	(b) ATP directed <i>Na</i>⁺ and <i>K</i>⁺ pump(d) Osmosis			
311.	(a) Passive diffusion(c) Facilitated diffusionIdentify the correct statement	(d) Osmosis			
311.	(a) Passive diffusion(c) Facilitated diffusionIdentify the correct statement(a) The period during which a nerve does not rest	(d) Osmosis pond to stimuli is called critical period			
311.	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of 	(d) Osmosis pond to stimuli is called critical period of K^+			
311.	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dependent 	(d) Osmosis pond to stimuli is called critical period of K^+			
	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dep (d) Na⁺ acts is a chelator 	(d) Osmosis pond to stimuli is called critical period of K^+			
	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dep (d) Na⁺ acts is a chelator Identify the correctly matched pair 	(d) Osmosis pond to stimuli is called critical period of K^+ polarisation			
	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not rest (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dep (d) Na⁺ acts is a chelator Identify the correctly matched pair (a) Spike phase of action potential – 2 <i>m sec</i> 	 (d) Osmosis pond to stimuli is called critical period of K⁺ olarisation (b) Control of reflex action – hippocampal lobe 			
312.	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dep (d) Na⁺ acts is a chelator Identify the correctly matched pair (a) Spike phase of action potential – 2 <i>m sec</i> (c) Non-reflexive action – swallowing of food 	(d) Osmosis pond to stimuli is called critical period of K^+ polarisation			
312. cond	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dep (d) Na⁺ acts is a chelator Identify the correctly matched pair (a) Spike phase of action potential – 2 <i>m sec</i> (c) Non-reflexive action – swallowing of food 	 (d) Osmosis pond to stimuli is called critical period of <i>K</i>⁺ olarisation (b) Control of reflex action – hippocampal lobe (d) Non-myelinated fibers – saltatoric 			
312. cond	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not rest (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dept (d) Na⁺ acts is a chelator Identify the correctly matched pair (a) Spike phase of action potential – 2 <i>m sec</i> (c) Non-reflexive action – swallowing of food b) Depolarization of a stimulated nerve is maintained 	 (d) Osmosis pond to stimuli is called critical period of <i>K</i>⁺ olarisation (b) Control of reflex action – hippocampal lobe (d) Non-myelinated fibers – saltatoric 			
312. cond 313.	(a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not res (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na^+ increases during dep (d) Na^+ acts is a chelator Identify the correctly matched pair (a) Spike phase of action potential – 2 <i>m sec</i> (c) Non-reflexive action – swallowing of food luction Depolarization of a stimulated nerve is maintained (a) Ca^{++} (b) Cl^-	(d) Osmosis pond to stimuli is called critical period of K^+ olarisation (b) Control of reflex action – hippocampal lobe (d) Non-myelinated fibers – saltatoric ed by (c) Mg^{++} (d) K^+			
312. cond 313.	 (a) Passive diffusion (c) Facilitated diffusion Identify the correct statement (a) The period during which a nerve does not rest (b) Electrogenesis in nerve cells is due to influx of (c) The permeability of Na⁺ increases during dept (d) Na⁺ acts is a chelator Identify the correctly matched pair (a) Spike phase of action potential – 2 <i>m sec</i> (c) Non-reflexive action – swallowing of food b) Depolarization of a stimulated nerve is maintained 	(d) Osmosis pond to stimuli is called critical period of K^+ olarisation (b) Control of reflex action – hippocampal lobe (d) Non-myelinated fibers – saltatoric ed by (c) Mg^{++} (d) K^+			

	(c) Na^+ inside the cell	will increase	(d) Na^+ and K^+ will inc	crease outside the cell			
315.	Preparation of the type	of stimulus depends on th	ne				
	(a) Strength of the nerv	ve impulse	(b) Specificity of connection to receptor organs				
	(c) Rate of the nerve impulse (d) Ionic change moving in and out of the ner		ng in and out of the nerve				
316.	Which set of ions are r	equired during conduction	of the nerve impulse				
	(a) Na and Ca	(b) <i>Ca</i> and <i>Mg</i>	(c) Na and K	(d) Na and Mg			
317.	The action potential of a nerve cell is						
	(a) 45 <i>mV</i>	(b) 55 <i>mV</i>	(c) 80 <i>mV</i>	(d) 75 <i>mV</i>			
318.	8. The conduction of nerve impulse is a						
	(a) Biochemical pheno	menon	(b) Electrochemical ph	enomenon			
	(c) Physical phenomenon (d) Bio-physiological phenomenon						
319.	9. The potential difference between outside and inside of a nerve before excitation is known as						
	(a) Resting potential	(b) Action potential	(c) Spike potential	(d) Reaction potential			
320.	The dendrite carries in	pulses					
	(a) Towards the cyton (b) Away from cyto						
	(c) Across the body		(d) From one neuron to another				
321.	During conduction of r	nerve impulse					
	(a) Na^+ moves into axe	plasm	(b) Na^+ moves out of a	xoplasm			
	(c) K^+ moves into axop	lasm	(d) Ca^{++} moves into ax	oplasm			
322.	Nerve impulse initiates	with the movements of					
	(a) <i>K</i> ⁺	(b) <i>Mg</i> ⁺	(c) <i>Ca</i> ⁺	(d) <i>Na</i> ⁺			
323.	Nerve impulse travels	by steps					
	(a) Chemical in nature		(b) Chemical and electric in nature				
	(c) Physical in nature		(d) None of the above				
324.	Neuron becomes an ele	ectrically charged cell by t	he diffusion of				
	(a) <i>K</i>	(b) <i>Na</i>	(c) <i>P</i>	(d) <i>Ca</i>			
325.	The energy required du	ring transmission of impu	llse is provided by				
	(a) Brain	(b) Nerve fibre	(c) Liver	(d) Stimulating agent			
326.	Axon part of the neuro	n is highly modified for w	hich of the following fu	nction			
	(a) Reception of stimul		(b) Conduction for neu				
	(c) Reception of intern		(d) Conduction of impu	ulse away from neurons			
			-				

327. During transmission of nerve impulse the potential inside membrane has the following type of charge

	(a) First positive, then negative and back positive						
	(b) First negative, then positive and back negative						
	(c) First positive then negative and remain negative						
	(d)First negative then positive and remain positive						
328.	The mineral necessary for nervous conduction is						
	(a) Iron (b) Sodium (c) Phosphorus (d) Magnesium						
329.	29. Consider the following statements						
	Assertion (<i>A</i>): Transmission of the nerve impulse across a synapse is accomplished by neurotransmitters						
	Reason (<i>R</i>): Transmission of the nerve impulse across a synapse usually required						
	neurotransmitters because there is a small space, <i>i.e.</i> , synaptic cleft that separates one neuron from						
	another						
	Now select your answer from the answer given below						
	(a) Both <i>A</i> and <i>R</i> are true and <i>R</i> is the correct explanation of <i>A</i>						
	(b) Both A and R are true but R is not the correct explanation of A						
	(c) A is true but R is false						
	(d) <i>R</i> is true but <i>A</i> is false						
Adva	ance Level						
330.	Sodium-potassium pump is						
	(a) A hormone (b) An enzyme (c) A protein carrier (d) An organelle						
331.	For visual sense, the nerve impulse generated by						
	(a) Depolarisation (b) Repolarisation						
	(c) Hyper polarisation (d) Depolarisation and repolarisation						
332.	Match the following						
	(A) Reflex action (1) Reflex action						
	(B)Multipolar (2) Neuron						
	(C) Na^+ and K^+ ions (3) Parasympathetic nervous system						
	(D)Increases secretion of saliva and digestive juices (4)Involuntary action						
	(E) Knee jerk (5) Active transport						
	The correct pairing sequence is						
	(a) $4, 2, 5, 3, 1$ (b) $1, 4, 3, 5, 2$ (c) $2, 4, 3, 5, 1$ (d) $2, 3, 5, 1, 4$						
333.							
	(a) Medullated nerve (b) Non-medullated nerve(c) Cranial nerve (d) Spinal nerve						
334.							
	(a) Negatively charged (b) Positively charged						
	(c) Depolarised (d) Filled with acetylcholine						
335.	On nerve fibres to prevent leakage of an impulse layer ofis found						

		(b) Neurilemma	(c) Axons	(d) Myelin sheath	
336.	Saltatory conduction oc			C*1	
	(a) Myelinated nerve fit		(b) Non-myelinated net		
	-	l non-myelin nerve fibres	(d) Skeletal muscle fib	res	
337.	Saltatory conduction is				
	(a) Invertebrates	(b) Lower vertebrates	(c) All vertebrates	(d) None of these	
338.		equired to stimulate a nerv			
	(a) Rheobase or thresho	ld current	(b) Spike		
	(c) Action potential		(d) None of these		
339.		erve impulse is reversed t			
	(a) Axo-axentic	(b) Axo-dendrite	(c) Axo-axendendrite	(d) None of these	
340.	Hyperpolarization of a d	dendrite is due to			
	(a) Excitatory synapse		(b) Presynaptic inhibition		
	(c) Post-synaptic inhibit		(d) Prolonged refractory time		
341.	-	across the resting axonal		0 (1)	
	(a) $+ 60 mv$ The physical size limits	(b) $+ 90 mv$	(c) - 60 mv	(d) 0	
342.		rtance for the transmission	_	-	
	(a) Charles Sherrington		(c) Tothlin	(d) Ranvier	
343.		siochemical phenomenon		(d) Donvin	
	(a) Gothlin Propagation of action re	(b) Charles Sherrington		(d) Ranvir	
344.		otential is very fast in nerv			
	(a) Large fibre diameter		(b) Small fibre diameter		
	(c) Covering of myelin	mpulse can be recorded w	(d) (a) and (c) both are	conect	
345.	(a) Oscilloscope	(b) Microscope	(c) Spirometer	(d) Microdensitometer	
246		otential from node to nod			
340.	(a) All or none principle			(d) Saltatory conduction	
247		ength that can excite a tiss		(u) Saltatory conduction	
34/•	(a) Chronaxia	(b) Rheobase	(c) Saltatory	(d) Reflex arch	
248		in myelinated fibre of a m	•		
540.	(a) Synapses are less fre	•	(b) Action potential is		
		ups from node to node	-		
240		hal ends connected with d	-		
349.	impulse will		charites of four afferen		
	(a) Become weak due to	o distribution into four			
	. ,	r neurons with equal stren	gth		
	(c) Pass onto one neuro	_	~		
		-			

		use the movement of imp	ulse is from dendrite to	axon	
350.	White matter is compo				
	(a) Nerve cell with blood vessels(c) Ependymal cells		(b) Myelinated nerve f		
			(d) Non myelinated ne	rve fiber	
351.	Myelin sheath is the co	overing of			
	(a) Muscle cell	(b) Axon	(c) Blood vessels	(d) Osteocytes	
352.	Saltatory conduction is	superior to uninterrupted	conduction because of		
	(a) Less energy require	ed (b)More speed	(c) Less Na^+ and K^+ pu	amp (d) All the above	
353.	3. Anaesthetics reduce pain by blocking nerve conduction due to				
	(a) Blocking neurotran	smitter receptor	(b) Blocking Na^+ chan	nels	
	(c) Blocking K^+ channel	els	(d) All the above		
354.	Conus medullaris is als	so known as			
	(a) <i>V</i> ₅	(b) <i>V</i> ₄	(c) V_2	(d) V_3	
355.	The chemical causing t	he transmission of nerve i	mpulse across synapses	is	
	(a) Acetylcholine	(b) Cholinesterase	(c) Choline	(d) Acetic acid	
356.	Which one of the follow	wing statement in regard t	o nerve activity is true		
	(a) The synaptic cleft does not prevent direct propagation of action potential from presynaptic				
neur	on to post synaptic cell				
	(b) Information across	the synaptic cleft is transm	nitted by means of a che	emical neurotransmitter in	
smal	l vescile				
		arotransmitter with receptor	or site changes membrar	ne potential without	
chan	ging membrane potentia	-			
		atory impulse to muscles a	re inhibited leading to l	ock jaw	
357.	Junction of two nerve f	fibres is called			
	(a) Synapse	(b) Junction	(c) Connection	(d) None of these	
358.	The enzyme required for	or the conduction of nerve	e impulses across synaps	se is	
	(a) Peroxidase		(b) Choline acetylase		
	(c) Ascorbic acid oxida	ase	(d) Succinic dehydroge	enase	
359.	Acetylcholine is				
	(a) Chemical messenge	er	(b) Chemical transmitt	er across the synapse	
	(c) Antistress hormone		(d) Digestive enzyme		
360.	Synaptic fatigue is due	to			
	(a) Exhaustion of neuro	otransmitter	(b) Release of more ac	etylcholine	
	(c) Release of more add	renaline	(d) None of these		
361.	After the transmission	n of one impulse from t	he synapse, it cannot	transmit another impulse	
	because one of the follo	owing chemical is active t	here		
	(a) Choline	(b) Acetic acid	(c) Acetylcholine	(d) Acetycholinesterase	

362.	The neurotransmitter v muscle is	which communicates betw	een two neurons or betw	een a neuron and a		
	(a) Acetylcholine	(b) Globulin	(c) Rennin	(d) ATP		
363.	Acetylcholine is releas	sed at				
	(a) Synapse	(b) Axon	(c) Dendron	(d) Cyton		
364.	5'-Hydroxytrypt amine	e is a				
	(a) Hormone		(b) Cardiac stimulant			
	(c) Chemical transmitt	er	(d) Cardiac inhibitor			
365.	Chemical transmission	of nerve impulses from o	one neuron to another is b	ру		
	(a) Adrenaline	(b) Acetylcholine	(c) Dopamine	(d) All of these		
366.	Neurons at the synapse	e show				
	(a) No continuity	(b) Partial continuity	(c) Complete continuit	y (d) Chemical continuity		
367.	Chemical synapse are	present in				
	(a) Cray fish	(b) Pheretima	(c) Eutypheus	(d) Mammalian brain		
368.	Identify the chemical w	which acts as hormone as	well as neuro-transmitter			
	(a) Y-aminobutyric aci	d (b) Acetylcholine	(c) 5'-hydroxy tryptam	nine (d)Adrenaline		
	LOCAT	TION AND STRUCT	URE OF NERVE	<u>CELL</u>		
Basi	c Level					
369.	Bipolar nerve cells and	d ganglion cells are found	in the			
	(a) Sclerotea	(b) Cochlea	(c) Retina	(d) Cristae		
370.	Which of the following	g has non-myelinated nerv	ve fibres			
	(a) Optic nerves	(b) Cranial nerves	(c) Spinal nerves	(d) Autonomic nerves		
371.	The Nissle's granules	of nerve cell are made up	of			
	(a) Ribosome/RER	(b) SER	(c) DNA	(d) Golgi bodies		
372.	When degeneration of	nerve cells occur which w	vill be affected first			
	(a) Dendrites	(b) Motor end plates	(c) Nissl granules	(d) Schwann cells		
373.	Nissl's granules are pro-	esent in theand are ma	de up ofrespectivel	ly		
	(a) Muscle cells and de	eoxyribo nucleic acid	(b) Mast cells and RNA	A		
	(c) Osteocytes and DN	JA	(d) Neuron and RNA			
374.	Bundles of nerve fibre	es are enclosed in a sheath	called			
	(a) Fascicle	(b) Endoneurium	(c) Epineurium	(d) Perineurium		
375.	The efferent process of	f neuron is known as				
	(a) Axon	(b) Dendrites	(c) Cyton	(d) Neurofibrilae		
376.	The chief functional un	nits of the nervous system	are			
1		•				
	(a) Neuroglia	(b) Axon	(c) Neurons	(d) Dendrites		

377.	The nerves leading to	o the central nervous system	n are called		
	(a) Efferent	(b) Afferent	(c) Motor	(d) None of these	
378.	Unipolar nerve cells	can be traced in			
	(a) Spinal ganglion c	cells	(b)Retina cells		
	(c) Motor neurons of	f spinal cord	(d)Vertebrate emb	oryo	
379.	A polar nerve cells a	re found in			
	(a) Brain	(b) Retina	(c) Vertebrate's en	mbryo (d)Cochlea	
380.	Axoplasm is found in				
	(a) Out of nerve fibro		(b) Inside nerve fi		
		eus of smooth muscle fibre	(d) Around the nu		
381.		ing animal has a false nervo	-		
	(a) Hydra	(b) Amoeba	(c) Cockroach	(d) Earthworm	
Adv	ance Level				
382.	White matter is comp	posed of			
	(a) Ependyma		(b) Nerve cells		
	(c) Medullated Nerv	e fibres	(d) None of these		
383.	Afferent nerve fibres	s carry impulses from			
	(a) Central nervous s	system to muscles	(b) Central nervou	is system to receptors	
	(c) Effector organs to	o central nervous system	(d) Receptors to central nervous system		
384.	Nodes of Ranvier are	e			
	(a) The point in which	ch the axon is exposed			
	(b) The contact point	t found over the non myelir	nated nerve fibres		
	(c) Area in which the	e axons swell up			
	(d) Area where the n	eurilemma touches the axo	n		
385.	The medullary sheat	h of the nerve fibre is intern	rupted at intervals by		
	(a) Septa	(b) Node of Ranvier	(c) Synapses	(d) Glia	
386.	Largest cell in body	is			
	(a) Lymph	(b) Osteoctyte	(c) Neuron	(d) Chromatophore	
387.	Which one of the fol	lowing is essential for the f	formation of myelin	sheath	
	(a) Zinc	(b) Sodium	(c) Iron	(d) Phosphorus	
388.	White matter consist	cof			
	(a) Nerve fibres with	n myelinated sheath	(b) Nerve fibres w	vithout myelinated sheath	
	(c) Scattered areolar	tissue	(d) Nerve fibres w	vith blood vessels	
389.	Some cell in our bod	ly can be over a feet long. T	They are		
	(a) A muscle cell	(b) The bone cell	(c) Nerve cell	(d) Gland cell	
390.	Nerve impulse is				
	-				

(a) Carried by afferent and efferect fibres (b)Is not carried by any afferent or efferent fibres

(c) Is carried away by afferent fibres and brought about by efferent fibres

(d) Is brought by afferent fibres and carried by efferent fibres

MISCELLANEOUS PROBLEMS

Basi	Basic Level					
391.	Cutaneous stimulus is	received by				
	(a) Axodendrite-cholin	ergic	(b) Dendrodendronic-adrenergic			
	(c) Motor nerve		(d) Sensory nerve			
392.	Corpus callosum is see	en in				
	(a) Brain	(b) Ovary	(c) Pituitary	(d) Corpus luteum		
393.	Which one of these pro	of these processes is found in animals only				
	(a) Nervous system	(b) Hormonal control	(c) Respiration	(d) Diffusion		
394.	. Brain depends on blood for the supply of					
	(a) Oxygen and ATP (b) Oxygen and electrolytes					
	(c)Oxygen and glucose (d) ATP and glucose					
395.	5. If the mental age of a 6 years old child is 4, his mental age when he will be 15 years old should be					
	(a) 8	(b) 9	(c) 10	(d) 12		
396.	Power of regeneration	is lowest in				
	(a) Brain cell	(b) Liver cell	(c) Bone cell	(d) Muscle cell		
397.	Which one of the follo	wing organs in the human	body is most affected d	ue to shortage of oxygen		
	(a) Kidney	(b) Brain	(c) Intestine	(d) Skin		
398.	Response to contact is	known as				
	(a) Thigmotaxis	(b) Chemotaxis	(c) Galvanotaxis	(d) Thermotaxis		
399.	Which one of the follo	wing is not essentially a p	art of nervous system			
	(a) Cyton	(b) Axon	(c) Myelinated	(d) Intermedin		
400.	What is not true for the	e brain of humans				
	(a) Absence of pineal g	gland	(b) Corpora quadrigem	ina present		
	(c) Largest cerebral he	misphere	(d) Presence of sulci an	nd gyri		
401.	Cell bodies of motor an	nd interneurons are presen	t in			
	(a) White matter of bra	iin	(b)Gray matter of brain	1		
	(c) White matter of spi	nal cord	(d) White matter of bra	in and spinal cord		
1						

402.	Earthworm and cockroa	ach have which of the foll	owing thing common			
	(a) Ventral nerve chord	l (b) Closed blood vascula	r system			
	(c) Nephridia	(d) Cocoon				
403.	. In frog, the nerve impulses for hearing start from					
	(a) Fenestra ovalis	(b) Columella auris				
	(c) Lagena basillaris (d) Membranous labyrinth					
404.	Which cell stops dividi	ng after birth				
	(a) Neuron	(b) Glial	(c) Epithelium	(d) Liver		
405.	The neuron terminates	in the muscles, the termin	al part is known as			
	(a) Button	(b) Synapse	(c) End plate	(d) Terminal plate		
406.	The example of homeo	stasis is				
	(a) Response to dim lig	the (b)Learning and mem	ory (c)Drinking water	(d) All of the above		
407.	The stomach pain impu	ilses are received by recep	tors known as			
	(a) Proprioreceptors	(b) Exteroreceptors	(c) Free nerve ends	(d) Chemoreceptors		
408.	Where the Nissl's gran	ules are found and what is	their function			
	(a) In nerve cells and h	elps in excretion and nutri	tion			
	(b)In blood and helps in	n excretion and nutrition				
	(c) In sarcoplasm and h	elps in contraction	(d) In mucous cells and	l secret mucous		
409.	Which of the following	g is the immediate covering	g of a nerve fibre			
	(a) Sarcoplasm	(b) Perineurium	(c) Epineurium	(d) Endoneurium		
	ince Level					
410.	The venom of cobra aff					
		(b) Circulatory system	-			
411.		netic and the central nervo		_		
	(a) Neural cell	(b) Notochordal cells	(c) Neural plate cells	(d) Neural crest cells		
412.	Parkinsonism is related					
	(a) Brain	(b) Spinal cord	(c) Cranial nerves	(d) Spinal nerves		
413.		cation in human takes plac	e by			
	(a) Cytoplasm	(b) Nerves only				
	(c) Hormones only	(d) Nerves and hormones	5			
414.	The pneumotaxis centre	(b) Lung	(c) Medulla	(d) Liver		
	(a) Heart	() Lung				

415.	Secretion of which of t	he following is under neu	-			
	(a) Pineal	(b) Adrenal cortex	(c) Anterior pituitary	(d) Posterior pituitary		
416.	Intelligence quotient (I	.Q.) is the ratio of mental	age to			
	(a) Chronological age		(b) Chronological age	multiplied by 10		
	(c) Chronological age	multiplied by 100	(d) Chronological age	divided by 100		
417.	You are riding a bicycl maintenance of balance	e and take a sudden turn a e is	round a sharp corner. The	he organs involved in the		
	(a) Medulla oblongata	(b) Semicircular canals	(c) Cerebrum	(d) Optic chiasma		
418.	What are the largest ma	ammalian fibres called as				
	(a) A fibres	(b) B fibres	(c) C fibres	(d) All above		
419.	Chromaffin cells are no	eurons of autonomic nervo	ous system found in			
	(a) Gonads		(b) Lungs			
	(c) Medulla of adrenal	gland	(d) Heart			
420.	Paralysis of both lower	limbs due to spinal cord	damage and not the uppe	er limbs is called		
	(a) Hemiplegia	(b) Quadriplegia	(c) Posterioplegia	(d) Paraplegia		
421.	In Parkinson's disease,	there is degeneration of a	neurotransmitter named	1		
	(a) Acetylcholine	(b) Adrenaline	(c) Dopamine	(d) GABA		
422.	Neurocyton is located					
	(a) Cortex of the brain	(b) Outside the brain	(c) Outside the spinal of	cord (d)White matter		
423.	The glial cells that form	n the blood-brain barrier,	by lining brain capillarie	es are the		
	(a) Schwann cells	(b) Astrocytes	(c) Oligodendrioglial c	cells (d)Ranvier cells		
424.	In earthworm neurons	are				
	(a) Motor	(b) Sensory	(c) Both above	(d) Absent		
425.	White matter is compo	sed of				
	(a) Nerve fibres	(b) Nerve cells	(c) Ependyma	(d) None of these		
426.	According to the accept target organs, then	ted concept of hormone a	ction, if receptor molecu	les are removed from		
	(a) The target organ wi	ll continue to respond to t	he hormone but will req	uire higher concentration		
	(b) The target organ wi	ll continue to respond to t	he hormone but in the op	pposite way		
	(c) The target organ wi	ll continue to respond to t	he hormone without any	difference		
	(d) The target organs w	vill not respond to the horn	none			
427.	Purkinje cells are found	d in				
	(a) Cerebellar cortex	(b) Mammalian heart	(c) Voluntary cells	(d) Semicircular canal		

428.	Who was first to record EEG												
	(a) Pavlov	(b) Berger	(c) Marshall Hall	(d) Ranvier									
429.	9. Which of the following is recorded in EEG during deep sleep												
	(a) Alpha waves	(b) Beta waves	(c) Theta waves	(d) Delta waves									
430.	130. Alpha waves are most prominent during												
	(a) Tension	(b) Sleep	(c) Rest	(d) Happiness									

ANSWER

ASSIGNMENT (BASIC AND ADVANCE LEVEL)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	b	d	C 24	a 25	c	d	a	a	b	a	b	b	c 24	a 25	a	c 27	C 20	C 20	c 10
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	d	a	с	b	b	a	d	c	a	c	c	c	d	d	С	b	a	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	с	d	с	d	а	b	d	a	d	с	d	d	с	а	d	с	a	с	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	с	a	d	b	а	b	с	с	b	с	с	b	с	с	a	d	b	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	с	с	с	d	d	b	d	d	с	а	d	с	с	d	с	b	с	с	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
С	b	с	с	с	d	а	d	b	d	b	d	а	с	d	b	a	d	с	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	с	а	b	с	с	с	с	с	d	а	c	с	а	d	b	а	a	b	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	а	с	с	b	d	с	d	b	d	b	b	а	d	d	а	с	с	а	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
с	а	а	с	с	d	а	а	а	с	а	d	b	а	с	а	с	а	d	с
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	b	а	с	b	с	а	b	a	с	с	с	а	b	d	d	b	с	а	с
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
b	b	d	с	с	с	с	а	d	b	b	а	b	а	b	b	b	а	а	с
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
а	d	b	с	с	b	d	с	d	b	d	с	b	d	d	а	с	с	b	b
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
b	d	а	b	b	с	с	b	b	с	d	а	а	а	b	с	d	b	с	с
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
с	a	с	a	d	с	с	b	b	с	d	с	b	а	b	b	d	a	b	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a	с	b	с	а	а	с	a	b	b	b	d	b	d	с	с	d	b	b	b

301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
а	d	а	b	а	d	с	а	d	b	с	а	d	а	d	с	а	b	а	а
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
а	d	b	b	b	d	b	b	а	с	d	а	а	b	d	а	с	а	b	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
с	b	b	d	а	d	b	с	b	b	b	d	d	а	а	b	а	b	b	b
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
d	а	а	с	d	d	d	d	с	d	а	с	d	d	а	с	b	а	с	b
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
а	с	d	a,d	b	с	b	а	с	d	d	а	а	с	с	а	b	а	d	а
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
b	а	с	а	с	с	с	а	d	с	d	а	d	с	d	с	b	а	с	с
421	422	423	424	425	426	427	428	429	430			•				•			
с	а	b	с	а	d	а	b	d	с										
