SEMICONDUCTOR

Conductivity and resistivity

• Metals	P (π − m) 10 ⁻² -10 ⁻⁶	ρ(π⁻¹m⁻¹) 10²−10 ⁸
semiconducto	ors 10 ⁻⁵ -10 ⁻⁶	10 ⁵ - 10 ⁻⁶
Insulators	10 ¹¹ –10 ¹⁹	10 ⁻¹¹ - 10 ⁻¹⁹

Charge concentration and current

 $\begin{array}{ll} & \left[\begin{array}{c} \eta_n = \eta_e \right] & \text{In case of intrinsic semiconductors} \\ & \text{P type} & \eta_n >> \eta_e \\ & \text{i} = i_e + i_h \\ & & \eta_e & \eta_n = \eta_i^2 \\ & \text{Number of electrons reaching from valence bond to conduction bond.} \\ & & \eta = A T^{3/2} e^{-\text{Eg}/2kT} \text{ (A is positive constant)} \\ & & \sigma = e \left(\eta_e m_e + \eta_n \mu_n \right) \\ & & \text{for } \rho \text{ hype} & \eta_n = \text{Na} >> \eta_e. \\ & & \text{for } \eta - \text{type} & \eta_e = \text{Na} >> \eta_n \end{array}$

• Dynamic Resistance of P-N junction in forward biasing = $\frac{\Delta V}{\Delta I}$

Transistor

• CB amplifier

(i) ac current gain
$$\alpha_{c} = \frac{\text{SamII change in collector current } (\Delta i_{c})}{\text{SamII change in collector current } (\Delta i_{e})}$$

(ii) dc current gain $\alpha_{dc} = \frac{\text{Collector current } (i_{c})}{\text{Emitter current } (i_{e})}$ value of α_{dc} lies
between 0.95 to 0.99
(iii) Voltage gain $A_{V} = \frac{\text{Change in output voltage}}{(\Delta V_{0})}$
 $\Rightarrow A_{V} = a_{ac} \times \text{Resistance gain}$
(iv) Power gain = $\frac{\text{Change in output power } (\Delta P_{0})}{(\text{Change in input voltage}} (\Delta P_{C})}$
 $\Rightarrow \text{Power gain = } a_{ac}^{2} \times \text{Resistance gain}$
(v) Phase difference (between output and input) : same phase
(vi) Application : For High frequency

CE Amplifier

(i) ac current gain
$$\beta_{ac} = \left(\frac{\Delta i_{c}}{\Delta i_{b}}\right) V_{ce} = constant$$

(ii) dc current gain $\beta_{dc} = \frac{i_c}{i_b}$

(iii) Voltage gain : $A_v = \frac{\Delta V_0}{\Delta V_i} = \beta_{ac} \times \text{Resistance gain}$

(iv) Power gain = $\frac{\Delta P_0}{\Delta P_i}$ = $\beta^2 ac \times Resistance$

(v) Transconductance $(g_{_{\rm m}})$: The ratio of the change in collector in collector current to the change in emitter base voltage is called trans

conductance i.e. $g_m = \frac{\Delta i_c}{\Delta V_{EB}}$. Also $g_m = \frac{A_V}{R_L} R_L$ = Load resistance.

• Relation between α and β : $\beta = \frac{\alpha}{1-\alpha}$ or $\alpha = \frac{\beta}{1+\beta}$