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Figure 1 Dielectric function E ( W )  or E ( W ,  0) of a free-electron gas versus frequencyin units of the 
plasma frequency u p .  Electromagnetic waves propagate without damping only when E is positive 
and real. Electromagnetic waves are totally reflected from the medium when E is negative. 



DIELECTRIC FUNCTION OF THE ELECTRON GAS 

The dielectric function E(w,K)  of the electron gas, with its strong depen- 
dence on frequency and wavevector, has significant consequences for the 
physical properties of solids. In one limit, E ( w , O )  describes the collective exci- 
tations of the Fermi sea-the volume and surface plasmons. In another limit, 
E(O,K) describes the electrostatic screening of the electron-electron, electron- 
lattice, and electron-impurity interactions in crystals. 

We will also use the dielectric function of an ionic crystal to derive the po- 
lariton spectrum. Later we discuss the properties of polarons. But first we are 
concerned with the electron gas in metals. 

Definitions of the Dielectric Function. The dielectric constant E of elec- 
trostatics is defined in terms of the electric field E and the polarization P, the 
dipole moment density: 

(CGS) D = E + 47rP = EE ; 

Thus defined, E is also known as the relative permittivity. 
The introduction of the displacement D is motivated by the usefulness of 

this vector related to the external applied charge density p,, in the same way 
as E is related to the total charge density p = p,, + pind, where pind is the 
charge density induced in the system by p,,,. 

Thus the divergence relation of the electric field is 

(CGS) 
div D = div EE = 4npe, (2) 

div E = 47rp = 4n(p,  + pied) (3) 

Parts of this chapter will be written in CGS; to obtain results in S I ,  write 
for 4 n .  

.. -- 

We need relations between the Fourier components of D, E,  p, and the 
electrostatic potential cp. For brevity we do not exhibit here the frequency de- 
pendence. Define E ( K )  such that 



then (3) becomes 

div E = div C E(K) exp(iK - r )  = 47r C p(K) exp(iK. r) , (3b) 

and (2) becomes 

div D = div Z e(K)E(K) exp(iK.r) = 4n-Z p,,(K) exp(iK-r) . (3c) 

Each of the equations must be satisfied term by term; we divide one by 
the other to obtain 

The electrostatic potential Q,,, defined by -VQ,, = D satisfies the 
Poisson equation V2~,,, = -47rp,,; and the electrostatic potential 9 defined 
by -Vq = E satisfies VZ9 = -4~rp. The Fourier components of the potentials 
must therefore satisfy 

by (3d). We use this relation in the treatment of the screened coulomb potential. 

Plasma Optics 

The long wavelength dielectric response e(w,O) or E(W) of an electron gas 
is obtained from the equation of motion of a free electron in an electric field: 

If x and E have the time dependence e-'"t, then 

- w2mx = -eE ; x = eElmw2 . ( 5 )  

The dipole moment of one electron is -ex = -e2E/mw2, and the polarization, 
defined as the dipole moment per unit volume, is 

where n is the electron concentration. 
The dielectric function at frequency w is 
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The dielectric function of the free electron gas follows from (6) and (7): 

4 m e 2  
( C G S )  E ( W )  = 1 - - ; 

m2 

The plasma frequency wp is defined by the relation 

( C G S )  w; = 4 m e 2 / m  ; 

A plasma is a medium with equal concentration of positive and negative 
charges, of which at least one charge type is mobile. In a solid the negative 
charges of the conduction electrons are balanced by an equal concentration of 
positive charge of the ion cores. We write the dielectric function ( 8 )  as 

plotted in Fig. 1. 
If the positive ion core background has a dielectric constant labeled ~ ( m )  

essentially constant up to frequencies well above wp, then ( 8 )  becomes 

E ( W )  = ~ ( m )  - 4mezlmw2 = ~ ( m ) [ l -  ?$/w2] , (11)  

where Gp is defined as 

0; = 4 m e 2 / ~ ( m ) m  . 

Notice that E = 0 at w = Zp. 

Dispersion Relation for Electromagnetic Waves 

In a nonmagnetic isotropic medium the electromagnetic wave equation is 
. . "?""...Fr.-.u;i. .,.> <, 

(SI) poaP~/ .3?  = v%'". : (13) 

We look for a solution with E cc exp(-iwt) exp(iK . r )  and D = e(w,K)E;  then 
we have the dispersion relation for electromagnetic waves: 

(CGS)  e(w,K)w2 = cZI<2 ; 

This relation tells us a great deal. Consider 

E real and > 0. For w real, K is real and a transverse electromagnetic wave 
propagates with the phase velocity C/E'". 
E real and < 0. For w real, K is imaginary and the wave is damped with a 
characteristic length I I I K I .  
E complex. For w real, K is complex and the waves are damped in space. 



. E = m. This means the system has a finite response in the absence of an ap- 
plied force; thus thc poles of E(o,K) define the frequencies of the free 
oscillations of the medlum. 
E = 0. We shall see that longitudinally polarized waves are possible only at 
the zeros of E .  

Transuene Optical Modes in a Plasma 

The dispersion relation (14) hccomes, with (11) for ~ ( w ) ,  

For o < ij, we have K2 < 0, so that K is imaginary. The solutions of the wave 
equation are of the form exp(-IKlx) in the frequency region O < w 5 G,. 
Waves incident on the medium in this frequency region do not propagate, but 
will be totally reflected. 

An electron gas is transparent when o > Gp, for here the dielectric func- 
tion is positive real. The dispersion relation in this region may be written as 

this describes transverse electromagnetic waves in a plasma (Fig. 2 ) .  
Values of the plasma frequency wp and of thc free space wavelength A, = 

2.rrc/wp for electron concentrations of interest are given below. A wave will prop- 
agate if its free space wavelength is less than A,; otherwise the wave is rcflected. 

Transparency of Metals i n  t h e  Ultraviolet. From the preceding discussion 
of the dielectric function we conclude that simple metals should reflect light in 
the visible region and be transparent to light at high frequencies. A comparison 
of calculated and observed cutoff wavelengths is given in Table 1. The reflection 
of light from a metal is entirely similar to the reflection of radio waves from the 
ionosphere, for the free electrons in thc ionosphere make the dielectric con- 
stant negative at low frequencies. Experimental restilts for InSb with n = 4 X 
10'' c m - h e  shown in Fig. 3, where the plasma frequency is near 0.09 eV. 

Longitudinal Plasma Oscillations 

The zeros or  the dielectric function determine the frequencies of the 
longitudinal modcs of oscillation. That is, the condition 

determines the longitudinal frequency w~ near K = 0. 
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Figure 2 Dispersion relation for transverse electromagnetic waves in a plasma. The group veloc- 
ity o, = do/dK is the slope of the dispersion curve. Although the dielectric function is between 
zero and one, the group velocity is less than the velocity of light in vacuum. 

Table 1 Ultraviolet transmission limits of alkali metals, in A 

A,, calculated 1550 2090 2870 3220 3620 
Ap, observed 1550 2100 3150 3400 - 

0.05 0.10 0.15 0.20 
Photon energy, eV 

Figure 3 Reflectance of indium antimonide 
with n = 4 X 10" CII-~. (After J. N. Hodgson.) 



By the geometry of a longitudinal polarization wave there is a depolarization 
field E = -47rP, mscussed below. Thus D = E + 4~rP = 0 for a longitudinal 
wave in a plasma or more generally in a crystal. In S I  units, D = eOE + P = 0. 

For an electron gas, at the zero (17) of the dielectric function (10) 

whence wL = wp. Thus there is a free longitudinal oscillation mode (Fig. 4 )  
of an electron gas at the plasma frequency described by (15) as the low- 
frequency cutoff of transverse electromagnetic waves. 

A longitudinal plasma oscillation with K = 0 is shown in Fig. 5 as a uni- 
form displacement of an electron gas in a thin metallic slab. The electron gas is 
moved as a whole with respect to the positive ion background. The displace- 
ment u of the electron gas creates an electric field E = 47rneu that acts as a 
restoring force on the gas. 

The equation of motion of a unit volume of the electron gas of concentra- 
tion n is 

(CGS) 
d2u nm- = -neE = -4m2e2u , 
dt2 

(19)  

This is the equation of motion of a simple harmonic oscillator of frequency wp, 

the plasma frequency The expression for op is identical with (9 ) ,  which arose in 
a different connection. In SI, the displacement u creates the electric field 
E = neul~,,, whence up = (ne2/eom)112. 

A plasma oscillation of small wavevector has approximately the frequency 
w,. The wavevector dependence of the dispersion relation for longitudinal 
oscillations in a Fermi gas is given by 

where u, is the electron velocity at the Fermi energy. 

Figure 4 A plasma oscillation. The arrows indicate the direction of displacement of the electrons. 
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Surface charge density 
u = -neu 

g = +neu 

Figure 5 In (a) is shown a thin slab or film of a metal. A cross section is shown in (b), with 
the positive ion cores indicated by + signs and the electron sea indicated by the gray back- 
ground. The slab is electrically neutral. In (c) the negative charge has been displaced upward 
uniformly by a small distance u, shown exaggerated in the figure. As in (d), this displacement 
establishes a surface charge density -neu on the upper surface of the slah and +neu on the 
lower surface, where n is the electron concentration. An electric field E = 4meu is produced 
inside the slah. This field tends to restore the electron sea to its equilibrium position (b). In SI 
units, E = neul~,. 

PLASMONS 

A plasma oscillation in a metal is a collective longitudinal excitation of 
the conduction electron gas. A plasmon is a quantum of a plasma oscillation; 
we may excite a plasmon by passing an electron through a thin metallic film 
(Figs. 6 and 7) or by reflecting an electron or a photon from a film. The charge 
of the electron couples with the electrostatic field fluctuations of the plasma 
oscillations. The reflected or transmitted electron wilI show an energy loss 
equal to integral multiples of the plasmon energy. 

Experimental excitation spectra for A1 and Mg are shown in Fig. 8. A 
comparison of observed and calculated values of plasmon energies is given in 
Table 2; further data are given in the reviews by Raether and by Daniels. Recall 
that Lip as defined by (12) includes the ion core effects by use of ~ ( m ) .  



I Scattered elecbon 

Figure 6 Creation of a plasmon in a metal film by inelastic scattering of an electron. The incident 
electron typically has an energy 1 to 10 keV; the plasmon energy may be of the order of 10 eV. An 
event is also shown in which two plasmons are created. 

L 1 Cathode 

-- -!-Anode 

Retarding 

Figure 7 A spectrometer with electrostatic analyzer 
for the study of plasmon excitation by electrons. (After 
J. Daniels eta].) Spherical condensor 

It  is equally possible to excite collective plasma oscillations in dielec- 
tric films; results for several dielectrics are included. The calculated plasma 
energies of Si, Ge, and InSb are based on four valence electrons per atom. 
In a dielectric the plasma oscillation is physically the same as in a metal; the 
entire valence electron gas oscillates back and forth with respect to the ion 
cores. 
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Figure 8 Energy loss spectra for electrons reflected from films of (a) aluminum and (b) nragne- 
sium, for primaty electron energies of 2020 cV The 12 loss peaks observed in A1 are made up of 
combinations of 10.3 and 15.3 eV losses, where the 10.3 eV loss is due to surface plas~nons and the 
15.3 cV loss is due to voll~me plasmo~is. The ten loss peak? obsenrcd in Mg are made up of con~bi- 
nations of 7.1 cV surface plasmons and 10.6 cV volume plasmons. Surface plasmons are the suh- 
ject of Problem 1. (After C .  J. Powell and J. R .  Swan.) 

Table 2 Volume plasmon energies, in e V  

Calculated 

hlaterid Observed 

Metals 
Li 
Na 
K 
M g 
A1 

Dielectrics 
Si 
Ge 
InSb 

ELECTROSTATIC SCREENING 

The electric field of a positive charge embedded in an electron gas falls off 
with increasing r faster than l /r,  becanse the electron gas tends to gather 
around and thus to screen the positive charge. The static screening can be de- 
scribed hy the wavevector dependence of the static dielectric function e(0,K). 
We consider the response of the electror~s to an applied external electrostatic 
field. We start with a nniform gas of electrons of charge concentration -a$ 
superirriposed on a hackground of positive charge of concentration nfi Let the 



positive charge hackground be deformed mechanically to produce a sinusoidal 
variation of positive charge density in the x  direction: 

P f  ( x )  = noe + p,,(K) sin Kx . ( 2 2 )  

The term P,,,(K) sin Kx gives rise to an electrostatic field that we call the exter- 
nal field applied to the electron gas. 

The electrostatic potential cp of a charge distribution is found from the 
Poisson cquation V Z q  = -4.rrp, by ( 3 )  with E = - V q .  For the positive 
charge we have 

q = q F a ( K )  sin Kx ; p  = p,,(K) sin Kx . ( 2 3 )  

The Poisson equation gives the relation 

The electron gas will be deformed by the combined influences of the elec- 
trostatic potential q, , , (K)  of the positive charge distrihntion and of the as yet 
unknown induced clcctrostatic potential q i n d ( K )  sin Kx of the deformation of 
the electron gas itself. The electron charge density is 

P - ( x )  = -n$ + pbd(K) sin ~x , ( 2 5 )  

where is the amplitude of the charge density variation induced in the 
electron gas. We want to find p J K )  in terms o f p , , , ( K ) .  

The amplitude of the total electrostatic potential q ( K )  = cp,,(K) + qind(K)  of 
the positive and negative charge distributions is related to the total charge density 
variation p ( K )  = p,,(K) + pind(K) by the Poisson equation. Then, as in Eq. ( 2 4 ) ,  

To go further we need another equation that relates the electron conceii- 
tration to the electrostatic potential. We develop this connection in what is 
called the Thomas-Fermi approximation. The approximation consists in assum- 
ing that a local internal chemical potential can be defined as a function of the 
electron concentration at that point. Now the total chemical potential of the 
electron gas is constant in equilibrium, independent of position. In a region 
where there is no electrostatic contrihlition to the chemical potential we have 

at absolute zero, accordi~~g to ( 6 . 1 7 ) .  In a region where the electrostatic poten- 
tial is ~ ( x ) ,  the total chemical potential (Fig. 9) is constant and equal to 

where cF(x)  is the local value of the Fermi energy. 
The expression (28) is valid for static electrostatic potentials that vary 

slowly compared with the wavelength of an electron at the Fernli level; 
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0 
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Figure 9 111 thcr~nal and diffusive equilibrium the chemical potential is constant; to maintain it 
constant we increme the electron concentration in regions of space where the potential energy is 
low, and we decrease the concentration where the potential is high. 

specifically, the approximation is q kF.  By a Taylor series expansion of E,, 
Eq .  (28)  may he written as 

de, 
-[n(x) - no] = ep(x)  . (29) 
dno 

From (27) we have dcF/dno = 2eF/3n,, whence 

The left-hand side is the induced part of the electron concentration; thus 
the Fourier components of this equation are 

p,&) = (3noeZ/2e,jp(K) . (31) 

By (26)  this becomes 

phd(K) = - (6m,e2/~FK2)p(K) . (32) 

By (3dj we have 

here, after some rearrangement, 

where a. is the Bohr radius and D(cF) is the density of states for a free electron 
gas. The approximation (33)  for c(0,K) is called the Thomas-Fermi dielectric 
function, and l / k ,  is the Thomas-Fermi screening length, as in (40)  below. For 
copper with no = 8.5 X loz2 ~ m - ~ ,  the screening length is 0.55 A. 

1% have derived two limiting expressions for the dielectric function of an 
electron gas: 

We notice that e(0,K) as K + 0 does not approach the same limit as e(w,O) as 
w 4 0. This means that great care must be taken with the dielectric function 



near the origin of the w-K plane. The full theory for the general function 
E(w,K)  is due to ~ i ~ ~ d h a r r l . '  

Screened Coulomb Potential. We consider a point charge q placed in a sea 
of conduction electrons. The Poisson equation for the unscreened coulomb 
potential is 

v2q, = -47rqa(r) : ( 3 6 )  

and we know that cp, = q/n Let us write 

We use in (36 )  the Fourier representation of the delta function: 

whence K ' ~ , ( K )  = 4 ~ 4 .  
By (3e), 

cp,(K)lcp(K) = E(K)  , 

where cp(K) is the total or screened potential. We nse E ( K )  in the Thomas- 
Fermi form ( 3 3 )  to find 

The screened coulomb potential is the transform of cp(K): 

K sin Kr 4 d K -  =, exp( -kd )  
P + kf 

as in Fig. 10a. The screening parameter k, is defined by ( 3 4 ) .  The exponential 
factor reduces the range of the coulomb potential. The bare potential qlr is 
obtained on letting the chargc concentration no 4 0, for then k, -+ 0. In the 
vacuum limit q ( K )  = 47rq/K2. 

One application of the screened interaction is to the resistivity of certain 
alloys. The atoms of the series Cu, Zn, Ga, Ge, As have valences 1, 2, 3 ,  4 ,  5 .  
An atom of Zn, Ga, Ge, or As added substitutionally to metallic Cu has an ex- 
cess charge, referred to Cu, of 1 ,2 ,  3 ,  or 4 if all the valence electrons join the 
conduction band of the host metal. The foreign atom scatters the conduction 
electrons, with an interaction given by the screened coulomb potential. This 
scattering contributes to the rcsidual clcctrical resistivity, and calcnlations by 
Mott of the resistivity increase are in fair agreement with experiment. 

'A good discussion of the Lindhard dielectric function is given by I .  Ziman, Principles of the 
thvuy ofsulirlu, 211d ed., Canbridge, 1072, Chapter 5. The algebraic stcps in the evaluation of 
Ziman's equation (5.16) are given in detail by C. Kittel, Solid state physics 22, 1 (196R), Section 6. 
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Figure 10a Comparison of screened and unscreened 
coulomb potentials of a static unit positive charge. The 
screening length Ilk, is set equal to unity. The static 
screened interaction is taken in the Thomas-Fermi ap- 
proximation, which holds for low wavevectors q < k,; 
More complete calculations with all wavevectors in- 
cluded exhibit spatial oscillations, called Friedel 
oscillations, in 2kFr and are plotted in QTS, p. 114. 

Screened 
~o ten t~a l  a 

2 energy potential nscreened : 4 . 2  
PI 

-0.3 

Pseudopotential Component U ( 0 ) .  In the legend to Fig. 9.22b we stated a 
result that is important in pseudopotential theory: "For very small k the poten- 
tial approaches -$ times the Fermi energy." The result, which is known as the 
screened ion Iimit for metals, can be derived from Eq. (39).  When converted to 
the potential energy of an electron of charge e in a metal of valency z with no 
ions per unit volume, the potential energy component at k = 0 becomes 

U(0) = -eznocp(0) = -4mnoe2/k,2 . 

The result (34)  for kt in this situation reads 

whence 

U(0) = - ; E ~  . (43)  

Mott Metal-Insulator Transition 

A crystal composed of one hydrogen atom per primitive cell should always 
be a metal, according to the independent-electron model, because there will al- 
ways be a half-filled energy band within which charge transport can take place. 
A crystal with one hydrogen molecule per primitive cell is a different matter, 
because the two electrons can fill a band. Under extreme high pressure, as in 
the planet Jupiter, it is possible that hydrogen occurs in a metallic form. 

But let us imagine a lattice of hydrogen atoms at absolute zero: will this be 
a metal or an insulator? The answer depends on the lattice constant, with small 
values of a giving a metal and large values giving an insulator. Mott made an 
early estimate of the critical value a, of the lattice constant that separates the 
metallic state from the insulating state: a, = 4.5a0, where a, = ti2/me2 is the ra- 
dius of the first Bohr orbit of a hydrogen atom. 

On one approach to the problem, we start in the metallic state where a 
conduction electron sees a screened coulomb interaction from each proton: 



Figure lob Sclnilog plot of observed "zero tempera- 
ture" condiictivity m(D) versus donor concentration n for 
phosphorous donors in silicon. (After T F. Roscnbamii, 
ct al.) 

where k,2 = 3.939nhi3/ao, as in (34), where no is thc electron concentration. At 
high concentrations k, is large and the potential has no hound statc, so that we 
must have a metal. 

The potential is known to have a bound state when k, is smaller than 
1.19/ao. With a bound state possible the electrons may condense about the 
protons to form an insulator. The inequality rnay be written in terms of no as 

With n, = l/a3 for a simple cnhic lattice, wc may have an insulator when a, > 
2.78a0, which is not far from the Mott result 4.5ao found in a diffcrcnt way. 

The terrn metul-insulator transition has come to denote situations where 
the electrical conductivity of a rriaterial changes from metal to insulator as a 
function of some external parameter, which may be composition, pressure, 
strain, or magnetic field. The metallic phase may usually be pictured in terms 
of an independent-clcctron model; the insulator phase may suggest important 
electron-electron interactions. Sites randomly occupied introduce new and in- 
teresting aspects to the problem, aspects that lie within percolation theory. 
The percolation transition is beyond the scope of our book. 

When a semiconductor is doped with increasing concentrations of donor 
(or acceptor) atoms, a transition will occur to a conducting metallic phase. 
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Experimental rcsi~lts for P atoms in silicon are shown in Fig. lob. Here the 
i~isulator-mctal transition takes place when thc concentration is so high that 
the ground state wavefunctions of electrons on neighboring impurity atoms 
overlap significantly. 

The observed value of the critical concentration in the Si : P alloy system 
is n, = 3.74 x lo1' cm 3, as in the figure. If we take 32 X 10-%m as the 
radius of the ground state of a donor in Si in the spherical approximation, then 
by the Mott critcrion a, = 1.44 X 10-"m. The P atoms are believed to oc- 
cupy latticc sites at random, but if instead their lattice were simple cubic, the 
critical Mott concentratior~ would be 

appreciably less than the observed value. It is usual in the semiconductor liter- 
ature to refer to a heavily-doped semiconductor in the metallic range as a 
degenerate semiconductor. 

Screening and Phonons in Metals 

An interesting applicatio~l of our two limiting forms of the dielectric func- 
tion is to longitudirral acoustic phonons in metals. For lorigitudinal modes the 
total dielectric function, ions ph19 electrons, must be zero, by (17). Provided 
the sound velocity is less than the Fermi velocity of the eIectrons, we may use 
for the electrons the Thomas-Fermi dielectric function 

Provided also that thc ions are well-spaced axid move independently, we may 
use for them the plasmon E(w,O) limit with the approximate mass M. 

The total dielectric function, lattice plus electrons, but without the elec- 
tronic polarizability of the ion cores, is 

At low K and w wc neglect the term 1. At a zero of E(o,K) we have, with 
eF - ;mu$, 

This describes long wavelength longitudinal acoustic phonons. 
In thr alkali metals the result is in quitc good agreement with the 

observed longitudinal wave velocity. For potassium we calculate u = 1.8 X 

lo5 cm s-'; the observed longitudinal sound velocity at 4 K in the [loo] direc- 
tion is 2.2 X 1@ crrl s-'. 



There is another zero of E(w,K) for positive ions imbedded in an electron 
sea. For high frequencies we ~ i se  the dielectric contribiltion -w:/02 of the 
electron gas: 

and this function has a zero when 

This is the electron plasma frequency (20), but with the reduced mass correc- 
tion for the motion of the positive ions. 

POLARITONS 

Longitudinal optical phonons and transverse optical phonons were dis- 
cussed in Chapter 4 ,  but we deferred treatment of the interaction of trans- 
verse optical phonons with transverse clectromagnctic waves. When the hvo 
waves are at resonance the phonon-photon colipling entirely changes the char- 
acter of the propagation, and a forbidden band is established for reasons that 
have nothing to do with the periodicity of the lattice. 

By resonance we mean a conditior~ in which the frequencies and wavevectors 
of both waves are approximately equal. The region of the crossover of the two 
dashed curves in Fig. 11 is the resonance region; the two dashed curves are the 
dispersion relations for photons and transverse optical phonons in the absence of 
any coupling bet-wccn thcm. In reality however, there always is coupling implicit 

- ~ 

in Maxwell's eqiiations and expressed by the dielectric function. The quantum of 
the coupled phonon-photon transverse wave field is called a polariton. 

In this section we see how the coupling is responsible for the dispersion 
relations shown as solid curves in the figure. All takes place at very low values 
of the wavevector in comparison with a zone boundary, because at crossover 
w(photon) = ck(photon) = o(phonon) = 1013 s-'; thus k = 300 cm-'. 

An early warning: although the symbol o, will necessarily arise in the the- 
ory, the effects do not conccrn longitudinal optical phonons. Longitudinal 
phonons do not coiiple to transverse photons in the bulk of a crystal. 

The coupling of the electric field E of the photon with the dielectric polar- 
ization P of the TO phonon is described by the electro~rlagnetic wave equation: 

(CGS) C'PE = W ~ ( E  + ~ V P )  . (53) 

At low wavevectors the TO phonon frequency w, is independent of K. The po- 
larization is proportional to the displacement of the positive ions relative to 
the negative ions, so that the equation of motion of the polarization is like that 
of an oscillator and may be written as, with P  = Nqu, 
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Figure 11 A plot of the obsemed energies and wavevectors of the polantons and of the LO 
phonons in Gap The theoretical dispersion curves are shorn by the solid lines. The dispersion 
curves for the uncoupled phonons and photons are bllown by the short, dashed lines. (After 
C. H. Henyand J. J. Hopfield.) 

where there are N ion pairs of effective charge q and reduced mass M, per unit 
volnme. For simplicity we neglect the electronic contribution to the polarization. 

The equations (53) and (54) have a soliltion when 

This gives the polariton dispersion relation, similar to that plotted in Figs. 11 
and 12. At K = 0 there are two roots, o = 0 for the photon and 

for the polariton. Here o, is the TO phonon frequency in the absence of 
coupling with photons. 

The dielectric function obtained from (54) is: 

If there is an optical electronic contribution to the polarization from the ion 
cores, this should be included. In the frequency range from zero up through 
the infrared, we write 
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Figure 12 Couplcd lnodcs of plioto~~s and transverse optical phonon in an ionic crystal. The fine 
horizontal line represents oscillators of frequen o, in the absence of coupling to the electromag- 
netic field, and the fine line labeled w = cK/  F e(m) corresponds to clcctromag~~etic waves in the 
crystal, hut uncoupled to the lattice oscillators w,. The heavy lines are the dispersion relations in 
the presence of conpling hetween the lattice oscillators and the electromagnetic wave. One effect 
of the coupling is to create the frequency gap between w ,  and w,: within this gap the wavevector is 
pure imaginary of magnitude given by the hrnken line in the fignre. In the gap the wave attenuates 
as expi-IKlx), and we see from the plot that the attenuation is much stronger near w ,  than ncar 
w,. The character of the branches varies with K;  tlrcre is a regiun of mixed electric-mechanical as- 
pects near the nominal crossover. Note, finally, it is intuitively obvious that the group velocity of 
light in the medium is always <c, because the slope a d a K  for the actual dispersion relations 
(hemy lines) is everywhere lcss thau thc slope c fur the u~~cuupled photon in free space. 

in accord with the definition of ~ ( m )  as the optical dielectric constant, ob- 
tained as thc square of the optical refractive index. 

M7e set w  = 0 to ohtain the static dielectric function: 

~ ( 0 )  = e ( m )  + ~ T ~ N ~ ~ / M W ;  , (59) 

which is combined with (58) to obtain ~ ( w )  in terms of accessible parameters: 

The zero of ~ ( w )  defines the longitudinal optical phonon frcqucncy wL, as the 
pole of e ( w )  defines w,. The zero gives 

~ ( m ) w ;  = E(O)O+ . (61) 
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(a) 

Figure 13a Plot of ~ ( w )  from (60) for ~ ( m )  = 2 and ~ ( 0 )  = 3. The dielectric constant is negative 
between w = wT and w, = (3/2)"2wT; that is, between the pole (infinity) of E(W) and the zero of 
~ ( w ) .  Incident electromagnetic waves of frequencies in the shaded regions w, < w < w, will not 
propagate in the medium, but will be reflected at the boundary. 
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Figure 13b Dielectric function (real  art) of SrF, measured over a wide frequency range, 
exhibiting the decrease of the ionic polarizability at high frequencies. (A. von Hippel.) 



TO phonon LO phonon 

Figure 14 Relative displacements of the positive and negative ions at one instant of time for a 
wave in an optical mode traveling along the z axis. The planes of nodes (zero displacement) are 
shown; for long wavelength phonons the nodal planes are separated by many planes of atoms. In 
the transverse optical phonon mode the particle displacement is perpendicular to the wavevector 
K; the macroscopic electric field in an infinite medium will lie only in the ? x direction for the 
mode shown, and by the symmetry of the problem dE,/ax = 0. It follows that div E = 0 for a TO 
phonon. In the longitudinal optical phonon mode the particle displacements and hence the dielec- 
tric polarization P are parallel to the wavevector. The macroscopic electric field E satisfies D = 

E + 4 f l  = 0 in CGS or eOE + P = 0 in SI: by symmetry E and P are parallel to the z axis, and 
aE Jaz  # 0. Thus div E # 0 for an LO phonon, and ~ ( w )  div E is zero only if ~ ( o )  = 0. 

Waves do not propagate in the frequency region for which e(w) is nega- 
tive, between its pole at w = w, and its zero at w = o,, as in Fig. 13. For nega- 
tive E ,  waves do not propagate because then K is imaginary for real w, and 
exp(i&) + exp(- IKlx), damped in space. The zero of e(w), by our earlier argu- 
ment, is the LO frequency at low K ,  Fig. 14. Just as with the plasma frequency 
wp, the frequency w, has two meanings, one as the LO frequency at low K and 
the other as the upper cutoff frequency of the forbidden band for propagation 
of an electromagnetic wave. The value of w, is identical at both frequencies. 

LST Relation 

We write (61) as 

where ~ ( 0 )  is the static dielectric constant and ~ ( m )  is the high-frequency limit 
of the dielectric function, defined to include the core electron contribution. 
This result is the Lyddane-Sachs-Teller relation. The derivation assumed a 
cubic crystal with two atoms per primitive cell. For soft modes with WT+ 0 we 
see that ~ ( 0 )  + 00, a characteristic of ferroelectricity. 

Undamped electromagnetic waves with frequencies within the gap cannot 
propagate in a thick crystal. The reflectivity of a crystal surface is expected to 
be high in this frequency region, as in Fig. 15. 
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Figure 15 Keflectance of a crystal of NaCl at reveral temperatures, versus wavelength. The nom- 
inal values of w ,  and w, at room temperature correspond tn wavelengths uf 38 and 61 X lo-' cm, 
respectively. (After A. Mitsuishi et al.) 

Wave number in clllil 

Wavelength in lo4 cm 

Figure 16 Reflectance versus wavelength of a LiF film hacked by silver, for radiation incident 
near 30". The longitudinal optical ~ h o n o n  absorbs strongly the radiation polarized (p) in the plane 
~ ~ u r ~ n a l  to the Cilm, hut absorbs hardly at all the radiation polarized (s) parallel to the film. (After 
D. W Rerreman.) 



For films of thickness less than a wavelength the situation i s  changed. Be- 
cause for frequencics in the gap the wave attenuates as exp(- IKlx), it is possi- 
ble for the radiation to be transmitted through a film for the small values of IKI 
near o,, but for the large values of IKI near o, the wave will be reflected. By 
reflection at nonnormal incidence the frequency w, of longitudinal optical 
phonons can be observed, as in Fig. 16. 

Experimental values of e(O), ~ ( m ) ,  and or are given in Table 3, with 
values of o, calculated using thc LST relation, Eq. (62). We compare values of 

Table 3 Lattice parameters, chiefly at 300 K 

Static Optical 
dielectric dielectric 
constant cu~~starit W T ,  in 10'5-' o,,, in 1013 sf '  

Crystal 4m) experimental LST relation 

LiH 12.9 3.6 11. 21. 
LiF 8.9 1.9 5.8 12. 
LiCl 12.0 2.7 3.6 7.5 
LiBr 13.2 3.2 3.0 6.1 
NaF 3.1 1.7 4.5 7.8 
NaCl 5.9 2.25 3.1 5.0 
NaBr 6.4 2.6 2.5 3.9 
KF 5.5 1.5 3.6 6.1 
KC1 4.85 2.1 2.7 4.0 
KI 5 . 1  2.7 1.9 2.6 
RbF 6.5 1.9 2.9 5.4 
RbI 5.5 2.6 1.4 1.9 
CsCl 7.2 2.6 1.9 3.1 
CsI 5.65 3.0 1.2 1.6 
TlCl 31.9 5.1 1.2 3.0 
TlBr 29.8 5.4 0.81 1.9 
AgCl 12.3 4.0 1.9 3.4 
AgBr 13.1 4.6 1.5 2.5 
Mg" 9.8 2.95 7.5 14. 
Gap 10.7 8.5 6.9 7.6 
GaAs 13.13 10.9 5.1 5.5 
GaSb 15.69 14.4 4.3 4.fi 
InP 12.37 9.6 5.7 6.5 
InAs 14.55 12.3 4.1 4.5 
InSb 17.88 15.6 3.5 3.7 
Sic 9.6 6.7 14.9 17.9 
C 5.5 5.5 25.1 25.1 
Si 11.7 11.7 9.9 9.9 
Ge 15.8 15.8 5.7 5.7 
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w,/w, obtained by inelastic neutron scattering with experimental values of 
[E(o)/E(~)]'" obtained by dielectric measurements: 

NaI KRr GaAs 
wL/wT 1.44 ? 0.05 1.39 t- 0.02 1.07 ? 0.02 
[E(O)/E(~)]"~ 1.45 ? 0.03 1.38 t- 0.03 1.08 

The agreement with the LST relation is excellent 

ELECTRON-ELECTRON INTERACTION 

Fermi Liquid 

Because of the interaction of the conduction electrons with each other 
through their electrostatic interaction, the electrons suffer collisions. Further, 
a moving electron canses an inertial reaction in the surrounding electron gas, 
thereby increasing the effective mass of the electron. The effects of electron- 
electron interactions are usually described within the framework of the 
Landau theory of a Fermi liquid. The object of the theory is to give a unified 
account of the effect of interactions. A Fermi gas is a system of noninteracting 
fermions; the same system with interactions is a Fermi liquid. 

Landau's theory gives a good account of the low-lying single particle exci- 
tations of the system of interacting electrons. These single particle excitations 
are called quasiparticles; they have a one-to-one correspondence with the 
single particle excitations of the free-electron gas. A quasiparticle may be 
thought of as a single particle accompanied by a distortion cloud in the elec- 
tron gas. One effect of the coulomb interactions bctween electrons is to 
change the effective mass of the electron; in the alkali metals the increase is 
roughly of the order of 25 perccnt. 

Electron-Electron Collisions. It is an astonishing property of metals that 
conduction electrons, although crowded together only 2 A apart, travel long 
distances between collisions with each other. The mean free paths for 
electron-electron collisions are longer than lo4 A at room temperature and 
longer than 10 cm at 1 K. 

Two factors are responsible for these long mean free paths, without which 
the free-electron model of metals woi~ld have little value. The most powerful 
factor is the exclusion principle (Fig. 17), and the second factor is the screen- 
ing of the coulomb interaction between two electrons. 

We show how the exclusion pinciple reduces the collision frequency of an 
electron that has a low excitation energy E, outside a filled Fermi sphere 
(Fig. 18). We estimate the effect of the exclusion ~rinciple on the two-body 
collision 1 + 2 + 3 + 4 between an electron in the excited orbital 1 and an 
electron in the filled orbital 2 in the Fermi sea. It is convenient to refer all 
energies to the Fermi level p taken as the zero of energy; thus E, will be 



Figure 17 A collision between two electrons 
of wavevectors k, and k,. After the collision 
the particles have wavevectors k, and k,. The 
Pauli exclusion principle allows collisions only 
to final states k,, k, which were vacant before 
the collision. 

(4 
Figure 18 In (a) the electrons in initial orbitals 1 and 2 collide. If the orbitals 3 and 4 are initially 
vacant, the electrons 1 and 2 can occupy orbitals 3 and 4 after the collision. Energy and momentum 
are conserved. In (b) the electrons in initial orbitals 1 and 2 have no vacant final orbitals available 
that allow energy to be conserved in the collision. Orbitals such as 3 and 4 would conserve energy 
and momentum, but they are already filled with other electrons. In (c) we have denoted with X the 
wavevector of the center of mass of 1 and 2. All pairs of orbitals 3 and 4 conserve momentum and 
energy if they lie at opposite ends of a diameter of the small sphere. The small sphere was drawn 
from the center of mass to pass through 1 and 2. But not all pairs of points 3 ,4  are allowed by the 
exclusion principle, for both 3 ,4  must lie outside the Fermi sphere; the fraction allowed is =E, /E~ 
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positive and ep will bc negative. Because of the exclusion principle the orbitals 
3 and 4 of thc electrons after collision must lie outside the Fermi sphere, all 
orbitals within the sphere being already occupied; thus both cncrgics e,, e, 
must be positive referred to zero on the Fermi spherc. 

The consewatiorl of energy requires that lc,l < el, for otherwise E, + eq = 

el + e2 could not be positive. This mcans that collisions are possible only if the 
orbital 2 lies within a shell of thickness el within the Fermi surface, as in Fig. 
18a. Thus the fraction =el/eF of the electrons in filled urbitals provides a suit- 
able target for electron 1. But even if the target electron 2 is in the suitable 
energy shell, only a small fraction of the final orbitals compatible with conser- 
vation of energy and momentum are allowed by thc cxclilsion principle. This 
gives a second factor of e,/tF. 

In Fig. 18c we show a small sphcrc on which all pairs of orbitals 3, 4 
at opposite ends of a diameter satisfy the conservation laws, but collisions can 
occur only if both orbitals 3, 4 lie outside the Fermi sea. The product or  the 
two fractions is ( E ~ / E ~ ) !  If el corresponds to 1 K and tF to 5 X lo%, wc have 
( E ~ / E ~ ) ~  = 4 X 10-lo, the factor by wludi the exclusion principle reduces the 
collision rate. 

The argument is not changed for a thermal distribiltion of electrons at 
a low temperature such that kgT < eF SVc replace el by the thermal energy 
=k,T, and now the rate at which electron-electron collisions take place is re- 
duced below the classical vahle by (kBT/e,)', SO that the effective collisio~i 
cross section u is 

u = (kBT/cF)2uo , (63)  

where uo is the cross section for the electron-electron interaction. 
The interaction of one electron with another has a range of the order of 

the screening length l lk,  as in (34) .  Numerjcal calcillations give the effective 
cross section with screening for collisions between electrons as of the order of 
10-'" cm' or 10 A' in typical metals. The effect of the electron-gas background 
in electron-electron collisions is to reduce on below the value expected from 
the Rutherford scattering equation for the unscreened coulomb potential. 
However, much the greater reduction i11 the cross section is caused by the 
Pauli factor (~,T/E,)~.  

At room temperature in a typical mctal kBT/eF is --lo-', so that 
u - l ~ - ~ u ~  -10-l9 cm2. The mean free path for electron-electron collisions is 
e = l /na  - cm at room temperature. This is longer than the mean free 
path due to electron-phonon collisions by at least a factor of 10, so that at 
room temperature collisions with phonons are likely to be dominant. At liquid 
helium temperatures a contribution proportional to T2 has been found in the 
resistiblty of a number of metals, consistent with the form of the electron- 
electron scattering cross section (63).  The mean free path of electrons in in- 
dium at 2 K is of the ordcr of 30 cm, as expected from (63) .  Thus the Pauli 



principle explains one of the central questions of thr theory of metals: how do 
the electrons travel long distances without colliding with each other? 

ELECTRON-PHONON INTERACTION: POLARONS 

The most common effect of the electron-phonon interaction is seen in the 
temperature dependence of the electrical resistivity, which for pure copper is 
1.55 microhm-cm at 0°C: and 2.28 microhm-cm at 100°C. The electrons are 
scattered by the phonons, and the higher the temperature, the more phonons 
there are and hence more scattering. Above the Debye temperature the num- 
ber of thermal phonons is roughly proportional to the absolute temperature, 
and we find that the resistivity increases approximately as the absolute tem- 
perature in any reasonably pure metal in this temperature region. 

A more subtle effect of the electron-phonon intcraction is the apparent in- 
crease in electron mass that occurs because the electron drags the heavy ion 
cores along with it. In an insulator the combination of the electron and its 
strain field is known as a polaron, Fig. 19. The effect is large in ionic crystals 
because of the strong coulomb interaction between ions and electrons. I11 co- 
valent crystals the effect is weak because neutral atoms have only a weak inter- 
action with electrons. 

Thc strength of thc clcctron-latticc intcraction is mcasured by the dimen- 
sionless coupling constant CY given hy 

1 deformation energy 

za = 5% (64) 

where uL is the longiti~dinal optical phonon frequency near zero wavevector. 
We view ;a as "the number of phonons which surround a slow-moving elec- 
tron in a crystal." 

Values of a deduced frorri diverse experi~nerlts and theory are given in 
Table 4, after F. C. Brown. The values of a are high in ionic crystals and low in 
covalent crystals. The values of the effective mass miol of the polaron are fiom 
cyclotron resonance experiments. The values given for the band cffcctive mass 
rn* werc calculatcd from mi,,. Thc last row in the tahle gives the factor m',,,lrn' 
by which the band mass is increased by the deformation of the lattice. 

Theory relates the effective mass of the polaron miul to the effective band 
mass rn* of the electron in the undefornled lattice by t11e relation 

for CY < 1 this is approximately m*(l  + ;a). Because the coupling constant a is 
always positive, the polaron mass is greater than the bare mass, as we expect 
from the inertia of the ions. 
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Figure 19 The formation of a polaron. (a) A conduction electron is shown in a rigid lattice of 
an ionic crystal, KCI. The forces on the ions adjacent to the electron are shown. (b) The electron is 
shown in an elastic or deformable lattice. The electron plus the associated strain field is called a 
polaron. The displacement of the ions increases the effective inertia and, hence, the effective 
mass of the electron; in KC1 the mass is increased by a factor of 2.5 with respect to the band theory 
mass in a rigid lattice. In  extreme situations, often with holes, the particle can become self- 
trapped (localized) in the lattice. In covalent crystals the forces on the atoms from the electron are 
weaker than in ionic crystals, so that polaron deformations are small in covalent crystals. 

It is common to speak of large and small polarons. The electron associated 
with a large polaron moves in a band, but the mass is slightly enhanced; these 
are the polarons we have discussed above. The electron associated with a small 
polaron spends most of its time trapped on a single ion. At high temperatures 
the electron moves from site to site by thermally activated hopping; at low 
temperatures the electron tunnels slowly through the crystal, as if in a band of 
large effective mass. 



Table 4 Polaron coupling constants a, masses mio1, and band masses m* for 
electrons in the conduction band 

Crvstal KC1 KRr AeCl AaBr ZIIO PbS InSb G d s  

Holes or electrons can become self-trapped by inducing an asymmetric 
local deformation of the lattice. This is most likely to occur when the band 
edge is degenerate and the crystal is polar (such as an alkali halide or silver 
halide), with strong coupling of the particle to the lattice. The valence band 
edge is more often degencratc than the conduction band edge, so that holes 
are more likely to be self-trapped than are electrons. Holes appear to be self- 
trapped in all the alkali and silver halides. 

Ionic solids at room temperature gerlerally have very low conductivities 
for the motion of ions through the crystal, less than (ohm-cm)-', but a 
family of compounds has been reported with conductivities of 0.2 (ohm-cm)-' 
at 20°C. The compounds have the composition MAGI,, where M denotes K, 
Rb, or NH,. The Ag' ions occupy only a fraction of the equivalent lattice sites 
available, and the ionic condnctivity proceeds by the hopping of a silver ion 
from one sitc to a nearby vacant site. The crystal structures also have parallel 
open channels. 

PEIERLS INSTABILITY OF LINEAR METALS 

Consider a one-dimcnsional metal with an electron gas filling all conduc- 
tion band orbitals out to the wavevector k,., at absolute zero of temperature. 
Peierls suggested that such a linear metal is unstable with respect to a static 
lattice deformation of wavevector G = 2kF. Such a deformation crcatcs an en- 
ergy gap at the Fermi surface, thereby lowering the encrgy of electrons below 
the energy gap, Fig. 20. The deformation proceeds until limited by the in- 
crease of elastic energy; the equilibrium deformation A is given by the root of 

Consider the elastic strain A cos 2kpx. The spatial-average elastic energy 
per unit length is Eei,,,, = $~A~(cos~2k,x)  = $ 2 ~ "  where C is the force 
constant of the linear metal. We next calculate Eel,,,,,,,,. Suppose that the ion 
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Figure 20 Peierls instability. Electrons with wave- 

0 vectors near the Fermi surface have their energy 
Wavevector lowered by a lattice deformation. 

contribution to the lattice potential seen by a conduction electron is propor- 
tional to the deformation: U(x) = 2AA cos 2kFx. From (7.51) we have 

eK = (fi2/2m)(kg + P) ? [4(fi2k22m)(fi2P/2m) + A2A2]ln . (67) 

It is convenient to defme 

x, = fi2@/m ; x, = fi2kg/m ; x - fi2~kF/m 

We retain the - sign in (67) and form 

whence, with dKlr  as the number of orbitals per unit length, 

We put it all together. The equilibrium deformation is the root of 

$A - (2A2mA/d2kF) sinh-l(fi2k2mAA) = 0 . 

The root A that corresponds to the minimum energy is given by 

fi2k%lmAA = sinh(-fi2kFrC/4mA2) , 

whence 

IA IA = (2fi2k;/m) eq(-)i2kFrC/4mA2) , 

if the argument of the sinh in (68) is >> 1. We assume k, G k,,. 



The result is of the form of the energy gap equation in the BCS theory of 
superconductivity, Cl~apter 10. The deformation A is a collective effect of all 
the electrons. If we set JY = h2kj/2m = conduction hand width; N(0) = 

2 m l ~ h ~ k ,  = density of orbitals at Fermi level; V = 2A2!C = effective electron- 
electron interaction energy, then we can write (69) as 

IA IA - 4W exp-l/N(O)V] , (70) 

which is analogous to the BCS energy gap equation. An example of a Peierls 
insulator is TaS,. 

SUMMARY 
(In CGS units) 

The dielectric function may he defined as 

in terms of the applied and induced charge density components at w,K. 

The plasma frequency Gp = [4mne?e(~)rn]"~ is the frequency of the uniform 
collective longitudinal oscillation of the electron gas against a background of 
fixed positive ions. I t  is also the low frequency cutoff for propagation of 
transverse electromagnetic waves in the plasma. 

The poles of the dielectric fur~ction define w~ and the zeroes define wL. 

In a plasma the coulomb interaction is screened; it becomes (qlr) exp(-k,r), 
where the screening length llk, = ( ~ F J 6 . r m ~ ~ ) ' ~ .  

A metal-insulator transition may occur when the nearest-neighbor scpara- 
tion a becomes of the order of 4ao, where no is the radius of the first Bohr 
orhit in the insulator. The metallic phasc cxists at smaller values of a. 

A polariton is a quantum of the coupled TO phonon-photon fields. The cou- 
pling is assured by the Maxwell equations. The spectral region w,- < w < w, 
is forbidden to electromagnetic wave propagation. 

The Lyddane-Sachs-Teller relation is wi!w2, = e(O)/~(m). 

Problems 

1. Surface plasmons. Consider a semi-infinite plasma on the positive side of the 
plane z = 0. A solution of Laplace's equation V" = 0 in the plasma is qi(x,z) = 

A cos kr KkZ, whence E, = kA cos kr e-k"; EXj = kA sin kw c-". (a)Shoa. that in the 
vac~~nrn qo(x,z) = A cos kx  e" for z < 0 satisfies the boundary condition that the 
tangential component of E be continuous at the boundary; that is, find Ex0. 
(b) Note that D, = e(w)Ei; Do = E,. Show that the boundary condition that the 
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norn~al component of D be continuous at the hn~mdaly requires that c(w) = 1 ,  
whence from (10) we have the Stern-Ferrell rewlt: 

for the frequency w ,  of a surface plasma oscillation 

2 .  Interface plasmons. We consider the plane interface z = 0 between metal 1 at 
z > 0 and metal 2 at s < 0. Metal 1 has bl~lk plasmon frequency up,; metal 2 has 
op,. The dielectric constants in both ~netals are those or frcc-electron gases. Show 
that surface plasmons associated mith the interface havc thc frequency 

3.  Alfve'n waves. Consider a solid with an cqual concentration n of electrons of mass 
m ,  and holes of mass m,,. This situation may arisc in a semimetal or in a compen- 
sated semiconductor. Place the solid in a lrniform magnetic field B = Be. Intro- 
duce the coordinate 5 = x + i y  appropriate for circularly polarized motion, with 6 
having time dependence a-I"'. Let we = rBlm,c and wh = eB/mhc. (a) In CGS units, 
show that [<: = eEe/m,wiw + w,); [,, = -rE+/rnhw(o - wh) are the displacements 
of the electrons and holes in the electric field E- ePot  = (E, + iEy) e~'Ot. 
(b)  Show that the dielectric polarization Pi = r~ejt,, - &) in thc regime w & w,, o h  

may be written as P+ = nc2(ml, + m,)E+/BZ, and the dielectric function c(w) = 

EL + 4vPiP+/E+ = E, + 4nc2p/B2, where c, is the dielectric constant of thc host lat- 
tice and p = n(m, + ml,) is the mass density of the carriers. If cl may bc  ncglected, 
the dispersion relation wec(w) = c2K%ecomes, fur electroniagnetic waves propa- 
gating in the z direction, w2 = ( B ~ / ~ T ~ ) K ~ .  Such waves are krro\z,n m Alfvkn waves; 
thcy propagate with the constant velocity B/(4.rrp)"'.. If B = 10 kG; n = 10" c111-~; 
m = g, the velocity is -10' cm s-'. Alfien waves have been observed in seini- 
metals and in electron-hole drops in germanium (Chapter 15). 

4 .  Helicon wanes. (a) Employ the method of Problem 3 to treat a specimen with 
only onc carrier type, say holes in concentration p, and in t l ~ e  limit o & oh = 
s B l n ~ ~ c .  Show that c(w) = -ITe2/nzhww,,, where Di(o)  = t(w)E+(w). The term E, 

in c has hccn neglected. (b) Show further that the dispersion relation hecomes o = 
( B C / ~ ~ I ~ ) K ' ,  the helicon dispersion relation; in CGS. For K = 1 cn-I and B = 

1000 (:, estimatc the helicon frequency in sodium metal. (The frequency is nega- 
tive; with circular-polarized modes the sign of the frequency refers to the sense oC 

the rotation.) 

5.  Plasmon mode of a sphere. The frequency of the uniform plasmon mode of a 
sphere is dctcrmincd by the depolarization field E = -47rP/3 of a sphere, where 
the polarization P= -nrr, with r as the average displacement of the electrons of 
concentration n. S h o ~  from F = n u  that the resonance frequency of the electron 
gas is w i  = 4meV3m. Bccausc all electrons participate in the oscillation, such an 
excitatior~ is called a collective excitation or collective mode of the electron gas. 

6. M~gnstoplanmafrequenc~. Use the method of Problem 5 to find the frequency 
of the urrifnrln plasulon ulode of a sphere placed in a constant uniform rnagnetic 
field B. Let B he  along the z axis. The solution should go to the cyclotron 



frequency w,. = eB/mc in one limit and to wo = (4me2/3m)u' in another limit. Take 
the motion in the xy plane. 

7. Photon branch at low wavevector. (a) Find what (56) becomes when E(W)  
is taken into account. (b) Show that there is a solution of (55) which at low 
wavevector is w = C W ~ ,  as expected for a photon in a crystal of refractive 
index n2 = E .  

8. Plasma frequency and electrical conductivity. An organic conductor has been 
found by optical studies to have wp - 1.80 X 10'"~' for the plasma frequency, 
and T = 2.83 X 10-15 s for the electron relaxation time at room temperature. 
(a) Calculate the electrical conducti\lty from these data. The carrier mass is not 
knowu and is not needed here. Take ~ ( m )  = 1. Convert the result to units 
(n cm)-'. (b) From the crystal and chemical structure, the conduction electron 
couccntration is 4.7 X lo2' ~ m - ~ .  Calculate the electron effective mass m'. 

9. Bulk modulus of the Femi gas. Show that the contribution of the kinetic en- 
ergy to the bulk modulus of the electron gas at absolt~tr zero is B = inmt$. It is 
convenient to use (6.60). We can use our result for B to find the vclocity of sound. 
which in a compressible fluid is u = (B!p)l/Z, where u = (ni/3M)l"cF, in agreement 
with (46). These estimates neglect attrachve interactions. 

10. Response of electron gas. It is sometimes stated error~eously in books on electro- 
magnetism that the static conductivity a, which in gaussian units has the dimensions 
of a frequency, measures the response frequency of a metal to an electric ficld sud- 
denly applied. Criticize this statement as it might apply to copper at room tempcra- 
ture. The resistivity is -1pohm-cm; the electron concentration is 8 X 10" 2 6 ' ;  the 
mean free path is -400 A; the Fermi velocityis 1.6 X lo8 crn s-'. You will not neccs- 
sarily need all these data. Give the order of magnitude of the three frequencies u, 
w,, and 117 that might bc relevant in the problem. Set up and solve the prohlem 
of the response x j t )  of the system to an electric field E(t < 0) = 0; E( t  > 0) = 1 .  
The system is a sheet of mpper; the field is applied normal to the sheet. Inclnde the 
damping. Solve the differential cquation by elementary methods. 

'11. Gap plasmons and the van der Waals interaction. Consider two sen~i-infinite 
media with plane surfaces z = 0 ,  d. The dielectric function of the identical rriedia 
is ~ ( w ) .  Show that for surface plasmons symmetrical with respect to the gap the 
frequency must satisfy ~ ( w )  = -tanh (Kd!2), where K2 = k: + k;. The electric po- 
tential will have the form 

p -,f(z) exp(ik& + ikYy - iwt) 

Look for nonretarded so1utio11-that is, solutions of the Laplace equation rather 
than of the wave equation. The sum of the zero-point energy of all gap modes 
is the nonretarded part of the van der Waals attraction between the two 
specimens-see N. G. van Karrlperr, R. R. A. Nijboer, and K. Schram, Physics 
Letters 26A, 307 (1968). 

 h his prohlerr~ is so~ncwhat difficult. 


