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Figure 1 Dielectric function &(w) or e(w, 0) of a free-electron gas versus frequency in units of the
plasma frequency w,. Electromagnetic waves propagate without damping only when € is positive
and real. Electromagnetic waves are totally reflected from the medium when € is negative.
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CHAPTER 14: PLASMONS, POLARITONS, AND POLARONS

DIELECTRIC FUNCTION OF THE ELECTRON GAS

The dielectric function €(w,K) of the electron gas, with its strong depen-
dence on frequency and wavevector, has significant consequences for the
physical properties of solids. In one limit, €(w,0) describes the collective exci-
tations of the Fermi sea—the volume and surface plasmons. In another limit,
€(0,K) describes the electrostatic screening of the electron-electron, electron-
lattice, and electron-impurity interactions in crystals.

We will also use the dielectric function of an ionic crystal to derive the po-
lariton spectrum. Later we discuss the properties of polarons. But first we are
concerned with the electron gas in metals.

Definitions of the Dielectric Function. The dielectric constant € of elec-
trostatics is defined in terms of the electric field E and the polarization P, the
dipole moment density:

(CGS) D=E +47P =¢E ;

Thus defined, € is also known as the relative permittivity.

The introduction of the displacement D is motivated by the usefulness of
this vector related to the external applied charge density p. in the same way
as E is related to the total charge density p = po + pina, Where p,q is the
charge density induced in the system by p,,.

Thus the divergence relation of the electric field is

(CGS)
divD = diveE = 47p,,
divE = 4mp = 47(peq + Pind)

Parts of this chapter will be written in CGS; to obtain results in SI, write 1/¢,
for 4.

We need relations between the Fourier components of D, E, p, and the
electrostatic potential ¢. For brevity we do not exhibit here the frequency de-
pendence. Define €(K) such that ’

D(K) = e(K)E(K) ; (3a)
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then (3) becomes
div E = div 2 E(K) exp(iK - r) = 47 Z p(K) exp(iK - r) , (3b)
and (2) becomes
div D = div 2 ¢(K)E(K) exp(iK-r) = 47 = p.(K) exp(iK-r) . (3c)

Each of the equations must be satisfied term by term; we divide one by
the other to obtain

pe)d(K) pmd(K)
e(K) = =1~ . 3d
=m0~ By
The electrostatic potential ¢, defined by —Ve,, =D satisfies the
Poisson equation Vg, = —4mp,,; and the electrostatic potential ¢ defined

by —V¢ = E satisfies V2p = —4mrp. The Fourier components of the potentials
must therefore satisfy

=— =¢e(K) , (3e)

by (3d). We use this relation in the treatment of the screened coulomb potential.

Plasma Optics

The long wavelength dielectric response €(w,0) or e(w) of an electron gas
is obtained from the equation of motion of a free electron in an electric field:

d> _

m— = —ek . 4

2 (4)
If x and E have the time dependence e™*, then

—wmx = —¢eE ; x = eE/mo? . (5)

The dipole moment of one electron is —ex = —¢?E/mw?, and the polarization,

defined as the dipole moment per unit volume, is

2
P=—nex= —J%E s (6)
mw
where n is the electron concentration.

The dielectric function at frequency w is

_ D{w) P(ow)

(SI)




14 Plasmons, Polaritons, and Polarons

The dielectric function of the free electron gas follows from (6) and (7):

A plasma is a medium with equal concentration of positive and negative
charges, of which at least one charge type is mobile. In a solid the negative
charges of the conduction electrons are balanced by an equal concentration of
positive charge of the ion cores. We write the dielectric function (8) as

9

®

cs((u)=l——%7 ,
w

(10)

plotted in Fig. 1.
If the positive ion core background has a dielectric constant labeled €()
essentially constant up to frequencies well above w,, then (8) becomes

€(w) = €() — 4me*/mw’ = €()[1 - B3 /w*] , (11)

where o, is defined as
@, = 4mne’/e(w)m . (12)
Notice thate = 0 at w = @,
Dispersion Relation for Electromagnetic Waves

In a nonmagnetic isotropic medium the electromagnetic wave equation is

(CGS) o*D/at*> = *V°E

We look for a solution with E o< exp(—iwt) exp(iK * r) and D = €(w,K)E; then
we have the dispersion relation for electromagnetic waves:

(CGS) elwXKo?= K ;
This relation tells us a great deal. Consider V

e e real and > 0. For w real, K is real and a transverse electromagnetic wave
propagates with the phase velocity c/e"2.

¢ € real and < 0. For w real, K is imaginary and the wave is damped with a
characteristic length 1/[K|.

» € complex. For w real, K is complex and the waves are damped in space.
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e € = ®, This means the system has a finite response in the absence of an ap-
plied force; thus the poles of e(w,K) define the frequencies of the free
oscillations of the medium.

o € = 0. We shall see that longitudinally polarized waves are possible only at
the zeros of €.

Transverse Optical Modes in a Plasma

The dispersion relation (14) becomes, with (11) for e(w),
(CGS) &)’ = elo)(w® — Eﬁ) =K . (15)

For w < &, we have K* < 0, so that K is imaginary. The solutions of the wave
equation are of the form exp(—IKlx) in the frequency region 0 < w =< @,.
Waves incident on the medium in this frequency region do not propagate, but
will be totally reflected.

An electron gas is transparent when w > w,, for here the dielectric func-

tion is positive real. The dispersion relation in this region may be written as
(CGS) o’ = ®} + F*KYe() ; (16)

this describes transverse electromagnetic waves in a plasma (Fig. 2).

Values of the plasma frequency w, and of the free space wavelength A, =
27c/w, for electron concentrations of interest are given below. A wave will prop-
agate if its free space wavelength is less than \,; otherwise the wave is reflected.

n, electrons/cm® 102 104 104 1010
w,, s~ 57x 10 57x10®  57x10%  57x10°
A, cm 33x107%  33x107° 0.33 33

P

Transparency of Metals in the Ultraviolet. From the preceding discussion
of the dielectric function we conclude that simple metals should reflect light in
the visible region and be transparent to light at high frequencies. A comparison
of calculated and observed cutoff wavelengths is given in Table 1. The reflection
of light from a metal is entirely similar to the reflection of radio waves from the
ionosphere, for the free electrons in the ionosphere make the dielectric con-
stant negative at low frequencies. Experimental results for InSh with n = 4 X
10" ¢cm ™ are shown in Fig. 3, where the plasma frequency is near 0.09 eV.

Longitudinal Plasma Oscillations

The zeros of the dielectric function determine the frequencies of the
longitudinal modes of oscillation. That is, the condition

€lw;) =0 (17)

determines the longitudinal frequency w;, near K = 0.
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Figure 2 Dispersion relation for transverse electromagnetic waves in a plasma. The group veloc-
ity v, = dw/dK is the slope of the dispersion curve. Although the dielectric function is between
zero and ore, the group velocity is less than the velocity of light in vacuum.

Table 1 Ultraviolet transmission limits of alkali metals, in A

A, caleulated 1550 2090 2870 3920 3620
A, observed 1550 2100 3150 3400 —

1.00
o
(e}
o]
[e]
[e]
8
g
8 050 o
0=
Y]
~
o

0.05 0.10 0.15 0.20 Figure 3 Reflectance of indium antimonide
Photon energy, eV withn = 4 X 10" cm 3. (After J. N. Hodgson.)
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By the geometry of a longitudinal polarization wave there is a depolarization
field E = —47P, discussed below. Thus D = E + 47P = 0 for a longitudinal
wave in a plasma or more generally in a crystal. In ST units, D = ¢,E + P = 0.

For an electron gas, at the zero (17) of the dielectric function (10)

€lo)) =1-w)/w} =0, (18)

whence w; = w,. Thus there is a free longitudinal oscillation mode (Fig. 4)
of an electron gas at the plasma frequency described by (15) as the low-
frequency cutoff of transverse electromagnetic waves.

A longitudinal plasma oscillation with K = 0 is shown in Fig. 5 as a uni-
form displacement of an electron gas in a thin metallic slab. The electron gas is
moved as a whole with respect to the positive ion background. The displace-
ment u of the electron gas creates an electric field E = 4mneu that acts as a
restoring force on the gas.

The equation of motion of a unit volume of the electron gas of concentra-
tion n is

2,
(CGS) nmi—t'; = —neE = —dm’cu (19)
or
d*u dqme? |2
(CGS) E+w§u=0 ; wp=( m ) . (20)

This is the equation of motion of a simple harmonic oscillator of frequency @,
the plasma frequency. The expression for w, is identical with (9), which arose in
a different connection. In SI, the displacement u creates the electric field
E = neul/e,, whence w, = (ne’/e;m)"”.

A plasma oscillation of small wavevector has approximately the frequency
w,. The wavevector dependence of the dispersion relation for longitudinal
oscillations in a Fermi gas is given by

® =w, (1 + 3k%i/100) + ) (21)

where vy is the electron velocity at the Fermi energy.

Figure 4 A plasma oscillation. The arrows indicate the direction of displacement of the electrons.
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Region of ®

negative charge

(c)

Region of
positive charge

(d)

Figure 5 In (a) is shown a thin slab or film of a metal. A cross section is shown in (b), with
the positive ion cores indicated by + signs and the electron sea indicated by the gray back-
ground. The slab is electrically neutral. In (c) the negative charge has been displaced upward
uniformly by a small distance u, shown exaggerated in the figure. As in (d), this displacement
establishes a surface charge density —neu on the upper surface of the slab and -+neu on the
lower surface, where n is the electron concentration. An electric field E = 4mneu is produced
inside the slab. This field tends to restore the electron sea to its equilibrium position (b). In SI
units, E = neu/e,.

PLASMONS

A plasma oscillation in a metal is a collective longitudinal excitation of
the conduction electron gas. A plasmon is a quantum of a plasma oscillation;
we may excite a plasmon by passing an electron through a thin metallic film
(Figs. 6 and 7) or by reflecting an electron or a photon from a film. The charge
of the electron couples with the electrostatic field fluctuations of the plasma
oscillations. The reflected or transmitted electron will show an energy loss
equal to integral multiples of the plasmon energy.

Experimental excitation spectra for Al and Mg are shown in Fig. 8. A
comparison of observed and calculated values of plasmon energies is given in
Table 2; further data are given in the reviews by Raether and by Daniels. Recall
that @, as defined by (12) includes the ion core effects by use of ().
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Incident electron

Scattered electron

Figure 6 Creation of a plasmon in a metal film by inelastic scattering of an electron. The incident
electron typically has an energy 1 to 10 keV; the plasmon energy may be of the order of 10 eV. An
event is also shown in which two plasmons are created.

X ___1Cathode

Anode

I \ I Monochromator

:’: Specimen

Figure 7 A spectrometer with electrostatic analyzer
for the study of plasmon excitation by electrons. (After
]. Daniels et al.) Spherical condensor

It is equally possible to excite collective plasma oscillations in dielec-
tric films; results for several dielectrics are included. The calculated plasma
energies of Si, Ge, and InSb are based on four valence electrons per atom.
In a dielectric the plasma oscillation is physically the same as in a metal; the
entire valence electron gas oscillates back and forth with respect to the ion
cores.
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Figure 8 Energy loss spectra for electrons reflected from films of (a) aluminum and (b) magne-
sium, for primary electron energies of 2020 cV. The 12 loss peaks ohserved in Al are made up of
combinations of 10.3 and 15.3 eV losses, where the 10.3 ¢V loss is due to surface plasmons and the
15.3 ¢V loss is due to volume plasmons. The ten loss peaks observed in Mg are made up of combi-
nations of 7.1 ¢V surface plasmons and 10.6 ¢V volume plasmons. Surface plasmons are the sub-
ject of Problem 1. (After C. |. Powell and J. B. Swan.)

Table 2 Volume plasmon energies, in eV

Calculated
Material Observed fiw, ho,
S S S R NSRS e!
Metals
Li 7.12 8.02 7.96
Na 5.71 5.95 5.58
K 3.72 4.29 3.86
Mg 10.6 10.9
Al 15.3 15.8
Dielectrics
Si 16.4-16.9 16.0
Ge 16.0-16.4 16.0
InSb 12.0-13.0 12.0

ELECTROSTATIC SCREENING

The electric field of a positive charge embedded in an electron gas falls off
with increasing r faster than 1/r, because the electron gas tends to gather
around and thus to screen the positive charge. The static screening can be de-
scribed hy the wavevector dependence of the static dielectric function €(0,K).
We consider the response of the electrons to an applied external electrostatic
field. We start with a uniform gas of electrons of charge concentration —nge
superimposed on a background of positive charge of concentration nee. Let the
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positive charge background be deformed mechanically to produce a sinusoidal
variation of positive charge density in the x direction:

prx) = nge + pe(K) sin Kx . (22)

The term p,(K) sin Kx gives rise to an electrostatic field that we call the exter-
nal field applied to the electron gas.

The electrostatic potential ¢ of a charge distribution is found from the
Poisson cquation V¢ = —4mp, by (3) with E = —Vg. For the positive
charge we have

¢ =@ (K)sinKx ; p=p.(K)sinKx . (23)
The Poisson equation gives the relation
K2@ou(K) = 4mpo(K) . (24)

The electron gas will be deformed by the combined influences of the elec-
trostatic potential ¢, (K) of the positive charge distribution and of the as yet
unknown induced electrostatic potential ¢,4(K) sin Kx of the deformation of
the electron gas itself. The electron charge density is

p~(x) = —ne + pyg(K) sin Kx (25)

where p,,4(K) is the amplitude of the charge density variation induced in the
electron gas. We want to find p,,4(K) in terms of p(K).

The amplitude of the total electrostatic potential @(K) = @ (K) + ¢,q(K) of
the positive and negative charge distributions is related to the total charge density
variation p(K) = p(K) + p;,g(K) by the Poisson equation. Then, as in Eq. (24),

K’¢(K) = 4mp(K) . (26)

To go further we need another equation that relates the electron concen-
tration to the electrostatic potential. We develop this connection in what is
called the Thomas-Fermi approximation. The approximation consists in assum-
ing that a local internal chemical potential can be defined as a function of the
electron concentration at that point. Now the total chemical potential of the
electron gas is constant in equilibrium, independent of position. In a region
where there is no electrostatic contribution to the chemical potential we have

2
w= el =2 (3 (27)
at absolute zero, according to (6.17). In a region where the electrostatic poten-
tial is ¢(x), the total chemical potential (Fig. 9) is constant and equal to

1= €x{x) — ep(x) = —fﬁ[Swzn-(x)]% —eplx) = h—2[3wﬁ‘n 1 (28)
F 2m om ol
where eg(x) is the local valuc of the Fermi energy.
The expression (28) is valid for static electrostatic potentials that vary
slowly compared with the wavelength of an electron at the Fermi level;
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Chemical potential
I
0 ——
S—
\ e —
[ T
Region of normal ) \
electron concentration ~ —¢9(r) Region of enhanced

electron concentration

Figure 9 In thermal and diffusive equilibrium the chemical potential is constant; to maintain it
constant we increase the electron concentration in regions of space where the potential energy is
low, and we decrease the concentration where the potential is high.

specifically, the approximation is ¢ < kr. By a Taylor scries expansion of e,
Eq. (28) may be written as

T ) — ) = el (29)
dno

From (27) we have degy/dn, = 2€:/3n,, whence
n{x) — ng= gnneiix) . (30)

The left-hand side is the induced part of the electron concentration; thus
the Fourier components of this equation are

Pina(K) = —(Bnge’2ex)o(K) . (31)
By (26) this becomes
Pina(K) = —(6mmye’/e K)p(K) . (32)
By (3d) we have
- _ pmd(K) - 2 .
e(0.K) =1 oK) 1+ kYK ; (33)

here, after some rearrangement,
k2 = 6mngeer = 4(3/m)° nf%/a, = 4meD(e;z) (34)

where a, is the Bohr radius and D(ep) is the density of states for a free electron
gas. The approximation (33) for €(0,K) is called the Thomas-Fermi dielectric
function, and 1/k, is the Thomas-Fermi screening length, as in (40) below. For
copper with ng = 8.5 X 102 cm ™3, the screening length is 0.55 A.

We have derived two limiting expressions for the dielectric function of an
electron gas:

k2 o,
e(OK)=1+ FS : ewl)=1— = (35)

We notice that e(0,K) as K — 0 does not approach the same limit as e(w,0) as
w — 0. This means that great care must be taken with the dielectric function

405



406

near the origin of the ®-K plane. The full theory for the general function
€(w K) is due to Lindhard.’

Screened Coulomb Potential. We consider a point charge g placed in a sea
of conduction clectrons. The Poisson equation for the unscreened coulomb
potential is

Vg, = —4mgd(r) . (36)
and we know that ¢, = g/r. Let us write
@olr) = (2m) 7% [ dK @o(K) exp(iK * 1) . (37)
We use in (36) the Fourier representation of the delta function:
8(r) = 2m)° [dK exp(iK * x) , (38)

whence K2py(K) = 47g.
By (3e),
@o(K)/9(K) = €(K) ,

where @(K) is the total or screened potential. We use e(K) in the Thomas-
Fermi form (33) to find

(K) = imq (39)
Y TR
The screened coulomb potential is the transform of ¢(K):
dmg = o oak? (* .
o(r) = mp JO FEWE J—1 d(cos 8) exp(iKr cos 6)
29 (= KsinKr _9
=7 ), Ko = Fer(h) (40)

as in Fig. 10a. The screening parameter k, is defined by (34). The exponential
factor reduces the range of the coulomb potential. The bare potential g/r is
obtained on letting the charge concentration ng— 0, for then k; — 0. In the
vacuum limit o(K) = 4mq/K>.

One application of the screened interaction is to the resistivity of certain
alloys. The atoms of the series Cu, Zn, Ga, Ge, As have valences 1, 2, 3, 4, 5.
An atom of Zn, Ga, Ge, or As added substitutionally to metallic Cu has an ex-
cess charge, referred to Cu, of 1, 2, 3, or 4 if all the valence electrons join the
conduction band of the host metal. The foreign atom scatters the conduction
electrons, with an interaction given by the screened coulomb potential. This
scattering contributes to the residual clectrical resistivity, and calculations by
Mott of the resistivity increase are in fair agreement with experiment.

'A good discussion of the Lindhard dielectric function is given by J. Ziman, Principles of the
theory of solids, 2nd ed., Camnbridge, 1972, Chapter 5. The algebraic steps in the evaluation of
Ziman’s equation (5.16) are given in detail by C. Kittel, Solid state physics 22, 1 (1968), Section 6.
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0 5
0 T
EB "~ EXp (k,r)
Figure 10a Comparison of screened and unscreened % Sereenid
coulomb potentials of a static unit positive charge. The potential Unscreened
screening length 1/k, is set equal to unity. The static % energy potential
screened interaction is taken in the Thomas-Fermi ap- e -0.2F energy

proximation, which holds for low wavevectors g < ky;

More complete calculations with all wavevectors in-

cluded exhibit spatial oscillations, called Friedel 03
oscillations, in 2k and are plotted in QTS, p. 114.

Pseudopotential Component U(0). In the legend to Fig. 9.22b we stated a
result that is important in pseudopotential theory: “For very small k the poten-
tial approaches —3 times the Fermi energy.” The result, which is known as the
screened ion limit for metals, can be derived from Eq. (39). When converted to
the potential energy of an electron of charge ¢ in a metal of valency z with n,
ions per unit volume, the potential energy component at k = 0 becomes

U(0) = —ezngp(0) = —4arane/k? . (41)
The result (34) for k2 in this situation reads
k2 = 6mange/er | (42)
whence
U(0) = %7 . (43)

Mott Metal-Insulator Transition

A crystal composed of one hydrogen atom per primitive cell should always
be a metal, according to the independent-electron model, because there will al-
ways be a half-filled energy band within which charge transport can take place.
A crystal with one hydrogen molecule per primitive cell is a different matter,
because the two electrons can fill a band. Under extreme high pressure, as in
the planet Jupiter, it is possible that hydrogen occurs in a metallic form.

But let us imagine a lattice of hydrogen atoms at absolute zero: will this be
a metal or an insulator? The answer depends on the lattice constant, with small
values of @ giving a metal and large values giving an insulator. Mott made an
early estimate of the critical value a, of the lattice constant that separates the
metallic state from the insulating state: a, = 4.5a,, where a, = #*/me” is the ra-
dius of the first Bohr orbit of a hydrogen atom.

On one approach to the problem, we start in the metallic state where a
conduction electron sees a screened coulomb interaction from each proton:

Ulr) = —(%r) exp(—kyr) , (44)
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Figure 10b Scmilog plot of cbserved “zero tempera-
ture” conductivity a(0) versus donor concentration n for 1072
phosphorous donors in silicon. (After T. F. Roscnbaum,

ctal)

10° T T I

102 -

10 I

o(0), in (Q em)™!

Insulator Metal

107"

where k = 3.939n)%/a,, as in (34), where n, is the electron concentration. At
high concentrations k; is large and the potential has no bound state, so that we
must have a metal.

The potential is known to have a bound state when k, is smaller than
1.19/a,. With a bound state possible the electrons may condense about the
protons to form an insulator. The inequality may be written in terms of n, as

3.939nY%a, < 1.42/a% . (45)

With n, = 1/2* for a simple cubic lattice, we may have an insulator when a, >
2.78a,, which is not far from the Mott result 4.5a, found in a diffcrent way.

The term metal-insulator transition has come to denote situations where
the electrical conductivity of a material changes from metal to insulator as a
function of some external parameter, which may be composition, pressure,
strain, or magnetic field. The metallic phase may usually be pictured in terms
of an independent-clectron model; the insulator phase may suggest important
electron-electron interactions. Sites randomly occupied introduce new and in-
teresting aspects to the problem, aspects that lie within percolation theory.
The percolation transition is beyond the scope of our book.

When a semiconductor is doped with increasing concentrations of donor
(or acceptor) atoms, a transition will occur to a conducting metallic phase.
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Experimental results for P atoms in silicon are shown in Fig. 10b. Here the
insulator-mctal transition takes place when the concentration is so high that
the ground state wavefunctions of electrons on neighboring impurity atoms
overlap significantly.

The observed value of the critical concentration in the Si: P alloy system
is n, = 3.74 X 10" em 3, as in the figure. If we take 32 X 10% em as the
radius of the ground state of a donor in Si in the spherical approximation, then
by the Mott criterion 2, = 1.44 X 107® em. The P atoms are believed to oc-
cupy lattice sites at random, but if instead their lattice were simple cubic, the
critical Mott concentration would be

n,= 1/a? =033 %X 10%cm™ | (46)

appreciably less than the observed value. It is usual in the semiconductor liter-
ature to refer to a heavily-doped semiconductor in the metallic range as a
degenerate semiconductor.

Screening and Phonons in Metals

An interesting application of our two limiting forms of the dielectric func-
tion is to longitudinal acoustic phonons in metals. For longitudinal modes the
total dielectric function, ions plus electrons, must be zero, by (17). Provided
the sound velocity is less than the Fermi velocity of the electrons, we may use
for the electrons the Thomas-Fermi dielectric function

e (wK) =1 +KkYK® . (47)

Provided also that the ions are well-spaced and move independently, we may
use for them the plasmon €(w,0) limit with the approximate mass M.

The total dielectric function, lattice plus clectrons, but without the elec-
tronic polarizability of the ion cores, is

_ 4mne® | K
E(OJ,K) =1- W + F . (48)

At low K and o we neglect the term 1. At a zero of e(w,K) we have, with
€r = %mv%,

gdmne® o _ dmne® | €5 Lo _ m g0
Y/ R T —— A (49)
or
w=0vK ; v =(m/3M)Z v . (50)

This describes long wavelength longitudinal acoustic phonons.

In the alkali metals the result is in quitc good agreement with the
observed longitudinal wave velocity. For potassium we calculate 0 = 1.8 X
10° em 5% the observed longitudinal sound velocity at 4 K in the [100] direc-
tion is 2.2 X 10° cm s

409



410

There is another zero of €(w,K) for positive ions imbedded in an electron
sea. For high frequencies we use the dielectric contribution —wf,/(u2 of the

electron gas:

2 2
w0 =1— 4mne* _ 41mne

Mo? mw® (51)
and this function has a zero when
s_4me® 1 _1 1
ol T T i +o - (52)

This is the electron plasma frequency (20), but with the reduced mass correc-
tion for the motion of the positive ions.

POLARITONS

Longitudinal optical phonons and transverse optical phonons were dis-
cussed in Chapter 4, but we deferred treatment of the interaction of trans-
verse optical phonons with transverse clectromagnetic waves. When the two
waves are at resonance the phonon-photon coupling entirely changes the char-
acter of the propagation, and a forbidden band is established for reasons that
have nothing to do with the periodicity of the lattice.

By resonance we mean a condition in which the frequencies and wavevectors
of both waves are approximately equal. The region of the crossover of the two
dashed curves in Fig. 11 is the resonance regjon; the two dashed curves are the
dispersion relations for photons and transverse optical phonons in the absence of
any coupling betwcen them. In reality, however, there always is coupling implicit
in Maxwell’s equations and expressed by the dielectric function. The quantum of
the coupled phonon-photon transverse wave field is called a polariton.

In this section we see how the coupling is responsible for the dispersion
relations shown as solid curves in the figure. All takes place at very low values
of the wavevector in comparison with a zone boundary, because at crossover
o(photon) = ck(photon) = w(phonon) =~ 10" s !; thus k ~ 300 cm ™"

An early warning: although the symbol o, will necessarily arisc in the the-
ory, the effects do not concern longitudinal optical phonons. Longitudinal
phonons do not couple to transverse photons in the bulk of a crystal.

The coupling of the electric field E of the photon with the dielectric polar-
ization P of the TO phonon is described by the electromagnetic wave equation:

(CGS) PKE = w¥E + 47P) . (53)

At low wavevectors the TO phonon frequency w is independent of K. The po-
larization is proportional to the displacement of the positive ions relative to
the negative ions, so that the equation of motion of the polarization is like that
of an oscillator and may be written as, with P = Ngu,

—’P + P = (Ng*’M)E , (54)



14 Plasmons, Polaritons, and Polarons

| | L | | |
0 01 02 03 04 05 06 0.7 08
#icK, in eV

Figure 11 A plot of the observed energies and wavevectors of the polaritons and of the LO
phonons in GaP. The theoretical dispersion curves are shown by the solid lines. The dispersion
curves for the uncoupled phonons and photons are shown by the short, dashed lines. (After
C. H. Henry and J. J. Hopfield.)

where there are N ion pairs of effective charge ¢ and reduced mass M, per unit
volume. For simplicity we neglect the electronic contribution to the polarization.
The equations (533) and (54) have a solution when

0’ — K> 4dme® | _
NgM  of-ad| T O (55)
This gives the polariton dispersion relation, similar to that plotted in Figs. 11
and 12. At K = 0 there are two roots, @ = 0 for the photon and
w® = o} + 47Ng¥M (56)

for the polariton. Here wy is the TO phonon frequency in the absence of
coupling with photons.
The dielectric function obtained from (54) is:

4mNg*/M
E(w) =]1+4nP/E=1+ 5 2 (57)
Wr—w

If there is an optical electronic contribution to the polarization from the ion
cores, this should be included. In the frequency range from zero up through
the infrared, we write

4mNGYM
2

(58)

&(w) = &™) + —;
Wyr — W
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Figure 12 Coupled modcs of photons and transverse optical phonons in an ionic crystal. The fine
horizontal line represents ascillators of frequency wy in the absence of coupling to the electromag-
netic field, and the fine line labeled @ = cK/Ve(®) corresponds to clectromagnetic waves in the
crystal, but uncoupled to the lattice oscillators wr. The heavy lines are the dispersion relations in
the presence of coupling hetween the lattice oscillators and the electromagnetic wave. One effect
of the coupling is to create the frequency gap between w;, and wy: within this gap the wavevector is
pure imaginary of magnitude given by the braken line in the figure. In the gap the wave attenuates
as exp(—|Klx), and we see from the plot that the attenuation is much stronger near wy than ncar
o,.. The character of the branches varics with K; there is a region of mixed electric-mechanical as-
pects near the nominal crossover. Note, finally, it is intuitively obvious that the group velocity of
light in the medium is always <c, because the slope dw/dK for the actual dispersion relations
(heavy lines) is everywhere less than the slope ¢ for the uncoupled photon in free space.

in accord with the definition of e(%) as the optical dielectric constant, ob-
tained as the square of the optical refractive index.
We set @ = 0 to obtain the static dielectric function:

€(0) = &() + 4TNG* /Mo | (59)

which is combined with (58) to obtain é(w) in terms of accessible parameters:

2
e(w) = €(0) + [€(0) — ()]

2
s — @’

or

(60)

dow)=———F—=
o o

w2€(0) — we(o) () (wf - w2)

The zero of €(w) defines the longitudinal optical phonon frequency w,, as the
pole of €(w) defines wy. The zero gives

e(®)w} = e(0)w? . (61)
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Figure 13a Plot of e(w) from (60) for €(») = 2 and €(0) = 3. The dielectric constant is negative
between @ = wy and w;, = (3/2)"2w,; that is, between the pole (infinity) of €(w) and the zero of
€(w). Incident electromagnetic waves of frequencies in the shaded regions w; < @ < w;, will not
propagate in the medium, but will be reflected at the boundary.
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Figure 13b Dielectric function (real part) of SrF, measured over a wide frequency range,
exhibiting the decrease of the ionic polarizability at high frequencies. (A. von Hippel.)
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TO phonon LO phonon

Figure 14 Relative displacements of the positive and negative ions at one instant of time for a
wave in an optical mode traveling along the z axis. The planes of nodes (zero displacement) are
shown; for long wavelength phonons the nodal planes are separated by many planes of atoms. In
the transverse optical phonon mode the particle displacement is perpendicular to the wavevector
K; the macroscopic electric field in an infinite medium will lie only in the * x direction for the
mode shown, and by the symmetry of the problem 9E,/6x = 0. It follows that div E = 0 for a TO
phonon. In the longitudinal optical phonon mode the particle displacements and hence the dielec-
tric polarization P are parallel to the wavevector. The macroscopic electric field E satisfies D =
E + 47P = 0 in CGS or ¢,E + P = 0 in SI; by symmetry E and P are parallel to the z axis, and
8E,/8z # 0. Thus div E # 0 for an LO phonon, and e(o) div E is zero only if e(w) = 0.

Waves do not propagate in the frequency region for which e(w) is nega-
tive, between its pole at @ = wy and its zero at @ = w,, as in Fig. 13. For nega-
tive €, waves do not propagate because then K is imaginary for real w, and
exp(iKx) — exp(—|Klx), damped in space. The zero of (), by our earlier argu-
ment, is the LO frequency at low K, Fig. 14. Just as with the plasma frequency
o, the frequency w; has two meanings, one as the LO frequency at low K and
the other as the upper cutoff frequency of the forbidden band for propagation
of an electromagnetic wave. The value of w, is identical at both frequencies.

LST Relation
We write (61) as

— = . (62)
T

where €(0) is the static dielectric constant and e() is the high-frequency limit
of the dielectric function, defined to include the core electron contribution.
This result is the Lyddane-Sachs-Teller relation. The derivation assumed a
cubic crystal with two atoms per primitive cell. For soft modes with w; — 0 we
see that €(0) — %, a characteristic of ferroelectricity.

Undamped electromagnetic waves with frequencies within the gap cannot
propagate in a thick crystal. The reflectivity of a crystal surface is expected to
be high in this frequency region, as in Fig. 15.
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Figure 15 Reflectance of a crystal of NaCl at several temperatures, versus wavelength. The nom-
inal values of wy, and @7 at room temperature correspond to wavelengths of 38 and 61 X 107 cm,
respectively. (After A. Mitsuishi et al.)
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Figure 16 Reflectance versus wavelength of a LiF film backed by silver, for radiation incident
near 30°. The longitudinal optical phonon absorbs strongly the radiation polarized (p) in the plane
normal to the film, but absorbs hardly at all the radiation polarized (s) parallel to the film. (After
D. W. Berreman.)
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For films of thickness less than a wavelength the situation is changed. Be-
cause for frequencics in the gap the wave attenuates as exp(— |Kl|x), it is possi-
ble for the radiation to be transmitted through a film for the small values of |K]|
near w;, but for the large values of |K| near w; the wave will be reflected. By
reflection at nonnormal incidence the frequency w;, of longitudinal optical
phonons can be observed, as in Fig. 16.

Experimental values of €(0), €(«), and @; are given in Table 3, with
values of w; calculated using the L.ST relation, Eq. (62). We compare values of

Table 3 Lattice parameters, chiefly at 300 K

Static Optical

dielectric dielectric

constant constant wy, in 107! oy, in 10571
Crystal €(0) €() experimental LST relation
R R R R B O RS T,
LiH 12.9 3.6 11. 21.
LiF 89 1.9 5.8 12.
LiCl 12.0 2.7 3.6 75
LiBr 13.2 3.2 3.0 6.1
NaF 3.1 1.7 4.5 7.8
NaCl 5.9 2.25 3.1 5.0
NaBr 6.4 2.6 2.5 3.9
KF 3.5 1.5 3.6 6.1
KCl! 4.85 2.1 2.7 4.0
KI 5.1 2.7 1.9 2.6
RbF 6.5 19 2.9 54
RbI 3.5 2.6 1.4 1.9
CsCl 7.2 2.6 1.9 3.1
Csl 5.65 3.0 1.2 1.6
TICI 31.9 5.1 1.2 3.0
TIBr 29.8 5.4 0.81 1.9
AgCl 12.3 4.0 1.9 3.4
AgBr 13.1 4.6 15 2.5
MgO 9.8 2.95 7.5 14.
GaP 10.7 8.5 6.9 7.6
GaAs 13.13 10.9 5.1 5.5
GaSb 15.69 144 4.3 4.6
InP 12.37 9.6 5.7 6.5
InAs 14.55 12.3 41 4.5
InSb 17.88 15.6 3.5 3.7
SiC 9.6 6.7 14.9 17.9
C 55 5.5 25.1 25.1
Si 11.7 11.7 9.9 9.9
Ge 15.8 15.8 5.7 5.7
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w;/or obtained by inelastic neutron scattering with experimental values of
[€(0)/e()]'* obtained by dielectric measurements:

Nal KBr GaAs
w, /0y 144 + 0.05 1.39 + 0.02 1.07 + 0.02
[€(0)/e( )]V 1.45 + 0.03 1.38 + 0.03 1.08

The agreement with the LST relation is excellent.

ELECTRON-ELECTRON INTERACTION

Fermi Liquid

Because of the interaction of the conduction electrons with each other
through their electrostatic interaction, the electrons suffer collisions. Further,
a moving electron causes an inertial reaction in the surrounding electron gas,
thereby increasing the effective mass of the electron. The effects of electron-
electron interactions are usually described within the framework of the
Landau theory of a Fermi liquid. The object of the theory is to give a unified
account of the effect of interactions. A Fermi gas is a system of noninteracting
fermions; the same system with interactions is a Fermi liquid.

Landau’s theory gives a good account of the low-lying single particle exci-
tations of the system of interacting electrons. These single particle excitations
are called quasiparticles; they have a one-to-one correspondence with the
single particle excitations of the free-electron gas. A quasiparticle may be
thought of as a single particle accompanied by a distortion cloud in the elec-
tron gas. One effect of the coulomb interactions hetween electrons is to
change the effective mass of the electron; in the alkali metals the increase is
roughly of the order of 25 percent.

Electron-Electron Collisions. It is an astonishing property of metals that
conduction electrons, although crowded together only 2 A apart, travel long
distances between collisions with each other. The mean free paths for
clectron-electron collisions are longer than 10* A at room temperature and
longer than 10 cm at 1 K.

Two factors are responsible for these long mean free paths, without which
the free-electron model of metals would have little value. The most powerful
factor is the exclusion principle (Fig. 17), and the second factor is the screen-
ing of the coulomb interaction between two electrons.

We show how the exclusion principle reduces the collision frequency of an
electron that has a low excitation energy €, outside a filled Fermi sphere
(Fig. 18). We estimate the effect of the exclusion principle on the two-body
collision I + 2 — 3 + 4 between an electron in the excited orbital 1 and an
electron in the filled orbital 2 in the Fermi sea. It is convenient to refer all
energies to the Fermi level p taken as the zero of energy; thus e, will be
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Figure 17 A collision between two electrons
of wavevectors k; and k,. After the collision
the particles have wavevectors k; and k. The
Pauli exclusion principle allows collisions only
to final states k;, k, which were vacant before
the collision.

Fermi sphere

Sphere of
final states

Figure 18 In (a) the electrons in initial orbitals 1 and 2 collide. If the orbitals 3 and 4 are initially
vacant, the electrons 1 and 2 can occupy orbitals 3 and 4 after the collision. Energy and momentum
are conserved. In (b) the electrons in initial orbitals 1 and 2 have no vacant final orbitals available
that allow energy to be conserved in the collision. Orbitals such as 3 and 4 would conserve energy
and momentum, but they are already filled with other electrons. In (c) we have denoted with X the
wavevector of the center of mass of 1 and 2. All pairs of orbitals 3 and 4 conserve momentum and
energy if they lie at opposite ends of a diameter of the small sphere. The small sphere was drawn
from the center of mass to pass through 1 and 2. But not all pairs of points 3, 4 are allowed by the
exclusion principle, for both 3, 4 must lie outside the Fermi sphere; the fraction allowed is =¢/ /€.
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positive and €, will be negative. Because of the exclusion principle the orbitals
3 and 4 of the electrons after collision must lie outside the Fermi sphere, all
orbitals within the sphere being already occupied; thus both encrgies €;, €,
must be positive referred to zero on the Fermi sphere.

The conservation of energy requires that le;| < €, for otherwise €; + €, =
€, + € could not be positive. This means that collisions are possible only if the
orbital 2 lies within a shell of thickness €, within the Fermi surface, as in Fig.
18a. Thus the fraction ~¢/ey of the electrons in filled orbitals provides a suit-
able target for electron 1. But even if the target electron 2 is in the suitable
energy shell, only a small fraction of the final orbitals compatible with conser-
vation of energy and momentum are allowed by the cxclusion principle. This
gives a second factor of €,/

In Fig. 18¢ we show a small spherc on which all pairs of orbitals 3, 4
at opposite ends of a diameter satisfy the conservation laws, but collisions can
occur only if both orbitals 3, 4 lie outside the Fermi sea. The product of the
two fractions is (&;/ex) If €, corresponds to 1 K and €7 to 5 X 10* K, we have
(e/€r)* = 4 X 107", the factor by which the exclusion principle reduces the
collision rate.

The argument is not changed for a thermal distribntion of electrons at
a low temperature such that kT < e We replace €; by the thermal energy
=~kyT, and now the rate at which clectron-electron collisions take place is re-
duced below the classical value by (kzT/e,)?, so that the effective collision
cross section o is

ag= (kBT/EF)zUO N (63)

where oy is the cross section for the electron-electron interaction.

The interaction of one electron with another has a range of the order of
the screening length 1/k; as in (34). Numerical calculations give the effective
cross section with screening for collisions between electrons as of the order of
107" em® or 10 A% in typical metals. The effect of the electron-gas background
in electron-electron collisions is to reduce o, below the value expected from
the Rutherford scattering equation for the unscreened coulomb potential.
However, much the greater reduction in the cross section is caused by the
Pauli factor (kT/ep)™.

At room temperature in a typical metal kpT/er is ~107% so that
o ~ 107*g, ~107" cm® The mean free path for electron-electron collisions is
¢ = l/no ~ 107* cm at room temperature. This is longer than the mean free
path due to electron-phonon collisions by at least a factor of 10, so that at
room temperature collisions with phonons are likely to be dominant. At liquid
helium temperatures a contribution proportional to T has been found in the
resistivity of a number of metals, consistent with the form of the electron-
electron scattering cross section (63). The mean free path of electrons in in-
dium at 2 K is of the order of 30 cm, as expected from (63). Thus the Pauli
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principle explains one of the central questions of the theory of metals: how do
the electrons travel long distances without colliding with each other?

ELECTRON-PHONON INTERACTION: POLARONS

The most common effect of the electron-phonon interaction is seen in the
temperature dependence of the electrical resistivity, which for pure copper is
1.55 microhm-cm at 0°C and 2.28 microhm-cm at 100°C. The electrons are
scattered by the phonons, and the higher the temperature, the more phonons
there are and hence more scattering. Above the Debye temperature the num-
ber of thermal phonons is roughly proportional to the absolute temperature,
and we find that the resistivity increases approximately as the absolute tem-
perature in any reasonably pure metal in this temperature region.

A more subtle effect of the electron-phonon interaction is the apparent in-
crease in electron mass that ocenrs because the electron drags the heavy ion
cores along with it. In an insulator the combination of the electron and its
strain field is known as a polaron, Fig. 19. The effect is large in ionic crystals
because of the strong coulomb interaction between ions and electrons. In co-
valent crystals the effect is weak because neutral atoms have only a weak inter-
action with electrons.

The strength of the elcctron-lattice interaction is measured by the dimen-
sionless coup]ing constant « given by

1 deformation energy
_a —1

5 o : (64)

where @y is the longitudinal optical phonon frequency near zero wavevector.
We view za as “the number of phonons which surround a slow-moving elec-
tron in a crystal.”

Values of a deduced from diverse experiments and theory are given in
Table 4, after F. C. Brown. The values of a are high in ionic crystals and low in
covalent crystals. The values of the ellective mass m,; of the palaron are from
cyclotron resonance experiments. The values given for the band effective mass
pot- The last row in the table gives the factor mp,,/m”
by which the band mass is increased by the deformation of the lattice.

Theory relates the effective mass of the polaron m_, to the effective band
mass m’ of the electron in the undeformed lattice by the relation

* .
m_ werc calculated from m

_ 2
1 — 0.0008c: ); (65)

My = m* .
b (1 — Lo + 000340

for a < 1 this is approximately m'(1 + ta). Because the coupling constant « is
always positive, the polaron mass is greater than the bare mass, as we expect
from the inertia of the ions.
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Figure 19 The formation of a polaron. (a) A conduction electron is shown in a rigid lattice of
an ionic crystal, KCl. The forces on the ions adjacent to the electron are shown. (b) The electron is
shown in an elastic or deformable lattice. The electron plus the associated strain field is called a
polaron. The displacement of the ions increases the effective inertia and, hence, the effective
mass of the electron; in KCl the mass is increased by a factor of 2.5 with respect to the band theory
mass in a rigid lattice. In extreme situations, often with holes, the particle can become self-
trapped (localized) in the lattice. In covalent crystals the forces on the atoms from the electron are
weaker than in ionic crystals, so that polaron deformations are small in covalent crystals.

It is common to speak of large and small polarons. The electron associated
with a large polaron moves in a band, but the mass is slightly enhanced; these
are the polarons we have discussed above. The electron associated with a small
polaron spends most of its time trapped on a single ion. At high temperatures
the electron moves from site to site by thermally activated hopping; at low
temperatures the electron tunnels slowly through the crystal, as if in a band of
large effective mass.
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»

*
poi> and band masses m” for

Table 4 Polaron coupling constants a, masses m

electrons in the conduction band

Crystal ‘ KCl Br AgCl AgB V ZuO PbS InSb i CaAs
e 3.97 3.52 2.00 1.69 085 016 0014  0.06
m;,,,llm 1.25 0.93 0.51 0.33 — — 0.014 —
m /m 050 043 0.35 0.24 — — 0.014 —
myg/m’ 2.5 2.2 1.5 14 — — 1.0 —

Holes or electrons can become self-trapped by inducing an asymmetric
local deformation of the lattice. This is most likely to occur when the band
edge is degenerate and the crystal is polar (such as an alkali halide or silver
halide), with strong coupling of the particle to the lattice. The valence band
edge is more often degeneratc than the conduction band edge, so that holes
are more likely to be self-trapped than are electrons. Holes appear to be self-
trapped in all the alkali and silver halides.

Tonic solids at room temperature generally have very low conductivities
for the motion of ions through the crystal, less than 1078 (ohm-em) 7L, but a
family of compounds has been reported with conductivities of 0.2 (ohm-cm) ™
at 20°C. The compounds have the composition MAg,Is, where M denotes K,
Rb, or NH,. The Ag" ions occupy only a fraction of the equivalent lattice sites
available, and the ionic conductivity proceeds by the hopping of a silver ion
from one sitc to a nearby vacant site. The crystal structures also have parallel
open channels.

PEIERLS INSTABILITY OF LINEAR METALS

Consider a one-dimensional metal with an electron gas filling all conduc-
tion band orbitals out to the wavevector k,, at absolute zero of temperature.
Peierls suggested that such a linear metal is unstable with respect to a static
lattice deformation of wavevector G = 2kg. Such a deformation creates an en-
ergy gap at the Fermi surface, thereby lowering the encrgy of electrons below
the energy gap, Fig. 20. The deformation proceeds until limited by the in-
crease of elastic energy; the equilibrium deformation A is given by the root of

d

d_A(Eelectmuic + Eclustic) =0. (66)

Consider the elastic strain A cos 2kpx. The spatial-average elastic energy
per unit length is E . = 5CA%Xcos*2kmx) = 3CA?, where C is the force
constant of the linear metal. We next calculate E . gronie- Suppose that the ion
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Energy gap introduced
by Peierls instability

Free electron energy

o
? Electron energy
] after introduction
of energy gap
| Figure 20 Peierls instability. Electrons with wave-
kg vectors near the Fermi surface have their energy

Wavevector lowered by a lattice deformation.

contribution to the lattice potential seen by a conduction electron is propor-
tional to the deformation: U(x) = 2AA cos 2kpx. From (7.51) we have

ex = (BY2m)(k: + K?) * [4(h%k%2m)(R2KY/2m) + AZA%]V2 | (67)

It is convenient to define

xx = Km 5 xp=h%kim ; x = hKkp/m .

>

We retain the — sign in (67) and form
dex . —AA
A~ (g + AR

whence, with dK/ar as the number of orbitals per unit length,

electroruc _ QJ- d K deK 2A2 A/ J- ke dK
™) o (xpxg + A2A%)V2

—(2A°A/mr)(kp/xp) f ' (j—’;ﬂm —(2A2A/7)(kp/xg) sinh™Hap/AA) .
0
We put it all together. The equilibrium deformation is the root of
sCA — (2A’mA/mh%kp) sinh™Y(A%kYmAA) =0 .
The root A that corresponds to the minimum energy is given by

1% /mAA = sinh(—#%kpmC/4mA?) |

whence
|A|A = (25%k%/m) exp(—#ZkpmC/AmA®) | (69)

if the argument of the sinh in (68) is > 1. We assume kp < § kpuy-



424

The result is of the form of the energy gap equation in the BCS theory of
superconductivity, Chapter 10. The deformation A is a collective effect of all
the electrons. If we set W = #%2Z/2m = conduction hand width; N(0) =
2m/mh%ky = density of orbitals at Fermi level; V = 24%C = effective electron-
electron interaction energy, then we can write (69) as

|A|A =~ AW exp[ - I/N(OV] , (70)

which is analogous to the BCS energy gap equation. An example of a Peierls
insulator is TaS;.

SUMMARY
(In CGS units)

* The dielectric function may be defined as
pexl(‘”vK)
Pex(@.K) + pypg(w.K) 7
in terms of the applied and induced charge density components at w,K.

ewK) =

* The plasma frequency @, = [4mne?/e(=)m]"? is the frequency of the uniform

collective longitudinal oscillation of the electron gas against a background of
fixed positive ions. It is also the low frequency cutoff for propagation of
transverse electromagnetic waves in the plasma.

* The poles of the dielectric function define w; and the zeroes define w;.

* In a plasma the coulomb interaction is screened; it becomes (g/r) exp(—k,r),
where the screening length 1/k, = (ex/6mn ).

* A metal-insulator transition may occur when the nearest-neighbor separa-
tion ¢ becomes of the order of 4a,, where a, is the radius of the first Bohr
orbit in the insulator. The metallic phasc cxists at smaller values of a.

* A polariton is a quantum of the coupled TO phonon-photon fields. The cou-
pling is assured by the Maxwell equations. The spectral region w; < o < w,
is forbidden to electromagnctic wave propagation.

* The Lyddane-Sachs-Teller rclation is wf/w% = €(0)/e().

Problems

1. Surface plasmons. Consider a semi-infinite plasma on the positive side of the
plane z = 0. A solution of Laplace’s equation V2¢ = 0 in the plasma is ¢,(x;z) =
A cos kx e™%, whence E,, = kA cos kx e *; E,; = kA sin kx e *. (a)Show that in the
vacunm gy(x,2) = A cos kx e for z < 0 satisfies the boundary condition that the
tangential component of E be continuous at the boundary; that is, find E,.
(b) Note that D, = €(w)E;; D, = E,. Show that the boundary condition that the
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normal component of D be continuous at the houndary requires that e(w) = —1,
whence from (10) we have the Stern-Ferrell result:

2:
s

Lo (71)

© P

for the frequency a, of a surface plasma oscillation.

. Interface plasmons. We consider the plane interface z = 0 between metal 1 at

z > 0 and metal 2 at z < 0. Metal 1 has bulk plasmon frequency w,;; metal 2 has

wys- The dielectric constants in both metals are those of {rec-clectron gases. Show
that surface plasmons associated with the interface have the frequency

w= [%(wzl + wf,z)]m .

. Alfvén waves. Consider a solid with an cqual concentration n of electrons of mass

m, and holes of mass my, This situation may arisc in a semimetal or in a compen-
sated semiconductor. Place the solid in a uniform magnetic field B = Bz. Intro-
duce the coordinate ¢ = x + iy appropriate for circularly polarized motion, with ¢
having time dependence ¢™". Let w, = #B/m.c and w;, = eB/mye. (a) In CGS units,
show that £, = eE'/mo(o + v,); & = —eE" /myo(w — w;) are the displacements
of the electrons and holes in the electric field E™ ¢ = (E, + iE,)) ¢ ot
(b) Show that the dielectric polarization P* = ne(g, — £,) in the regime o <€ w,, ,
may be written as P* = nc’(m;, + m,)E*/B% and the dielectric function e(w) =
€ + 4TPT/ET = ¢ + 4mc’p/B?, where € is the dielectric constant of the host lat-
tice and p = n(m, + my) is the mass density of the carriers. If €, may be neglected,
the dispersion relation @®(w) = ¢*K* becomes, for electromagnetic waves propa-
gating in the z direction, @® = (B¥/4mp)K?. Such waves are known as Alfvén waves:
they propagate with the constant velocity B/(4mp)®. If B = 10 kG; n = 10" cm ™%,
m = 107%" g, the velocity is ~10% cm s~ Alfvén waves have been observed in semi-
metals and in electron-hole drops in germanium (Chapter 15).

. Helicon waves. (a) Employ the method of Problem 3 to treat a specimen with

only one carrier type, say holes in concentration p, and in the limit © €< w, =
eB/myc. Show that elw) = 4mpe’/myww;, where D*(w) = €(w)E*(w). The term ¢
in € has been neglected. (b) Show further that the dispersion relation becomes o =
(Be/4pe)K, the helicon dispersion relation, in CGS. For K= 1c¢m™' and B =
1000 G, estimate the helicon frequency in sodium metal. (The frequency is nega-
tive; with circular-polarized modes the sign of the frequency refers to the sense of
the rotation.)

. Plasmon mode of a sphere. The frequency of the uniform plasmon mode of a

sphere is determined by the depolarization field E = —47P/3 of a sphere, where
the polarization P= —ner, with r as the average displacement of the electrons of
concentration n. Show from F = ma that the resonance frequency of the electron
gas is w§ = 4mne*/3m. Because all electrons participate in the oscillation, such an
excitation is called a collective excitation or collective mode of the electron gas.

. Magnetoplasma frequency. Use the method of Problem 5 to find the frequency

of the uniform plasmon mede of a sphere placed in a constant uniform magnetic
field B. Let B he along the z axis. The solution should go to the cyclotron
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frequency w, = eB/mc in one limit and to @y = (4mme*3m)¥? in another limit. Take
the motion in the xy plane.

7. Photon branch at low wavevector. (a) Find what (56) becomes when &()

.

10.

is taken into account. (b) Show that there is a solution of (55) which at low
wavevector is @ = cK/Ve(0), as expected for a photon in a crystal of refractive
index n? = e.

Plasma frequency and electrical conductivity. An organic conductor has been
found by optical studies to have @, = 1.80 X 10" s™! for the plasma frequency,
and 7 = 2.83 X 107** 5 for the electron relaxation time at room temperature.
(a) Calculate the electrical conductivity from these data. The carrier mass is not
known and is not needed here. Take €(®) = 1. Convert the result to units
(© em)™. (b) From the crystal and chemical structure, the conduction electron

concentration is 4.7 X 108 em 2. Calculate the electron effective mass m”.

. Bulk modulus of the Fermi gas. Show that the contribution of the kinetic en-

ergy to the bulk modulus of the electron gas at absolute zero is B = jamez, It is
convenient to use (6.60). We can use our result for B to find the velocity of sound,
which in a compressible fluid is v = (B/p)12, where v = (m/3M)12¢y, in agreement
with (46). These estimates neglect attractive interactions.

Response of electron gas. It is sometimes stated erroneously in books on electro-
magnetism that the static conductivity o, which in gaussian units has the dimensions
of a frequency, measures the response frequency of a metal to an electric ficld sud-
denly applied. Criticize this statement as it might apply to copper at room tempera-
ture. The resistivity is ~1uohm-cm; the electron concentration is 8 X 102 cm™; the
mean free path is ~400 A; the Fermi velocity is 1.6 X 108 em s, You will not neccs-
sarily need all these data. Give the order of magnitude of the three frequencies o,
w,, and 1/7 that might be relevant in the problem. Set up and solve the problem
of the response x(t) of the system to an electric field E(t < 0) = 0, E(t > 0) = 1.
The system is a sheet of copper; the field is applied normal to the sheet. Include the
damping. Solve the differential cquation by elementary methods.

. Gap plasmons and the van der Waals interaction. Consider two semi-infinite

media with plane surfaces z = 0, d. The dielectric function of the identical media
is €(w). Show that for surface plasmons symmetrical with respect to the gap the
frequency must satisfy e(w) = —tanh (Kd/2), where K* = kZ + k]. The electric po-
tential will have the form

¢ = flz) explikx + iky — iwt) .

Look for nonretarded solution—that is, solutions of the Laplace equation rather
than of the wave equation. The sum of the zero-point energy of all gap modes
is the nonretarded part of the van der Waals attraction between the two
specimens—see N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Physics
Letters 26A, 307 (1968).

“This problem is somewhat difficult.



