1. Geometrical Constructions

e Construction of perpendicular bisector of a line segment
Perpendicular Bisector: A line that bisects a line segment at 90° is called the perpendicular bisector of the line
segment.
Example:
Construct a perpendicular bisector of the line segment AB of length 8.2 cm.
Solution:

(1) Draw a line segment AB = 8.2 cm using a ruler.

(2) Draw two arcs taking A and B as centres and radius more than 4.1 cm on both sides of AB. Let the arcs
intersect at points P and Q. Join PQ.
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PQ is the required perpendicular bisector of line segment AB.

Note: We can verify the validity of construction of perpendicular bisector of a line segment using congruence.

e Construction Of Bisector Of An Angle
Bisector of an angle: A ray that divides an angle into two equal parts is called the bisector of the angle.
Example:
Construct 55° by bisecting an angle of measure 110°.

Solution:

(1) With the help of a protractor, draw £POQ = 110°.

(i1) Draw an arc of any radius taking O as centre. Let this arc intersect the arms OP and OQ at points X and Y
respectively.

(1i1) Taking X and Y as centres and radius more than half of XY, draw arcs to intersect each other, say at R. Join
ray OR.
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Now, OR is the bisector of £ZPOQ i.e., ZPOR = ZROQ = 55°

Note: We can verify the validity of construction of angle bisector using congruence.

e Construction of incircle of given triangle:
Example:

Construct incircle of a right APQR, right angled at Q, such that QR =4 cm and PR =6 cm.

Solution:

Step 1: Draw a APQR right-angled at Q with QR =4 cm and PR = 6 cm.

Step 2: Draw bisectors of £Q and £R. Let these bisectors meet at the point O.
Step 3: From O, draw OX perpendicular to the side QR.

Step 4: With O as centre and radius equal to OX, draw a circle.
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The circle so drawn touches all the sides of APQR and is the required incircle of APQR.
e Construction of circumcircle of given triangle:
Example:
Construct the circumcircle of APQR such that £Q = 60°, QR =4 cm, and QP = 5.7 cm.

Solution:



Step 1: Draw a triangle PQR with £Q = 60°, QR =4 c¢cm, and QP = 5.7 cm

Step 2: Draw perpendicular bisector of any two sides, say QR and PR. Let these perpendicular bisectors
meet at point O.

Step 3: With O as centre and radius equal to OP, draw a circle.

The circle so drawn passes through the points P, Q, and R, and is the required circumcircle of APQR.
e A triangle can be constructed if all its sides are known.

Example:
Construct a triangle whose sides are 3 cm, Scm and 7 cm.

Solution:

1. Draw a line segment AB of length 7 cm. With A as centre and radius equal to 3 cm, draw an arc.

2. With B as centre and radius 5 cm, draw another arc cutting the earlier drawn arc at C.

3. Join AC and BC to get AABC.
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A triangle can be constructed if the length of two sides and angle between them are given.

Example:
Construct AABC where BC =7 cm, AB =15 cm and ZABC = 30°

Solution:

1. Draw a line segment BC of length 7 cm and at B draw a ray BX, making an angle of 30° with BC.
2. With B as centre and radius equal to 5 cm, draw an arc cutting BX at A.

3. Join AC to get the required AABC.
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Example: Construct APQR, where 2PQR = 60°, ZPRQ =45° and QR =4 cm.

Solution:
1. Draw a line segment QR of length 4 cm and draw a ray QX, making an angle of 60° with QR
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2. Now, draw ray RY, making an angle of 45° with QR and intersecting QX at P. The resulting APQR
is the required triangle.
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. A right-angled triangle can be constructed if the length of one of its sides or arms and the length of
its hypotenuse are known.

Example:

Construct AXYZ, right-angled at Y, with XZ =5 cm and YZ =3 cm.
Solution:

1. Draw a line segment YZ of length 3 cm. AtY, draw MY LYZ.

2. With Z as centre and radius equal to 5 cm, draw an arc intersecting MY at X. Join XZ to get the
required AXYZ.
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1. Congruence of triangles:
In the given triangles, AABC and ADEF are of the same shape and same size so they are congruent.
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(i) Two scalene triangles are congruent for only one correspondence.

For example, in APQR and AXYZ, if £P
side YZ, side PR = side XZ then APQR

= £X,£Q = Y, £R = £Z and side PQ = side XY, side QR =
= AXYZ.

(i1) Two isosceles triangles are congruent for two correspondences.

For example, for AABC and AXYZ with AB = AC and XY = XZ, the possible correspondences are ABC «»
XYZ and ABC < XZY. Thus, AABC = AXYZ or AABC = AXZY

(111) Two equilateral triangles are congruent by all the possible correspondences.

2. Congruence of quadrilaterals:

Two quadrilaterals are congruent if they are of same shape and same size.

For example, in ZABCD and ZPQRS, if AB = PQ,BC = QR,CD = RS, DA = SPand ZA = /P, /B =
2Q.,2C = /R, 2D = £Sthen ZABCD = ZPQRS.

3. Congruence of circles:

Circles having equal radii are congruent.



