

DPP No. 46

Total Marks : 28

Max. Time : 28 min.

## Topics : Straight Lines, Solutions of Triangles

| Type of Questions                                     |                   | M.M., | Min |
|-------------------------------------------------------|-------------------|-------|-----|
| Single choice Objective (no negative marking) Q.1,2,3 | (3 marks, 3 min.) | [9,   | 9]  |
| Multiple choice objective (no negative marking) Q.4   | (5 marks, 4 min.) | [5,   | 4]  |
| True or False (no negative marking) Q.5               | (2 marks, 2 min.) | [2,   | 2]  |
| Subjective Questions (no negative marking) Q.7        | (4 marks, 5 min.) | [4,   | 5]  |
| Match the Following (no negative marking) Q.6         | (8 marks, 8 min.) | [8,   | 8]  |

**1.** Equation of line inclined at an angle of  $45^{\circ}$  with positive x-axis and dividing the line joining the points (3, -1) and (8, 9) in the ratio 2 : 3 internally, is

(A) x - y - 2 = 0(B) 3x - 3y + 1 = 0(C)  $\sqrt{3} x - \sqrt{3} y + 2 = 0$ (D) None of these

2. The straight line 2x + 5y - 1 = 0 and 4ax - 5y + 2 = 0 are mutually perpendicular, then the value of 'a' will be

(A) 
$$\frac{25}{8}$$
 (B)  $-\frac{1}{2}$  (C)  $-\frac{25}{8}$  (D)  $\frac{1}{2}$ 

- **3.** A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y intercept is: (A) 1/3 (B) 2/3 (C) 1 (D) 4/3
- 4. The vertices of a triangle are A( $x_1$ ,  $x_1$  tan  $\alpha$ ), B( $x_2$ ,  $x_2$  tan  $\beta$ ) and C( $x_3$ ,  $x_3$  tan  $\gamma$ ). If the circumcentre of triangle

ABC coincides with the origin and H(a, b) be the orthocentre, then  $\frac{a}{b}$  =

(A) 
$$\frac{x_1 + x_2 + x_3}{x_1 \tan \alpha + x_2 \tan \beta + x_3 \tan \gamma}$$
(B) 
$$\frac{x_1 \cos \alpha + x_2 \cos \beta + x_3 \cos \gamma}{x_1 \sin \alpha + x_2 \sin \beta + x_3 \sin \gamma}$$
(C) 
$$\frac{\tan \alpha + \tan \beta + \tan \gamma}{\tan \alpha \cdot \tan \beta \cdot \tan \gamma}$$
(D) 
$$\frac{\cos \alpha + \cos \beta + \cos \gamma}{\sin \alpha + \sin \beta + \sin \gamma}$$

- **5.** The circumcentre, orthocentre, incentre and centroid of the triangle formed by the points A(1, 2), B(4, 6), C(-2, -1) are collinear. [True or False]
- **6.** Find the equations to the straight lines which pass through the point (1, -2) and cut off equal distances from the two axes.
- 7. Match entry of column-I with **one or more than one** entries of column-II.

## Column-I

- (A) Four lines x + 3y 10 = 0, x + 3y 20 = 0, 3x - y + 5 = 0 and 3x - y - 5 = 0 form a figure which is
- (B) The point A(1, 2), B(2, -3), C(-1, -5) and D(-2, 4) in order are vertices of
- (C) The lines 7x + 3y 33 = 0, 3x 7y + 19 = 0, 3x - 7y - 10 = 0 and 7x + 3y - 4 = 0 form a figure which is
- (D) Four lines 4y 3x 7 = 0, 3y 4x + 7 = 0, 4y - 3x - 21 = 0, 3y - 4x + 14 = 0 form a figure which is

## Column-II

- (p) a quadrilateral which is neither a parallelogram nor a trapezium
   (q) a parallelogram
- (r) a rectangle of area 10 sq.units
- (s) a square

## **Answers Key**

- **1.** (A) **2.** (A) **3.** (D) **4.** (A)(D)
- **5.** False **6.** x + y + 1 = 0, x y 3 = 0
- 7. (A)  $\rightarrow$  (q,r,s), (B)  $\rightarrow$  (p), (C)  $\rightarrow$  (q,s), (D)  $\rightarrow$  (q)