

					Conic Section: General
		Basic Level			
1.	The equation $2x^2 + 3y^2 - 8x - 18y + 3$	35 = k represents			[IIT Screening 1994
	(a) No locus, if $k > 0$ (b) An	ellipse, if $k < 0$ (c)	A point, if $k = 0$	(d)	A hyperbola, if $k > 0$
2.	The equation $14x^2 - 4xy + 11y^2 - 44x$	x - 58y + 71 = 0 represents			[BIT 1986]
	(a) A circle (b) An	ellipse (c)	A hyperbola	(d)	A rectangular hyperbola
3.	Eccentricity of the parabola $x^2 - 4x - 4$	4y + 4 = 0 is			[Rajasthan PET 1996]
	(a) $e = 0$ (b) $e =$	= 1 (c)	<i>e</i> > 4	(d)	e = 4
4.	$x^2 - 4y^2 - 2x + 16y - 40 = 0$ represent	nts			[DCE 1999]
	(a) A pair of straight lines (b) An	ellipse (c)	A hyperbola	(d)	A parabola
5.	The centre of the conic represented by the	ne equation $2x^2 - 72xy + 23y^2 - 4$	x - 28y - 48 = 0 is		
	(a) $\left(\frac{11}{15}, \frac{2}{25}\right)$ (b) $\left(\frac{2}{25}\right)$	$\left(\frac{2}{5}, \frac{11}{25}\right)$ (c)	$\left(\frac{11}{25}, -\frac{2}{25}\right)$	(d)	$\left(-\frac{11}{25},-\frac{2}{25}\right)$
		Definition, Standa	rd Equation of Parabola a	nd T	erms related to Parabola
\square		Dagio Loval			
		Basic Level			
6.	The equation of the parabola with focus	(a,b) and directrix $\frac{x}{a} + \frac{y}{b} = 1$ is given	ren by		[MP PET 1997]
	(a) $(ax - by)^2 - 2a^3x - 2b^3y + a^4 + a^4$	$a^2b^2 + b^4 = 0$ (b)	$(ax + by)^2 - 2a^3x - 2b^3y -$	a ⁴ +	$-a^2b^2 - b^4 = 0$
	(c) $(ax - by)^2 + a^4 + b^4 - 2a^3x = 0$	(d)	$(ax - by)^2 - 2a^3x = 0$		
7.	The equation of the parabola with focus	(3, 0) and the directrix $x + 3 = 0$ is			[EAMCET 2002]
	(a) $y^2 = 3x$ (b) y^2	= 2x (c)	$y^2 = 12x$	(d)	$y^2 = 6x$
8.	The parabola $y^2 = x$ is symmetric about	t		. ,	[Kerala (Engg.) 2002]
	(a) <i>x</i> -axis (b) <i>y</i> -av	xis (c)	Both <i>x</i> -axis and <i>y</i> -axis	(d)	The line $y = x$
9.	The focal distance of a point on the parab	bola $y^2 = 16x$ whose ordinate is tw	ice the abscissa, is		
	(a) 6 (b) 8	(c)	10	(d)	12
10.	The points on the parabola $y^2 = 12x$, w	whose focal distance is 4, are			
	(a) $(2,\sqrt{3}),(2,-\sqrt{3})$ (b) $(1,2)$	$(2\sqrt{3}), (1, -2\sqrt{3})$ (c)	(1, 2)	(d)	None of these
11.	The coordinates of the extremities of the	latus rectum of the parabola $5y^2 =$	4x are		
	(a) $(1/5, 2/5); (-1/5, 2/5)$ (b) $(1/5) = (1$	(5, 2/5); (1/5, -2/5) (c)	(1/5,4/5);(1/5,-4/5)	(d)	None of these
12.	If the vertex of a parabola be at origin and	ad directrix be $x + 5 = 0$, then its la	tus rectum is		[Rajasthan PET 1991]

	(a) 5	(b) 10	(c) 20	(d) 40
3.	The equation of the lines	joining the vertex of the parabola y^2	x = 6x to the points on it whose absorb	cissa is 24, is
	(a) $y \pm 2x = 0$	(b) $2y \pm x = 0$	(c) $x \pm 2y = 0$	(d) $2x \pm y = 0$
4.	PQ is a double ordinate	of the parabola $y^2 = 4ax$. The locus	s of the points of trisection of PQ is	
	(a) $9y^2 = 4ax$	(b) $9x^2 = 4ay$	$(c) 9y^2 + 4ax = 0$	(d) $9x^2 + 4ay = 0$
5.	The equation of a parabo	la is $25\left\{(x-2)^2 + (y+5)^2\right\} = (3x+4)^2$	$(y-1)^2$. For this parabola	
	(a) Vertex = $(2, -5)$		(b) Focus $= (2,-5)$	
	(c) Directrix has the equ	uation $3x + 4y - 1 = 0$	(d) Axis has the equation	on $3x + 4y - 1 = 0$
6.	The co-ordinates of a poi	int on the parabola $y^2 = 8x$, whose	focal distance is 4, is	
	(a) (2,4)	(b) (4,2)	(c) $(2, -4)$	(d) $(4, -2)$
7.	The equation of the paral	bola with $(-3, 0)$ as focus and $x + 5 =$	= 0 as directrix, is [Rajastha	m PET 1985, 86, 89; MP PET 1991]
	(a) $x^2 = 4(y+4)$	(b) $x^2 = 4(y-4)$	(c) $y^2 = 4(x+4)$	(d) $y^2 = 4(x-4)$
		Ad	vance Level	
8.	A double ordinate of the	parabola $y^2 = 8px$ is of length $16p$. The angle subtended by it at the ve	ertex of the parabola is
	(a) $\frac{\pi}{-}$	(b) $\frac{\pi}{-}$	(c) $\frac{\pi}{-}$	(d) None of these
	4	2	3	
		2		
9.	If $(2,-8)$ is at an end of a	focal chord of the parabola $y^2 = 32$	x; then the other end of the chord is	3
.9.	If (2,-8) is at an end of a (a) (32, 32)	focal chord of the parabola $y^2 = 32$ (b) (32,-32)	x; then the other end of the chord is (c) $(-2, 8)$	(d) None of these
.9. .0.	If (2,-8) is at an end of a (a) (32, 32) A square has one vertex	focal chord of the parabola $y^2 = 32$ (b) (32,-32) at the vertex of the parabola $y^2 = 44$	 x ; then the other end of the chord is (c) (-2,8) ax and the diagonal through the vertice 	(d) None of these tex lies along the axis of the parabola. If the
9. 0.	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagona	focal chord of the parabola $y^2 = 32$ (b) (32,-32) at the vertex of the parabola $y^2 = 46$ I lie on the parabola, the co-ordinates	x; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are	(d) None of these tex lies along the axis of the parabola. If the (1)
9. 0.	If $(2,-8)$ is at an end of a (a) $(32,32)$ A square has one vertex ends of the other diagona (a) $(4a,4a)$	focal chord of the parabola $y^2 = 32$ (b) (32,-32) at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a, -4a)$	x; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vert of the vertices of the square are (c) (0, 0)	(d) None of these tex lies along the axis of the parabola. If the (d) (8 <i>a</i> ,0)
9. 0.	If $(2,-8)$ is at an end of a (a) $(32,32)$ A square has one vertex ends of the other diagona (a) $(4a,4a)$	focal chord of the parabola $y^2 = 32$ (b) (32,-32) at the vertex of the parabola $y^2 = 4a$ at lie on the parabola, the co-ordinates (b) (4a,-4a)	x; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vert of the vertices of the square are (c) (0,0)	(d) None of these tex lies along the axis of the parabola. If the (d) (8 <i>a</i> ,0) <i>Other standard forms of Parabola</i>
9.	If (2,-8) is at an end of a (a) (32, 32) A square has one vertex ends of the other diagona (a) (4 <i>a</i> , 4 <i>a</i>)	focal chord of the parabola $y^2 = 32$ (b) (32,-32) at the vertex of the parabola $y^2 = 4a$ at lie on the parabola, the co-ordinates (b) $(4a, -4a)$	 x ; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vertex of the vertices of the square are (c) (0, 0) 	(d) None of these tex lies along the axis of the parabola. If the (d) (8 <i>a</i> ,0) Other standard forms of Parabola
9.	If (2,-8) is at an end of a (a) (32, 32) A square has one vertex ends of the other diagona (a) (4 <i>a</i> , 4 <i>a</i>) A parabola passing throu	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at lie on the parabola, the co-ordinates (b) $(4a, -4a)$	 x ; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vertices of the square are (c) (0,0) Rasic Level the origin and y-axis as its axis. The	(d) None of these tex lies along the axis of the parabola. If the (d) (8 <i>a</i> ,0) Other standard forms of Parabola latus rectum of the parabola is
9.	If (2,-8) is at an end of a (a) (32, 32) A square has one vertex ends of the other diagona (a) (4 <i>a</i> , 4 <i>a</i>) A parabola passing throu (a) 6	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ B gh the point (-4,-2) has its vertex at the (b) 8	 x ; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vertices of the square are (c) (0,0) Basic Level the origin and y-axis as its axis. The (c) 10 	(d) None of these tex lies along the axis of the parabola. If the (d) (8 <i>a</i> ,0) <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12
 9. 0. 1. 2. 	If (2,-8) is at an end of a (a) (32, 32) A square has one vertex ends of the other diagona (a) (4 <i>a</i> , 4 <i>a</i>) A parabola passing throu (a) 6 The focus of the parabola	focal chord of the parabola $y^2 = 32$ (b) (32,-32) at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ B gh the point (-4,-2) has its vertex at the (b) 8 at $x^2 = -16y$ is	 x ; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vertex of the vertices of the square are (c) (0, 0) Rasic Level The origin and y-axis as its axis. The (c) 10 	(d) None of these tex lies along the axis of the parabola. If the (d) (8 <i>a</i> ,0) <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992]
 9. 0. 1. 2. 	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagona (a) $(4a, 4a)$ A parabola passing throu (a) 6 The focus of the parabola (a) $(4, 0)$	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ (b) $(4a, -4a)$ (c) $(4a, -$	 x ; then the other end of the chord is (c) (-2, 8) ax and the diagonal through the vertex of the vertices of the square are (c) (0,0) Basic Level che origin and y-axis as its axis. The (c) 10 [Rajaring (c) (-4, 0) 	(d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$
9. 0. 1. 2. 3.	If $(2,-8)$ is at an end of a (a) $(32,32)$ A square has one vertex ends of the other diagona (a) $(4a,4a)$ A parabola passing throu (a) 6 The focus of the parabola (a) $(4,0)$ The end points of latus re	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ B gh the point $(-4, -2)$ has its vertex at the (b) 8 at $x^2 = -16y$ is (b) $(0, 4)$ ectum of the parabola $x^2 = 4ay$ are	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0, 0)$ Pasic Level the origin and y-axis as its axis. The (c) 10 [Raj: (c) $(-4, 0)$	(d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997]
9. 0. 1. 2. 3.	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagona (a) $(4a, 4a)$ A parabola passing throu (a) 6 The focus of the parabola (a) $(4, 0)$ The end points of latus ra- (a) $(a, 2a), (2a, -a)$	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a,-4a)$ (b) $(4a,-4a)$ (c) $(4a,-$	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0, 0)$ Casic Level the origin and y-axis as its axis. The (c) 10 [Raj: (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$	(d) None of these (d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$
 9. 0. 1. 2. 3. 4. 	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagona (a) $(4a, 4a)$ A parabola passing throu (a) 6 The focus of the parabola (a) $(4, 0)$ The end points of latus re (a) $(a, 2a), (2a, -a)$ The ends of latus rectum	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ (c) $(4a, -$	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0, 0)$ Casic Level the origin and y-axis as its axis. The (c) 10 [Raja (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$	(d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$ [MP PET 1995]
9. 0. 1. 2. 3. 4.	If $(2,-8)$ is at an end of a (a) $(32,32)$ A square has one vertex ends of the other diagonal (a) $(4a,4a)$ A parabola passing throug (a) 6 The focus of the parabola (a) $(4,0)$ The end points of latus rectum (a) $(a, 2a), (2a,-a)$ The ends of latus rectum (a) $(-4, -2)$ and $(4, 2)$	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a,-4a)$ (b) $(4a,-4a)$ (c) $(4a,-2a)$ (c) $(4a,-4a)$ (c) $(4a,-4a)$ (c) $(4a,-4a)$ (c) $(4a,-2a)$ (c) $(4a,-4a)$ (c) $(4a,-4a)$ (c) $(4a,-2a)$ (c) $(4a,-$	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vertices of the square are (c) $(0, 0)$ Basic Level the origin and y-axis as its axis. The (c) 10 [Raj: (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$ (c) $(-4, -2)$ and $(4, -2)$	(d) None of these (d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$ [MP PET 1995] (d) $(4, 2)$ and $(-4, 2)$
 9. 0. 1. 2. 3. 4. 5. 	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagonal (a) $(4a, 4a)$ A parabola passing through (a) 6 The focus of the parabola (a) $(4, 0)$ The end points of latus rectumm (a) $(a, 2a), (2a, -a)$ The ends of latus rectumm (a) $(-4, -2)$ and $(4, 2)$ Given the two ends of the	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ (c)	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0, 0)$ Pasic Level the origin and y-axis as its axis. The (c) 10 [Raj: (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$ (c) $(-4, -2)$ and $(4, -2)$ of parabolas that can be drawn is	(d) None of these (d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$ [MP PET 1995] (d) $(4, 2)$ and $(-4, 2)$
 9. 0. 1. 2. 3. 4. 5. 	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagona (a) $(4a, 4a)$ A parabola passing throu (a) 6 The focus of the parabola (a) $(4, 0)$ The end points of latus re (a) $(a, 2a), (2a,-a)$ The ends of latus rectum (a) $(-4, -2)$ and $(4, 2)$ Given the two ends of the (a) 1	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ d lie on the parabola, the co-ordinates (b) $(4a, -4a)$ B gh the point $(-4,-2)$ has its vertex at the (b) 8 at $x^2 = -16y$ is (b) $(0, 4)$ ectum of the parabola $x^2 = 4ay$ are (b) $(-a, 2a), (2a, a)$ of parabola $x^2 + 8y = 0$ are (b) $(4, -2)$ and $(-4, 2)$ e latus rectum, the maximum number (b) 2	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0,0)$ Easic Level the origin and y-axis as its axis. The (c) 10 [Raja (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$ (c) $(-4, -2)$ and $(4, -2)$ of parabolas that can be drawn is (c) 0	(d) None of these (d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$ [MP PET 1995] (d) $(4, 2)$ and $(-4, 2)$ (d) Infinite
 9. 0. 11. 2. 3. 4. 5. 6. 	If $(2,-8)$ is at an end of a (a) $(32, 32)$ A square has one vertex ends of the other diagonal (a) $(4a, 4a)$ A parabola passing throug (a) 6 The focus of the parabola (a) $(4, 0)$ The end points of latus reform (a) $(a, 2a), (2a, -a)$ The ends of latus rectum (a) $(-4, -2)$ and $(4, 2)$ Given the two ends of the (a) 1 The length of the latus reform	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ d lie on the parabola, the co-ordinates (b) $(4a,-4a)$ gh the point $(-4,-2)$ has its vertex at the (b) 8 at $x^2 = -16y$ is (b) $(0, 4)$ ectum of the parabola $x^2 = 4ay$ are (b) $(-a, 2a), (2a, a)$ of parabola $x^2 + 8y = 0$ are (b) $(4, -2)$ and $(-4, 2)$ e latus rectum, the maximum number (b) 2 ectum of the parabola $9x^2 - 6x + 36y$	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0, 0)$ Easic Level the origin and y-axis as its axis. The (c) 10 [Raja (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$ (c) $(-4, -2)$ and $(4, -2)$ of parabolas that can be drawn is (c) 0 y + 19 = 0 is	(d) None of these (d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ <i>Other standard forms of Parabola</i> (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$ [MP PET 1995] (d) $(4, 2)$ and $(-4, 2)$ (d) Infinite [MP PET 1994]
 19. 20. 21. 22. 33. 44. 55. 6. 	If $(2,-8)$ is at an end of a (a) $(32,32)$ A square has one vertex ends of the other diagona (a) $(4a, 4a)$ A parabola passing throu (a) 6 The focus of the parabola (a) $(4, 0)$ The end points of latus reform (a) $(a, 2a), (2a, -a)$ The ends of latus rectum (a) $(-4, -2)$ and $(4, 2)$ Given the two ends of the (a) 1 The length of the latus reform (a) 36	focal chord of the parabola $y^2 = 32$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola $y^2 = 4a$ at the vertex of the parabola, the co-ordinates (b) $(4a, -4a)$ (c) $(4a, -2)$ (c) $(4$	x ; then the other end of the chord is (c) $(-2, 8)$ ax and the diagonal through the vert of the vertices of the square are (c) $(0, 0)$ Casic Level the origin and y-axis as its axis. The (c) 10 [Raj: (c) $(-4, 0)$ (c) $(a, -2a), (2a, a)$ (c) $(-4, -2)$ and $(4, -2)$ of parabolas that can be drawn is (c) 0 y + 19 = 0 is (c) 6	(d) None of these (d) None of these tex lies along the axis of the parabola. If the (d) $(8a, 0)$ Other standard forms of Parabola Other standard forms of Parabola (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 1997] (d) $(-2a, a), (2a, a)$ [MP PET 1995] (d) $(4, 2)$ and $(-4, 2)$ (d) Infinite [MP PET 1994] (d) 4

27.	Vertex of the parabola y^2 +	2y + x = 0 lies in the quadrant				[MP PET 1989]
	(a) First	(b) Second	(c)	Third	(d)	Fourth
28.	The vertex of the parabola 3	$3x - 2y^2 - 4y + 7 = 0$ is				[Rajasthan PET 1996]
	(a) (3, 1)	(b) (-3, -1)	(c)	(-3, 1)	(d)	None of these
29.	The vertex of parabola $(y - 2)$	$(2)^2 = 16(x-1)$ is				[Karnataka CET 2001]
	(a) (2, 1)	(b) (1, -2)	(c)	(-1, 2)	(d)	(1, 2)
30.	The vertex of the parabola x	$x^2 + 8x + 12y + 4 = 0$ is				[DCE 1999]
	(a) (-4, 1)	(b) $(4, -1)$	(c)	(-4, -1)	(d)	(4, 1)
31.	The axis of the parabola $9y^2$	$x^{2} - 16x - 12y - 57 = 0$ is				[MNR 1995]
	(a) $3y = 2$	(b) $x + 3y = 3$	(c)	2x = 3	(d)	<i>y</i> = 3
32.	The directrix of the parabola	$x^2 - 4x - 8y + 12 = 0$ is				[Karnataka CET 2003]
	(a) $x = 1$	(b) $y = 0$	(c)	x = -1	(d)	y = -1
33.	The length of the latus rectum	n of the parabola $x^2 - 4x - 8y + 12 =$	= 0 is			[MP PET 2000]
	(a) 4	(b) 6	(c)	8	(d)	10
34.	The latus rectum of the parab	$y^2 = 5x + 4y + 1$ is				[MP PET 1996]
	(a) $\frac{5}{2}$	(b) 10	(c)	5	(d)	5
	4		(-)	-	()	2
35.	If $(2, 0)$ is the vertex and y-ax	(b) $(2, 0)$	tocus 1s	(4, 0)	(d)	[MNR 1981]
36	(a) $(2, 0)$ The length of latus rectum of	(b) $(-2, 0)$	(C)	(4,0)	(u)	(-4, 0) [MD DET 1000]
50.	The length of latus rectain of	the parabola $4y + 2x - 20y + 17 =$	015	1		
	(a) 3	(b) 6	(c)	$\frac{1}{2}$	(d)	9
37.	The focus of the parabola y^2	=4y-4x is				[MP PET 1991]
	(a) (0, 2)	(b) (1, 2)	(c)	(2,0)	(d)	(2, 1)
38.	Focus of the parabola $(y - 2)$	$y^2 = 20(x+3)$ is				[Karnataka CET 1999]
	(a) (3, -2)	(b) (2, -3)	(c)	(2, 2)	(d)	(3, 3)
39.	The focus of the parabola y^2	-x - 2y + 2 = 0 is				[UPSEAT 2000]
	(a) (1/4, 0)	(b) (1, 2)	(c)	(3/4, 1)	(d)	(5/4, 1)
40.	The focus of the parabola $y =$	$=2x^2+x$ is				[MP PET 2000]
	(a) $(0,0)$	(b) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(c)	$\left(-\frac{1}{2}0\right)$	(d)	$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$
	(a) $(0, 0)$	(0) (2'4)	(0)	$\begin{pmatrix} 4 \end{pmatrix}$	(u)	(4'8)
41.	The vertex of a parabola is the	the point (a, b) and latus rectum is of l	ength <i>l</i> . If	the axis of the parabola is a	along t	he positive direction of y-axis,
	then its equation is	. 1		. 1		. 1
	(a) $(x+a)^2 = \frac{i}{2}(2y-2b)$	(b) $(x-a)^2 = \frac{i}{2}(2y-2b)$	(c)	$(x+a)^2 = \frac{i}{4}(2y-2b)$	(d)	$(x-a)^2 = \frac{i}{8}(2y-2b)$
42.	$v^2 - 2x - 2v + 5 = 0$ represent	nts				[Roorkee 1986, 95]
	(a) A circle whose centre is	(1, 1)	(b)	A parabola whose focus is (1, 2)	
	(a) A perchala whose direct	rivia r = 3		A parahola whose directriv	ic r	1
	(c) A parabola whose difect	$x = \frac{1}{2}$	(u)	A parabola whose unectrix	18 X =	$-\frac{-}{2}$
43.	The length of the latus rectum	n of the parabola whose focus is (3, 3)	and direc	trix is $3x - 4y - 2 = 0$ is		[UPSEAT 2001]
	(a) 2	(b) 1	(c)	4	(d)	None of these
44.	The equation of the parabola	whose vertex is at $(2, -1)$ and focus at	t (2, – 3)is			[Kerala (Engg.) 2002]

	(a) $x^2 + 4x - 8y - 12 = 0$	(b) $x^2 - 4x + 8y + 12 = 0$	(c) $x^2 + 8y = 12$	(d)	$x^2 - 4x + 12 = 0$
45.	The equation of the parabola w	with focus (0, 0) and directrix $x + y = -$	4 is		[EAMCET 2003]
	(a) $x^2 + y^2 - 2xy + 8x + 8$	y - 16 = 0	(b) $x^2 + y^2 - 2xy + 8x + 8y$	= 0	
	(c) $x^2 + y^2 + 8x + 8y - 16$	= 0	(d) $x^2 - y^2 + 8x + 8y - 16 =$	= 0	
46.	The equation of the parabola w	whose vertex and focus lies on the x-ax	is at distance a and a' from the orig	gin, is	[Rajasthan PET 2000]
	(a) $y^2 = 4(a'-a)(x-a)$	(b) $y^2 = 4(a'-a)(x+a)$	(c) $y^2 = 4(a'+a)(x-a)$	(d)	$y^2 = 4(a'+a)(x+a)$
47.	The equation of parabola who	se vertex and focus are (0, 4)and (0, 2)	respectively, is [Rajasthan Pl	E T 1987	7, 1989, 1990, 1991]
	(a) $y^2 - 8x = 32$	(b) $y^2 + 8x = 32$	(c) $x^2 + 8y = 32$	(d)	$x^2 - 8y = 32$
48.	The equation of the parabola,	whose vertex is $(-1, -2)$ axis is vertical	l and which passes through the poin	t (3, 6)	is
	(a) $x^2 + 2x - 2y - 3 = 0$	(b) $2x^2 = 3y$	(c) $x^2 - 2x - y + 3 = 0$	(d)	None of these
49.	The length of the latus rectum	of the parabola whose focus is $\left(\frac{u^2}{2g}\right)$ since $\frac{u^2}{2g}$ si	in $2\alpha, -\frac{u^2}{2g}\cos 2\alpha$ and directrix is	$y = \frac{u^2}{2\xi}$	2 - , is 3
	(a) $\frac{u^2}{g}\cos^2\alpha$	(b) $\frac{u^2}{g}\cos 2\alpha$	(c) $\frac{2u^2}{g}\cos 2\alpha$	(d)	$\frac{2u^2}{g}\cos^2\alpha$
50.	The equation of the parabola w	whose axis is vertical and passes throug	gh the points (0, 0), (3, 0) and (-1, 4	r), is	
	(a) $x^2 - 3x - y = 0$	(b) $x^2 + 3x + y = 0$	(c) $x^2 - 4x + 2y = 0$	(d)	$x^2 - 4x - 2y = 0$
51.	If the vertex and the focus of a	a parabola are $(-1, 1)$ and $(2, 3)$ respect	ively, then the equation of the direc	trix is	
	(a) $3x + 2y + 14 = 0$	(b) $3x + 2y - 25 = 0$	(c) $2x - 3y + 10 = 0$	(d)	None of these
52.	If the focus of a parabola is (-	2, 1) and the directrix has the equation	x + y = 3, then the vertex is		
	(a) (0, 3)	(b) (-1, 1/2)	(c) (-1, 2)	(d)	(2, -1)
53.	The vertex of a parabola is (a, a)	, 0) and the directrix is $x + y = 3a$. Th	e equation of the parabola is		2
	(a) $x^2 + 2xy + y^2 + 6ax + 1$	$10ay + 7a^2 = 0$	(b) $x^2 - 2xy + y^2 + 6ax + 10$	ay = 7	
	(c) $x^2 - 2xy + y^2 - 6ax + 1$	$10ay = 7a^2$	(d) None of these		
54.	The equation of a locus is y^2	+2ax+2by+c=0, then			
	(a) It is an ellipse	(b) It is a parabola	(c) Its latus rectum $=a$	(d)	Its latus rectum= $2a$
55.	If the vertex of the parabola y	$y = x^2 - 8x + c$ lies on x-axis, then the	value of <i>c</i> is		
	(a) –16	(b) -4	(c) 4	(d)	16
56.	If the vertex of a parabola is th	he point $(-3, 0)$ and the directrix is the	line $x + 5 = 0$ then its equation is		2
	(a) $y^2 = 8(x+3)$	(b) $x^2 = 8(y+3)$	(c) $y^2 = -8(x+3)$	(d)	$y^2 = 8(x+5)$
57.	If the parabola $y^2 = 4ax$ pass	ses through $(3, 2)$, then the length of its	latusrectum is		
	(a) 2/3	(b) 4/3	(c) 1/3	(d)	4
58.	The extremities of latus rectum	m of the parabola $(y-1)^2 = 2(x+2)$ at	re		
	(a) $\left(-\frac{3}{2},2\right)$	(b) (-2,1)	(c) $\left(-\frac{3}{2}, 0\right)$	(d)	$\left(-\frac{3}{2},1\right)$
59.	The equation of parabola is given by the equation of the equat	ven by $y^2 + 8x - 12y + 20 = 0$. Tick	the correct options given below		
	(a) Vertex (2, 6)	(b) Focus (0, 6)	(c) Latus rectum $= 4$	(d)	axis $y = 6$
		Advance	e Level		

The length of the latus rectum of the parabola $169\{(x-1)^2 + (y-3)^2\} = (5x-12y+17)^2$ is 60. (b) $\frac{28}{13}$ (a) $\frac{14}{13}$ (c) $\frac{12}{13}$ (d) None of these 61. The length of the latus rectum of the parabola $x = ay^2 + by + c$ is (c) $\frac{1}{-}$ (a) $\frac{a}{4}$ (b) $\frac{a}{2}$ (d) If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, -2), then the equation of the parabola is 62. (a) $y^2 = 2x - 4$ (b) $x^2 = 4y - 8$ (c) $y^2 = 4x - 8$ (d) None of these Let there be two parabolas with the same axis, focus of each being exterior to the other and the latus recta being 4a and 4b. The locus of the 63. middle points of the intercepts between the parabolas made on the lines parallel to the common axis is a (b) Parabola if $a \neq b$ (c) Parabola for all a, b(d) None of these (a) Straight line if a = bA line L passing through the focus of the parabola $y^2 = 4(x-1)$ intersects the parabola in two distinct points. If 'm' be the slope of the line L, 64. then (a) -1 < m < 1(b) m < -1 or m > 1(c) $m \in R$ (d) None of these Parametric equations of Parabola **Basic** Level Which of the following points lie on the parabola $x^2 = 4ay$ 65. [Rajasthan PET 2002] (a) $x = at^2, y = 2at$ (b) x = 2at, y = at(c) $x = 2at^2, y = at$ (d) $x = 2at, y = at^2$ The parametric equation of a parabola is $x = t^2 + 1$, y = 2t + 1. The cartesian equation of its directrix is 66. (b) x + 1 = 0(a) x = 0(c) v = 0(d) None of these The parametric representation $(2 + t^2, 2t + 1)$ represents 67. (a) A parabola with focus at (2, 1)(b) A parabola with vertex at (2, 1)(c) An ellipse with centre at (2, 1)(d) None of these The graph represented by the equations $x = \sin^2 t$, $y = 2 \cos t$ is 68. [EAMCET 1993] (a) A portion of a parabola (b) A parabola (c) A part of a sine graph (d) A Part of a hyperbola The curve described parametrically by $x = t^2 + t + 1$, $y = t^2 - t + 1$ represents 69. [IIT 1999] (a) A pair of straight lines (b) An ellipse (c) A parabola (d) A hyperbola Position of a Point, Intersection of Line and Parabola, Tangents and Pair of Tangents **Basic Level** 70. The equation of the tangent at a point P(t) where 't' is any parameter to the parabola $y^2 = 4ax$, is [MNR 1983] (b) $y = xt + at^2$ (c) $y = xt + \frac{a}{t}$ (a) $vt = x + at^2$ (d) y = tx71. The condition for which the straight line y = mx + c touches the parabola $y^2 = 4ax$ is [MP PET 1997, 2001] (b) $\frac{a}{c} = m$ (c) $m = a^2 c$ (d) $m = ac^2$ (a) a = cThe line y = mx + c touches the parabola $x^2 = 4ay$, if 72. [MNR 1973; MP PET 1994, 1999] (c) $c = -am^2$ (b) c = -a/m(d) $c = a/m^2$ (a) c = -amThe line y = 2x + c is tangent to the parabola $y^2 = 16x$, if c equals 73. [MNR 1988]

				Conic Section : Parabola 175
	(a) –2	(b) –1	(c) 0	(d) 2
74.	The line $y = 2x + c$ is tang	ent to the parabola $y^2 = 4x$, then c	=	[MP PET 1996]
	(a) $-\frac{1}{2}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) 4
75.	If line $x = my + k$ touches	the parabola $x^2 = 4ay$, then $k =$		[MP PET 1995]
	(a) $\frac{a}{m}$	(b) <i>am</i>	(c) am^2	(d) $-am^2$
76.	The line $y = mx + 1$ is a tar	agent to the parabola $y^2 = 4x$, if	[MNR 1990; K	Kurukshetra CEE 1998; DCE 2000]
	(a) $m = 1$	(b) $m = 2$	(c) $m = 4$	(d) $m = 3$
77.	The line $lx + my + n = 0$ w	ill touch the parabola $y^2 = 4ax$, if	[Rajasthan PE]	T 1988; MNR 1977; MP PET 2003]
	(a) $mn = al^2$	(b) $lm = an^2$	(c) $ln = am^2$	(d) $mn = al$
78.	The equation of the tangent	to the parabola $y^2 = 4x + 5$ paralle	l to the line $y = 2x + 7$ is	[MNR 1979]
	(a) $2x - y - 3 = 0$	(b) $2x - y + 3 = 0$	(c) $2x + y + 3 = 0$	(d) None of these
79.	If $lx + my + n = 0$ is tangen	In to the parabola $x^2 = y$, then condi	tion of tangency is	[Rajasthan PET 1999]
	(a) $l^2 = 2mn$	(b) $l = 4m^2 n^2$	(c) $m^2 = 4ln$	(d) $l^2 = 4mn$
80.	The point at which the line	$y = mx + c$ touches the parabola y^2	=4ax is	[Rajasthan PET 2001]
	(a) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$	(b) $\left(\frac{a}{m^2}, \frac{-2a}{m}\right)$	(c) $\left(-\frac{a}{m^2},\frac{2a}{m}\right)$	(d) $\left(-\frac{a}{m^2},-\frac{2a}{m}\right)$
81.	The locus of a foot of perpe	ndicular drawn to the tangent of para	bola $y^2 = 4ax$ from focus, is	[Rajasthan PET 1989]
	(a) $x = 0$	(b) $y = 0$	(c) $y^2 = 2a(x+a)$	(d) $x^2 + y^2(x+a) = 0$
82.	The equation of tangent at t	he point (1, 2) to the parabola $y^2 = 4$	4 <i>x</i> , is	[Rajasthan PET 1984, 85, 86]
	(a) $x - y + 1 = 0$	(b) $x + y + 1 = 0$	(c) $x + y - 1 = 0$	(d) $x - y - 1 = 0$
83.	The tangent to the parabola	$y^2 = 4ax$ at the point (a, 2a) makes	s with x-axis an angle equal to	[SCRA 1996]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{6}$
84.	A tangents to the parabola	$y^2 = 8x$ makes an angle of 45 ° with	th the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; then the straight line $y = 3x + 5$; the straight line $y = 3x$	he equation of tangent is
	(a) $2x + y - 1 = 0$	(b) $x + 2y - 1 = 0$	(c) $2x + y + 1 = 0$	(d) None of these
85.	The equation of the tangen	t to the parabola $y^2 = 9x$ which goe	es through the point (4, 10) is	[MP PET 2000]
	(a) $x + 4y + 1 = 0$	(b) $9x + 4y + 4 = 0$	(c) $x - 4y + 36 = 0$	(d) $9x - 4y + 4 = 0$
86.	The angle of intersection be	tween the curves $y^2 = 4x$ and $x^2 = 4x$	= 32y at point (16, 8) is	[Rajasthan PET 1987, 96]
	(a) $\tan^{-1}\left(\frac{3}{5}\right)$	(b) $\tan^{-1}\left(\frac{4}{5}\right)$	(c) <i>π</i>	(d) $\frac{\pi}{2}$
87.	The equation of the tangent	to the parabola $y = x^2 - x$ at the po	int where $x = 1$, is	[MP PET 1992]
	(a) $y = -x - 1$	(b) $y = -x + 1$	(c) $y = x + 1$	(d) $y = x - 1$
88.	The point of intersection of	the tangents to the parabola $y^2 = 4$	ax at the points t_1 and t_2 is	[Rajasthan PET 2002]
	(a) $(at_1t_2, a(t_1 + t_2))$	(b) $(2at_1t_2, a(t_1 + t_2))$	(c) $(2at_1t_2, 2a(t_1 + t_2))$	(d) None of these
89.	The tangents drawn from th	e ends of latus rectum of $y^2 = 12x$ i	meets at	[Rajasthan PET 2000]
	(a) Directrix	(b) Vertex	(c) Focus	(d) None of these

90.	Two perpendicular tanger	nts to $y^2 = 4ax$ always intersect on the	ne line		[Karnataka CET 2000]
	(a) $x = a$	(b) $x + a = 0$	(c) $x + 2a = 0$	(d)	x + 4a = 0
91.	The locus of the point of i	intersection of the perpendicular tange	ents to the parabola $x^2 = 4ay$ is		[MP PET 1994]
	(a) Axis of the parabola		(b) Directrix of the parabola		
	(c) Focal chord of the pa	arabola	(d) Tangent at vertex to the p	oarabola	
92.	The angle between the tar	ngents drawn from the origin to the pa	arabola $y^2 = 4a(x-a)$ is	[]	ANR 1994; UPSEAT 1999, 2000]
	(a) 90 °	(b) 30 °	(c) $\tan^{-1}\frac{1}{2}$	(d)	45 °
93.	The angle between tanger	that the parabola $y^2 = 4ax$ at the periods $y^2 = 4ax$ at the periods $y^2 = 4ax$	oints where it intersects with the line x	-y-a =	0, is
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{6}$	(d)	$\frac{\pi}{2}$
94.	The equation of latus rec rectum is	tum of a parabola is $x + y = 8$ and the transformation of a parabola is $x + y = 8$ and the transformation of transformation of the transformation of tr	he equation of the tangent at the vertex	is $x + y$	= 12 , then length of the latus [MP PET 2002]
	(a) $4\sqrt{2}$	(b) $2\sqrt{2}$	(c) 8	(d)	$8\sqrt{2}$
95.	If the segment intercepted	d by the parabola $y^2 = 4ax$ with the l	ine $lx + my + n = 0$ subtends a right an	ngle at the	e vertex, then
	(a) $4al+n=0$	(b) $4al + 4am + n = 0$	(c) $4am+n=0$	(d)	al+n=0
96.	Tangents at the extremitie	es of any focal chord of a parabola into	ersect		
	(a) At right angles	(b) On the directrix	(c) On the tangent at vertex	(d)	None of these
97.	Angle between two curve	$x^{2} = 4(x+1)$ and $x^{2} = 4(y+1)$ is			[UPSEAT 2002]
	(a) 0^{o}	(b) 90°	(c) 60°	(d)	30 °
98.	The angle of intersection	between the curves $x^2 = 4(y+1)$ and	$x^2 = -4(y+1)$ is		[UPSEAT 2002]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) 0	(d)	$\frac{\pi}{2}$
99.	If the tangents drawn from	n the point (0, 2) to the parabola $y^2 =$	= $4ax$ are inclined at an angle $\frac{3\pi}{4}$, then	n the valu	e of <i>a</i> is
	(a) 2	(b) –2	(c) 1	(d)	None of these
100.	The point of intersection	of the tangents to the parabola $y^2 = 4$	4x at the points, where the parameter 't'	has the v	value 1 and 2, is
	(a) (3, 8)	(b) (1, 5)	(c) (2, 3)	(d)	(4, 6)
101.	The tangents from the ori	gin to the parabola $y^2 + 4 = 4x$ are i	nclined at		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{}$	(b)	<u>π</u>
	6	4	3	(u)	2
102.	The number of distinct re	al tangents that can be drawn from (0,	, -2) to the parabola $y^2 = 4x$ is		
	(a) One	(b) Two	(c) Zero	(d)	None of these
103.	If two tangents drawn from	m the point (α, β) to the parabola y^2	= 4x be such that the slope of one tang	ent is dou	able of the other, then
	(a) $\beta = \frac{2}{9}\alpha^2$	(b) $\alpha = \frac{2}{9}\beta^2$	(c) $2\alpha = 9\beta^2$	(d)	None of these
104.	If $y + b = m_1(x + a)$ and	$y + b = m_2(x + a)$ are two tangents to	the parabola $y^2 = 4ax$, then		
	(a) $m_1 + m_2 = 0$	(b) $m_1 m_2 = 1$	(c) $m_1 m_2 = -1$	(d)	None of these
105.	If $y = mx + c$ touches the	e parabola $y^2 = 4a(x+a)$, then			
	(a) $c = \frac{a}{m}$	(b) $c = am + \frac{a}{m}$	(c) $c = a + \frac{a}{m}$	(d)	None of these

106.	The angle between the tang	ents drawn from a point $(-a, 2a)$	a) to $y^2 = 4ax$ is		
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d)	$\frac{\pi}{6}$
107.	The tangents to the parabola	a $y^2 = 4ax$ at $(at_1^2, 2at_1)$; (at_2^2)	(t^2, at_2) intersect on its axis, then		[EAMCET 1995]
	(a) $t_2 = t_2$	(b) $t_1 = -t_2$	(c) $t_1 t_2 = 2$	(d)	$t_1 t_2 = -1$
108.	If perpendiculars are drawn	on any tangent to a parabola y	$y^2 = 4ax$ from the points $(a \pm k, 0)$ on the axis	is. The c	lifference of their squares is
	(a) 4	(b) 4 <i>a</i>	(c) 4 <i>k</i>	(d)	4 <i>ak</i>
109.	The straight line $kx + y = 4$	4 touches the parabola $y = x - x$	x^2 , if		
	(a) $k = -5$	(b) $k = 0$	(c) $k = 3$	(d)	k takes any real value
110.	If a tangent to the parabola	$y^2 = ax$ makes an angle 45 ° v	with x-axis, its points of contact will be		
	(a) $(a/2, a/4)$	(b) $(-a/2, a/4)$	(c) $(a/4, a/2)$	(d)	(-a/4, a/2)
111.	The equations of common t	angent to the parabola $y^2 = 4a$	ax and $x^2 = 4by$ is		
	(a) $xa^{1/3} + yb^{1/3} + (ab)^2$	$2^{2/3} = 0$	(b) $\frac{x}{a^{1/3}} + \frac{y}{b^{1/3}} + \frac{1}{(ab)^{2/3}} =$	= 0	
	(c) $xb^{\frac{1}{3}} + ya^{\frac{1}{3}} - (ab)^{\frac{2}{3}} = 0$)	(d) $\frac{x}{b^{1/3}} + \frac{y}{a^{1/3}} - \frac{1}{(ab)^{2/3}} =$	= 0	
112.	The range of values of λ fo	or which the point $(\lambda, -1)$ is exte	erior to both the parabolas $y^2 \neq x$ is		
	(a) (0, 1)	(b) (-1, 1)	(c) (-1, 0)	(d)	None of these
			Advance Level		
113.	The line $x \cos \alpha + y \sin \alpha$	$= p$ will touch the parabola y^2	=4a(x+a), if		
	(a) $p \cos \alpha + a = 0$	(b) $p \cos \alpha - a = 0$	(c) $a\cos\alpha + p = 0$	(d)	$a\cos\alpha - p = 0$
114.	If the straight line $x + y = x$	1 touches the parabola $y^2 - y - y$	+ x = 0, then the coordinates of the point of $x = 0$	contact	are
					[Rajasthan PET 1991]
	(a) (1, 1)	(b) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(c) (0, 1)	(d)	(1, 0)
115	The equation of common ta	()	2 and parabola $v^2 - 8r$ is		[Rajacthan PFT 1007]
110.	(a) $y = x + 1$	(b) $v = x + 2$	(c) $y = x - 2$	(d)	v = -x + 2
116	The equation of the commo	in tangent to the curves $v^2 = 8$	r and rv = -1 is	(-)	[IIT Screening 2002]
110.	(a) $3y = 9x + 2$	(b) $v = 2x + 1$	(c) $2v = x + 8$	(d)	v = x + 2
117	Two common tangents to the	(0) y $2\pi + 1$	rabola $v^2 = 8ar$ are	(u)	[AIFFF 2002]
11/1	(a) $x = \pm (y + 2a)$	(b) $v = \pm (x + 2a)$	(c) $x = \pm (y + a)$	(d)	$y = \pm (x + a)$
118	If the line $lx + my + n = 0$	is a tangent to the parabola v^2	= 4ar, then locus of its point of contact is	(-)	[Rajasthan PET 1997]
110.	(a) A straight line	(b) A circle	(c) A parabola	(d)	Two straight lines
119.	The tangent drawn at any p	oint <i>P</i> to the parabola $y^2 = 4a$	x meets the directrix at the point K , then the	angle w	hich <i>KP</i> subtends at its focus is
	(-) 20 ⁹	(1-) 45 ⁰	[Rajasthan PET 1996, 2002		00.9
120	(a) 30 The point of intersection of	(D) 43°	(c) 00°	(d)	7U
120.	The point of intersection of	tangents at the ends of the latus	s rectum of the parabola $y = 4x$ is	[1]	11 1994; Kuruksnetra CEE 1998]

178 Conic Section : Parabola (a) (1, 0)(b) (-1, 0) (c) (0, 1) (d) (0, -1)121. If y_1, y_2 are the ordinates of two points P and Q on the parabola and y_3 is the ordinate of the point of intersection of tangents at P and Q, then (b) y_1, y_3, y_2 are in A. P. (c) y_1, y_2, y_3 are in G.P. (d) y_1, y_3, y_2 are in G. P. (a) y_1, y_2, y_3 are in A. P. 122. If the tangents at *P* and *Q* on a parabola meet in *T*, then *SP*,*ST* and *SQ* are in (a) A. P. (b) G. P. (c) H. P. (d) None of these The equation of the parabola whose focus is the point (0, 0) and the tangent at the vertex is x - y + 1 = 0 is 123. [Orissa JEE 2002] (b) $x^{2} + y^{2} - 2xy + 4x - 4y - 4 = 0$ (a) $x^2 + y^2 - 2xy - 4x + 4y - 4 = 0$ (c) $x^{2} + y^{2} + 2xy - 4x + 4y - 4 = 0$ (d) $x^2 + y^2 + 2xy - 4x - 4y + 4 = 0$ 124. The two parabolas $y^2 = 4x$ and $x^2 = 4y$ intersect at a point P, whose abscissae is not zero, such that (a) They both touch each other at P(b) They cut at right angles at P(c) The tangents to each curve at P make complementary angles with the x-axis (d) None of these Consider a circle with its centre lying on the focus of the parabola $y^2 = 2px$ such that it touches the directrix of the parabola. Then, a point 125. of intersection of the circle and the parabola is [IIT 1995] (c) $\left(\frac{-p}{2}, p\right)$ (d) $\left(\frac{-p}{2}, -p\right)$ (b) $\left(\frac{p}{2}, -p\right)$ (a) $\left(\frac{p}{2}, p\right)$ The angle of intersection of the curves $y^2 = 2x / \pi$ and $y = \sin x$, is 126. [Roorkee Qualifying 1998] (c) $\cot^{-1}(-\pi)$ (a) $\cot^{-1}(-1/\pi)$ (b) $\cot^{-1} \pi$ (d) $\cot^{-1}(1/\pi)$ *P* is a point. Two tangents are drawn from it to the parabola $y^2 = 4x$ such that the slope of one tangent is three times the slope of the other. 127. The locus of P is (b) A circle (d) An ellipse (a) A straight line (c) A parabola The parabola $y^2 = kx$ makes an intercept of length 4 on the line x - 2y = 1. Then k is 128. (b) $\frac{5-\sqrt{105}}{10}$ (a) $\frac{\sqrt{105}-5}{10}$ (c) $\frac{5 + \sqrt{105}}{10}$ (d) None of these The triangle formed by the tangents to a parabola $y^2 = 4ax$ at the ends of the latus rectum and the double ordinates through the focus is 129. (a) Equilateral (b) Isosceles (c) Right-angled isosceles (d) Dependent on the value of *a* for its classification The equation of the tangent at the vertex of the parabola $x^2 + 4x + 2y = 0$ is 130. (d) y = -2(b) x = 2(c) y = 2(a) x = -2The locus of the point of intersection of the perpendicular tangents to the parabola $x^2 - 8x + 2y + 2 = 0$ is 131. (b) 2y + 15 = 0(a) 2y - 15 = 0(c) 2x+9=0(d) None of these If P,Q,R are three points on a parabola $y^2 = 4ax$, whose ordinates are in geometrical progression, then the tangents at P and R meet on 132. (a) The line through Q parallel to x-axis (b) The line through Q parallel to y-axis (c) The line joining Q to the vertex (d) The line joining Q to the focus The tangents at three points A, B, C on the parabola $y^2 = 4x$; taken in pairs intersect at the points P, Q and R. If Δ , Δ ' be the areas of the 133. triangles ABC and PQR respectively, then (c) $\Delta = \Delta'$ (a) $\Delta = 2\Delta'$ (b) $\Delta' = 2\Delta$ (d) None of these If the line y = mx + a meets the parabola $y^2 = 4ax$ in two points whose abscissa are x_1 and x_2 , then $x_1 + x_2$ is equal to zero if 134. (d) m = -1/2(a) m = -1(b) m = 1(c) m = 2

Two tangents of the parabola $y^2 = 8x$, meet the tangent at its vertex in the points P and Q. If PQ = 4, locus of the point of intersection of 135. the two tangents is (c) $x^2 = 8(y-2)$ (d) $x^2 = 8(y+2)$ (b) $y^2 = 8(x-2)$ (a) $v^2 = 8(x+2)$ 136. If perpendicular be drawn from any two fixed points on the axis of a parabola at a distance d from the focus on any tangent to it, then the difference of their squares is (b) $a^2 + d^2$ (a) $a^2 - d^2$ (c) 4*ad* (d) 2*ad* Two straight lines are perpendicular to each other. One of them touches the parabola $y^2 = 4a(x+a)$ and the other touches $y^2 = 4b(x+b)$. 137. Their point of intersection lies on the line (c) x+a+b=0(a) x-a+b=0(b) x + a - b = 0(d) x - a - b = 0The point (a, 2a) is an interior point of the region bounded by the parabola $y^2 = 16x$ and the double ordinate through the focus. Then a 138. belongs to the open interval (a) a < 4(b) 0 < a < 4(c) 0 < a < 2(d) a > 4The number of points with integral coordinates that lie in the interior of the region common to the circle $x^2 + y^2 = 16$ and the parabola 139. $y^2 = 4x$ is (a) 8 (b) 10 (c) 16 (d) None of these Normals in different forms, Intersection of Normals **Basic Level** 140. The maximum number of normal that can be drawn from a point to a parabola is [MP PET 1990] (a) 0 (d) 3 (b) 1 (c) 2 The centroid of the triangle formed by joining the feet of the normals drawn from any point to the parabola $y^2 = 4ax$, lies on 141. [MP PET 1999] (a) Axis (b) Directrix (c) Latus rectum (d) Tangent at vertex If the line 2x + y + k = 0 is normal to the parabola $y^2 = -8x$, then the value of k will be 142. [Rajasthan PET 1986, 1997] (c) -24 (d) 24 (a) -16 (b) -8 The point on the parabola $y^2 = 8x$ at which the normal is inclined at 60° to the x -axis has the coordinates [MP PET 1993] 143. (b) $(6, 4\sqrt{3})$ (c) $(-6, -4\sqrt{3})$ (d) $(-6, 4\sqrt{3})$ (a) $(6, -4\sqrt{3})$ If the normals at two points P and Q of a parabola $y^2 = 4ax$ intersect at a third point R on the curve, then the product of ordinates of P and Q 144. is (a) $4a^2$ (b) $2a^2$ (c) $-4a^2$ (d) $8a^2$ The equation of normal to the parabola at the point $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$, is 145. [Rajasthan PET 1987] (a) $y = m^2 x - 2mx - am^3$ (b) $m^3 y = m^2 x - 2am^2 - a$ (c) $m^3 y = 2am^2 - m^2 x + a$ (d) None of these At what point on the parabola $y^2 = 4x$, the normal makes equal angles with the coordinate axes 146. [Rajasthan PET 1994] (a) (4,4) (b) (9,6) (c) (4, -4)(d) (1,-2) The slope of the normal at the point $(at^2, 2at)$ of the parabola $y^2 = 4ax$, is 147. [MNR 1991; UPSEAT 2000] (d) $-\frac{1}{t}$ (a) $\frac{1}{t}$ (b) *t* (c) -*t*

148. The normal at the point $(bt_1^2, 2bt_1)$ on a parabola meets the parabola again in the point $(bt_2^2, 2bt_2)$, then

[MNR 1986; Rajasthan PET 2003; AIEEE 2003]

	(a) $t_2 = -t_1 - \frac{2}{t_1}$	(b) $t_2 = -t_1 + \frac{2}{t_1}$	(c) $t_2 = t_1 - \frac{2}{t_1}$	(d)	$t_2 = t_1 + \frac{2}{t_1}$
149.	The normal to the parabola	$y^2 = 8x$ at the point (2, 4) mee	ets the parabola again at the point		[Orissa JEE 2003]
	(a) (-18,-12)	(b) (-18,12)	(c) (18,12)	(d)	(18, -12)
150.	If a normal drawn to the pa	rabola $y^2 = 4ax$ at the point (a)	$(a, 2a)$ meets parabola again on $(at^2, 2at)$, then	the valu	the of t will be
					[Rajasthan PET 1990]
	(a) 1	(b) 3	(c) -1	(d)	-3
151.	The arithmetic mean of the	ordinates of the feet of the norm	mals from (3, 5) to the parabola $y^2 = 8x$ is		
	(a) 4	(b) 0	(c) 8	(d)	None of these
152.	If the normal to $y^2 = 12x$ a	at (3, 6) meets the parabola again	n in $(27, -18)$ and the circle on the normal cho	ord as d	liameter is
	2 2				[Kurukshetra CEE 1998]
	(a) $x^2 + y^2 + 30x + 12y - 30x + 30x + 12y - 30x + $	-27 = 0	(b) $x^2 + y^2 + 30x + 12y + 27$	=0	
	(c) $x^2 + y^2 - 30x - 12y - 30x - $	-27 = 0	(d) $x^2 + y^2 - 30x + 12y - 27$	= 0	
153.	The number of distinct nor	mal that can be drawn from $\left(\frac{11}{4}\right)$	$\left(\frac{1}{4}, \frac{1}{4}\right)$ to the parabola $y^2 = 4x$ is		
	(a) 3	(b) 2	(c) 1	(d)	4
154.	The normal chord of a para	abola $y^2 = 4ax$ at (x_1, x_1) subte	ends a right angle at the		
	(a) Focus	(b) Vertex	(c) End of the latus-rectum	(d)	None of these
155.	The normal at $(ap^2, 2ap)$ or	n $y^2 = 4ax$, meets the curve aga	in at $(aq^2, 2aq)$ then		
	(a) $p^2 + pq + 2 = 0$	(b) $p^2 - pq + 2 = 0$	(c) $q^2 + pq + 2 = 0$	(d)	$p^2 + pq + 1 = 0$
156.	The angle between the norr	mals to the parabola $y^2 = 24x$ a	at points (6, 12) and (6, -12) is		
	(a) 30°	(b) 45°	(c) 60°	(d)	90 °
			Advance Level		
157.	The centre of a circle passi	ng through the point (0,1) and to	buching the curve $y = x^2$ at (2, 4) is		[IIT 1983]
	(a) $\left(\frac{-16}{5}, \frac{27}{10}\right)$	(b) $\left(\frac{-16}{7}, \frac{5}{10}\right)$	(c) $\left(\frac{-16}{5}, \frac{53}{10}\right)$	(d)	None of these
158.	The length of the normal ch	hord to the parabola $y^2 = 4x$, w	which subtends right angle at the vertex is		[Rajasthan PET 1999]
	(a) $6\sqrt{3}$	(b) $3\sqrt{3}$	(c) 2	(d)	1
159.	Three normals to the parab	ola $y^2 = x$ are drawn through a	point $(C,0)$ then		[IIT 1991]
	(a) $C = \frac{1}{4}$	(b) $C = \frac{1}{2}$	(c) $C > \frac{1}{2}$	(d)	None of these
160.	If the tangent and normal a	t any point <i>P</i> of a parabola meet	t the axes in T and G respectively, then		[Rajasthan PET 2001]
	(a) $ST \neq SG = SP$	(b) $ST - SG \neq SP$	(c) $ST = SG = SP$	(d)	$ST = SG \cdot SP$
161.	The number of distinct nor	mals that can be drawn from (–2	2, 1) to the parabola $y^2 - 4x - 2y - 3 = 0$ is		
	(a) 1	(b) 2	(c) 3	(d)	0
162.	The set of points on the axi	is of the parabola $v^2 = 4x + 8$ fr	rom which the 3 normals to the parabola are a	ll real a	und different is
	1	· · · · · ·	T		

				Conic Section : Parabola 181
	(a) $\{(k,0) k \le -2\}$	(b) $\{(k,0) k > -2\}$	(c) $\{(0,k) k>-2\}$	(d) None of these
163.	The area of the triangle for the axis of the parabola is	ormed by the tangent and the normal to	the parabola $y^2 = 4ax$; both draw	n at the same end of the latus rectum, and
	(a) $2\sqrt{2}a^2$	(b) $2a^2$	(c) $4a^2$	(d) None of these
164.	If a chord which is norma	It to the parabola $y^2 = 4ax$ at one end s	subtends a right angle at the vertex,	then its slope is
	(a) 1	(b) $\sqrt{3}$	(c) $\sqrt{2}$	(d) 2
165.	If the normals from any tangents at the three co-no	point to the parabola $x^2 = 4y$ cuts the points are in	the line $y = 2$ in points whose abs	cissae are in A.P., then the slopes of the
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
166.	If $x = my + c$ is a normal	to the parabola $x^2 = 4ay$, then the value of $x^2 = 4ay$, then the value of $x^2 = 4ay$.	ue of c is	
	(a) $-2am-am^3$	(b) $2am + am^3$	(c) $-\frac{2a}{m}-\frac{a}{m^3}$	(d) $\frac{2a}{m} + \frac{a}{m^3}$
167.	The normal at the point <i>H</i> right angle. Then	$P(ap^2, 2ap)$ meets the parabola $y^2 = 4a$	ax again at $Q(aq^2, 2aq)$ such that the	e lines joining the origin to P and Q are at
	(a) $p^2 = 2$	(b) $q^2 = 2$	(c) $p = 2q$	(d) $q = 2p$
168.	If $y = 2x + 3$ is a tangent	to the parabola $y^2 = 24x$, then its dist	tance from the parallel normal is	
	(a) $5\sqrt{5}$	(b) $10\sqrt{5}$	(c) $15\sqrt{5}$	(d) None of these
169.	If $P(-3, 2)$ is one end of t	he focal chord PQ of the parabola y^2 +	4x + 4y = 0, then the slope of the	normal at Q is
	(a) $\frac{-1}{2}$	(b) 2	(c) $\frac{1}{2}$	(d) –2
170.	The distance between a ta	angent to the parabola $y^2 = 4ax$ which	is inclined to axis at an angle α and	a parallel normal is
	(a) $\frac{a\cos\alpha}{\sin^2\alpha}$	(b) $\frac{a\sin\alpha}{\cos^2\alpha}$	(c) $\frac{a}{\sin \alpha \cos^2 \alpha}$	(d) $\frac{a}{\cos \alpha \sin^2 \alpha}$
171.	If the normal to the parab	ola $y^2 = 4ax$ at the point $P(at^2, 2at)$ cu	its the parabola again at $Q(aT^2, 2aT)$	T), then
	(a) $-2 \le \dot{T} \le 2$	(b) $T \in (-\infty, -8) \cup (8, \infty)$	(c) $T^2 < 8$	(d) $T^2 \ge 8$
				Chords
		Bas	ic Level	
172.	The locus of the middle p	oints of the chords of the parabola y^2 =	= 4ax which passes through the orig	gin is
	$(z) = z^2 - z z$	(b) $x^2 - 2x^2$	[]	Rajasthan PET 1997; UPSEAT 1999]
172	(a) $y = ax$	(b) $y = 2ax$	(c) $y = 4ax$	(d) $x = 4ay$
173.	in the parabola $y = 0x$, (a) $y = 2x$	(b) $y + 2x = 0$	(c) $x = 2v$	(d) $x + 2y = 0$
174.	From the point $(-1, 2)$ tan	gent lines are drawn to the parabola v^2	x = 4x, then the equation of chord x	of contact is [Roorkee 1994]
_ / **	(a) $y = x+1$	(b) $y = x - 1$	(c) $y + x = 1$	(d) None of these
175.	A set of parallel chords of	f the parabola $y^2 = 4ax$ have their mid	points on	

182	Conic Section : Parabola					
	(a) Any straight line through(c) A straight line parallel to	the vertex the axis	(b) (d)	Any straight line through the Another parabola	e focu	S
176.	The length of the chord of the	parabola $y^2 = 4ax$ which passes throug	gh the	vertex and makes an angle θ	with	the axis of the parabola, is
	(a) $4a\cos\theta\csc^2\theta$	(b) $4a\cos^2\theta\csc\theta$	(c)	$a\cos\theta\csc^2\theta$	(d)	$a\cos^2\theta\csc\theta$
177.	If <i>PSQ</i> is the focal chord of th	the parabola $y^2 = 8x$ such that $SP = 6$.	Then	the length SQ is		
	(a) 6	(b) 4	(c)	3	(d)	None of these
178.	The locus of the middle points	s of parallel chords of a parabola $x^2 = 4$	ay is	a		
	 (a) Straight line parallel to th (b) Straight line parallel to th (c) Circle (d) Straight line parallel to a 	ne axis ne y-axis bisector of the angles between the axes				
179.	The locus of the middle points	s of chords of the parabola $y^2 = 8x draw$	vn thr	ough the vertex is a parabola v	whose	;
	(a) focus is (2, 0)	(b) Latus rectum =8	(c)	Focus is (0, 2)	(d)	Latus rectum =4
180.	t_1' and t_2' are two points on	the parabola $y^2 = 4x$. If the chord join	ning tl	nem is a normal to the parabola	a at '	t_1 ', then
	(a) $t_1 + t_2 = 0$	(b) $t_1(t_1 + t_2) = 0$	(c)	$t_1(t_1 + t_2) + 2 = 0$	(d)	$t_1 t_2 + 1 = 0$
181.	The locus of the middle points	s of chords of a parabola which subtend	a righ	t angle at the vertex of the para	abola	is
	(a) A circle	(b) An ellipse	(c)	A parabola	(d)	None of these
182.	AB is a chord of the parabola	$y^2 = 4ax$. If its equation is $y = mx + a$	c and	it subtends a right angle at the	verte	ex of the parabola then
	(a) $c = 4am$	(b) $a = 4mc$	(c)	c = -4am	(d)	a + 4mc = 0
183.	The length of a focal chord of	f parabola $y^2 = 4ax$ making an angle 6	9 with	the axis of the parabola is		
	(a) $4a \operatorname{cosec}^2 \theta$	(b) $4a \sec^2 \theta$	(c)	$a \operatorname{cosec}^2 \theta$	(d)	None of these
184.	If (a, b) is the mid point of a cl	hord passing through the vertex of the p	arabo	la $y^2 = 4x$, then		
	(a) $a = 2b$	(b) $2a = b$	(c)	$a^2 = 2b$	(d)	$2a = b^2$
185.	The mid-point of the chord $2x$	$x + y - 4 = 0$ of the parabola $y^2 = 4x$ is	s			
	(a) $\left(\frac{5}{2},-1\right)$	(b) $\left(-1,\frac{5}{2}\right)$	(c)	$\left(\frac{3}{2},-1\right)$	(d)	None of these
186.	If $P(at_1^2, 2at_1)$ and $Q(at_2^2, 2at_2)$) are two variable points on the curve	$y^2 = 4$	ax and PQ subtends a right a	ingle	at the vertex, then $t_1 t_2$ is equal
	to					
10-	(a) -1	(b) -2	(c)	-3	(d)	-4
187.	If $(at^2, 2at)$ are the coordinates	s of one end of a focal chord of the paral	bola j	$y^2 = 4ax$, then the coordinate	of the	e other end are
	(a) $(at^2, -2at)$	(b) $(-at^2, -2at)$	(c)	$\left(\frac{a}{t^2}, \frac{2a}{t}\right)$	(d)	$\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$
188.	If b and c are the lengths of the	e segments of any focal chord of a parab	oola y	$a^2 = 4ax$, then the length of the	ie sen	ni- latusrectum is
	(a) $\frac{b+c}{2}$	(b) $\frac{bc}{b+c}$	(c)	$\frac{2bc}{b+c}$	(d)	\sqrt{bc}
189.	The ratio in which the line seg	gment joining the points $(4,-6)$ and $(3,1)$) is di	vided by the parabola $y^2 = 4x$	x is	
	(a) $\frac{-20 \pm \sqrt{155}}{11}$: 1	(b) $\frac{-2 \pm 2\sqrt{155}}{11}$: 1	(c)	$-20 \pm 2\sqrt{155}$:11	(d)	$-2\pm\sqrt{155}$:11
190.	If the lengths of the two segme	ents of focal chord of the parabola $y^2 =$	4ax	are 3 and 5, then the value of a	ı will	be

				Conic Section : Parabola 183
	(a) $\frac{15}{8}$	(b) $\frac{15}{4}$	(c) $\frac{15}{2}$	(d) 15
			Advance Level	
191.	If 'a' and 'c' are the segme	ents of a focal chord of a parabol	a and b the semi-latus rectum, then	[MP PET 1995]
	(a) a, b, c are in A. P.	(b) a, b, c are in G. P.	(c) a, b, c are in H. P.	(d) None of these
192.	The locus of mid point of t	hat chord of parabola which subt	tends right angle on the vertex will be	[UPSEAT 1999]
	(a) $y^2 - 2ax + 8a^2 = 0$	(b) $y^2 = a(x - 4a)$	(c) $y^2 = 4a(x-4a)$	(d) $y^2 + 3ax + 4a^2 = 0$
193.	The HM of the segments o	f a focal chord of the parabola y	$a^2 = 4ax$ is	
	(a) 4 <i>a</i>	(b) 2 <i>a</i>	(c) <i>a</i>	(d) a^2
194.	The length of a focal chord	l of the parabola $y^2 = 4ax$ at a d	listance b from the vertex is c. Then	
	(a) $2a^2 = bc$	(b) $a^3 = b^2 c$	(c) $ac = b^2$	(d) $b^2 c = 4a^3$
195.	A chord <i>PP</i> ' of a parabol respectively. If V is the ver	a cuts the axis of the parabola rtex then VM, VO, VM' are in	at O. The feet of the perpendiculars from	om P and P' on the axis are M and M'
	(a) <i>A.P.</i>	(b) <i>G.P</i> .	(c) <i>H.P.</i>	(d) None of these
196.	The chord AB of the parab	pola $y^2 = 4ax$ cuts the axis of the	e parabola at C. If $A = (at_1^2, 2at_2)$; $B = (at_1^2, 2at_2)$	$AC^{2}; 2at_{2}$ and $AC: AB = 1:3$, then
	(a) $t_2 = 2t_1$	(b) $t_2 + 2t_1 = 0$	(c) $t_1 + 2t_2 = 0$	(d) None of these
197.	The locus of the middle po	ints of the focal chord of the para	abola $y^2 = 4ax$ is	
	(a) $y^2 = a(x-a)$	(b) $y^2 = 2a(x-a)$	(c) $y^2 = 4a(x-a)$	(d) None of these
198.	If $(4,-2)$ is one end of a for	cal chord of the parabola $y^2 = x$, then the slope of the tangent drawn at its	other end will be
	. 1			(n. 1
	(a) $-\frac{1}{4}$	(b) -4	(c) 4	(d) $\frac{-}{4}$
199.	If (a_1, b_1) and (a_2, b_2) are	extremities of a focal chord of the	he parabola $y^2 = 4ax$, then $a_1a_2 =$	
	(a) $4a^2$	(b) $-4a^2$	(c) a^2	(d) $-a^2$
200.	The length of the chord of	the parabola $y^2 = 4ax$ whose eq	quation is $y - x\sqrt{2} + 4a\sqrt{2} = 0$ is	
	(a) $2\sqrt{11}a$	(b) $4\sqrt{2}a$	(c) $8\sqrt{2}a$	(d) $6\sqrt{3}a$
201	If the line $v = r\sqrt{3} - 3$ cut	ts the parabola $v^2 = r + 2$ at P at	nd Q and if A be the point $(\sqrt{3} 0)$ then A	P AQ is
201.	$\frac{1}{2} = \frac{1}{2} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} 3$	$\frac{4}{2}$		
	(a) $\frac{2}{3}(\sqrt{3}+2)$	(b) $\frac{4}{3}(\sqrt{3}+2)$	(c) $\frac{4}{3}(2-\sqrt{3})$	(d) $2\sqrt{3}$
202.	A triangle <i>ABC</i> of area Δ chord. The difference of the	is inscribed in the parabola y^2 the distances of <i>B</i> and <i>C</i> from the	=4ax such that the vertex A lies at the axis of the parabola is	vertex of the parabola and BC is a focal
	(a) $\frac{2\Delta}{a}$	(b) $\frac{2\Delta}{a^2}$	(c) $\frac{a}{2\Delta}$	(d) None of these
		Diameter oj	f Parabola, Length of tangent, Norma	al and Subnormal, Pole and Polar
			Basic Level	
203.	The length of the subnorm	al to the parabola $y^2 = 4ax$ at ar	ny point is equal to	[UPSEAT 2000]
	(a) $\sqrt{2}a$	(b) $2\sqrt{2}$	(c) $a / \sqrt{2}$	(d) 2 <i>a</i>
204.	The polar of focus of a par	abola is		[Rajasthan PET 1999]

	(a) <i>x</i> -axis	(b) y-axis	(c) Directrix	(d) Latus rectum
05.	Locus of the poles of focal	chords of a parabola isof parabo	la (a) A focal shord	(d) The directric
04	(a) The tangent at the ver	(0) The axis	(c) A local choru	(d) The directrix
200.	(a) A P	(b) $C P$	ax at a point (different from the o	(d) None of these
	(a) A.P.	(b) G.P.	(C) <i>H.P.</i>	(d) None of these
				Miscellaneous Problems
		Be	asic Level	
.07.	The equation of a circle part	ssing through the vertex and the extr	remities of the latus rectum of the pa	arabola $y^2 = 8x$ is [MP PET 1998]
	(a) $x^2 + y^2 + 10x = 0$	(b) $x^2 + y^2 + 10y = 0$	(c) $x^2 + y^2 - 10x = 0$	(d) $x^2 + y^2 - 5x = 0$
208.	An equilateral triangle is in	scribed in the parabola $y^2 = 4ax$, y	whose vertices are at the parabola, t	hen the length of its side is equal to
	(a) 8 <i>a</i>	(b) $8a\sqrt{3}$	(c) $a\sqrt{2}$	(d) None of these
209.	The area of triangle formed	l inside the parabola $y^2 = 4x$ and w	hose ordinates of vertices are 1, 2 a	nd 4 will be [Rajasthan PET 1990]
	(a) $\frac{7}{2}$	(b) $\frac{5}{2}$	(c) $\frac{3}{2}$	(d) $\frac{3}{4}$
010	The area of the triangle for	2 med by the lines joining the vertex of	$\frac{2}{12}$	4
210.	(a) 12 sq. units	(b) 16 sq. units	(c) 18 sq. units	(d) 24 sq. units
211.	The vertex of the parabola	$y^2 = 8x$ is at the centre of a circle a	nd the parabola cuts the circle at the	e ends of its latus rectum. Then the equation
	of the circle is			
	(a) $x^2 + y^2 = 4$	(b) $x^2 + y^2 = 20$	(c) $x^2 + y^2 = 80$	(d) None of these
212.	The circle $x^2 + y^2 + 2\lambda x =$	$0, \lambda \in R$, touches the parabola $y^2 =$	=4x externally. Then	
	(a) $\lambda > 0$	(b) $\lambda < 0$	(c) $\lambda > 1$	(d) None of these
:13.	The length of the common	chord of the parabola $2y^2 = 3(x+1)$) and the circle $x^2 + y^2 + 2x = 0$ is	
	(a) $\sqrt{3}$	(b) $2\sqrt{3}$	(c) $\frac{\sqrt{3}}{2}$	(d) None of these
214.	The circles on focal radii o	f a parabola as diameter touch	2	
	(a) The tangent at the ver	tex (b) The axis	(c) The directrix	(d) None of these
		Adv	vance Level	
215.	The ordinates of the triangl	e inscribed in parabola $y^2 = 4ax$ ar	e y_1, y_2, y_3 , then the area of triangl	e is
	(a) $\frac{1}{8a}(y_1 + y_2)(y_2 + y_3)(y_3 + y_3)(y_3)(y_3 + y_3)(y_$	$(y_3 + y_1)$	(b) $\frac{1}{4a}(y_1 + y_2)(y_2 + y_3)(y_3 + y_3)(y_3)(y_3 + y_3)(y_$	$(y_3 + y_1)$
	(c) $\frac{1}{8a}(y_1 - y_2)(y_2 - y_3)(y_3 - y$	$(y_3 - y_1)$	(d) $\frac{1}{4a}(y_1 - y_2)(y_2 - y_3)$	$(y_3 - y_1)$
216.	Which one of the following	g curves cuts the parabola $y^2 = 4ax$	at right angles	[IIT Screening 1994
	(a) $x^2 + y^2 = a^2$	(b) $y = e^{-x/2a}$	(c) $y = ax$	(d) $x^2 = 4ay$
217.	On the parabola $y = x^2$, th	e point least distant from the straigh	t line $y = 2x - 4$ is	[AMU 2001
	(a) (1, 1)	(b) (1, 0)	(c) $(1, -1)$	(d) (0, 0)
	() (-, -)			
218.	Let the equations of a circle	e and a parabola be $x^2 + v^2 - 4x - 6$	$6 = 0$ and $y^2 = 9x$ respectively. The	en

	(a) $(1, -1)$ is a point on the co	mmon chord of contact	(b)	The equation of the common	= 0						
	(c) The length of the common	chord is 6	(d)	None of these							
219.	<i>P</i> is a point which moves in the <i>x</i> - <i>y</i> plane such that the point <i>P</i> is nearer to the centre of square than any of the sides. The four vertices of the square are $(\pm a, \pm a)$. The region in which <i>P</i> will move is bounded by parts of parabola of which one has the equation										
	(a) $y^2 = a^2 + 2ax$	(b) $x^2 = a^2 + 2ay$	(c)	$y^2 + 2ax = a^2$	(d) None of	these					
220.	The focal chord to $y^2 = 16x$ is tangent to $(x - 6)^2 + y^2 = 2$, then the possible values of the slope of this chord, are [IIT Screenin]										
	(a) $\{-1, 1\}$	(b) {-2, 2}	(c)	{-2, 1/2}	(d) {2, -1/2	}					
221.	Let PQ be a chord of the parabola $y^2 = 4x$. A circle drawn with PQ as a diameter passes through the vertex V of the parabola.										
	$ar(\Delta PVQ) = 20$ unit ² , then the coordinates of <i>P</i> are										
	(a) (16, 8)	(b) (16, -8)	(c)	(-16, 8)	(d) (-16, -8)					
222.	A normal to the parabola $y^2 =$	4ax with slope <i>m</i> touches the rectangula	ar hyp	perbola $x^2 - y^2 = a^2$, if							

(a)
$$m^6 + 4m^4 - 3m^2 + 1 = 0$$
 (b) $m^6 - 4m^4 + 3m^2 - 1 = 0$ (c) $m^6 + 4m^4 + 3m^2 + 1 = 0$ (d) $m^6 - 4m^4 - 3m^2 + 1 = 0$

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	b	b	с	d	а	с	а	b	b	а	с	с	а	b,c	a,c	с	b	а	a,b,c,d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	d	с	b	d	d	b	d	a	a	d	с	с	с	с	a	с	d	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	с	a	b	a	a	с	a	d	a	а	С	b	b,d	a	a	b	a,c	a,b, d	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с	с	a,b	d	d	a	b	b	с	a	b	с	d	b	a	a	с	b	d	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
a	a	b	с	c,d	a	d	a	a	b	b	a	d	d	a	a,b	b	с	a,b	с
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	b	с	b	b	b	d	a,c	с	а	b	a	с	b	d	b	с	d	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
b	b	с	с	a,b	b	с	а	с	с	а	b	а	с	а	С	с	b	а	d
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	d	а	d	с	d	с	а	d	d	b	d	а	а	а	d	С	a	С	С
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
a	d	С	с	b	a	a	С	а	с	d	b	b	b	С	а	С	b	d	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
с	с	а	d	a	d	d	С	С	а	с	а	b	d	b	b	b	с	С	d
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
b	а	d	с	d	b	с	b	d	с	b	а	a	а	с	b	а	a,c	a,b,	а
																		С	
221	222																		

Indices and Surds 187

a,b c