Chapter 1: Units and Measurements

EXERCISES [PAGES 14 - 15]

Exercises | Q 1. (i) | Page 14

Choose the correct option.

[L¹M¹T⁻¹] is the dimensional formula for

- 1. Velocity
- 2. Acceleration
- 3. Force
- 4. Work

SOLUTION

[L¹M¹T⁻¹] is the dimensional formula for **force**.

Exercises | Q 1. (ii) | Page 14

Choose the correct option.

The error in the measurement of the sides of a rectangle is 1%. The error in the measurement of its area is

1% 1

 $\frac{-}{2}$ %

2%

None of the above

SOLUTION

The error in the measurement of the sides of a rectangle is 1%. The error in the measurement of its area is <u>2%</u>.

Explanation:

$$A = I \times b$$

$$\therefore \frac{\triangle \mathbf{A}}{\mathbf{A}} = \frac{\triangle l}{l} + \frac{\triangle \mathbf{b}}{\mathbf{b}} = 1\% + 1\% = 2\%$$

Exercises | Q 1. (iii) | Page 14

Choose the correct option.

A light year is a unit of _____.

- 1. Time
- 2. Mass
- 3. Distance
- 4. Luminosity

SOLUTION

A light year is a unit of distance.

Exercises | Q 1. (iv) | Page 14

Choose the correct option.

Dimensions of kinetic energy are the same as that of _____.

- 1. Force
- 2. Acceleration
- 3. Work
- 4. Pressure

SOLUTION

Dimensions of kinetic energy are the same as that of work.

Exercises | Q 1. (v) | Page 14

Choose the correct option.

Which of the following is not a fundamental unit?

- 1. cm
- 2. kg
- 3. centigrade
- 4. volt

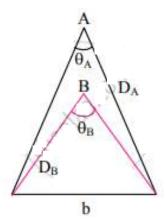
SOLUTION

volt

Exercises | Q 2. (i) | Page 14

Answer the following question.

Star A is farther than star B. Which star will have a large parallax angle?



1. 'b' is constant for the two stars

$$\therefore \theta = \frac{1}{D}$$

2. As star A is farther i.e., $D_A > D_B$

$$\Rightarrow \theta_{A} < \theta_{B}$$

Hence, star B will have a larger parallax angle than star A.

Exercises | Q 2. (ii) | Page 14

Answer the following question.

What are the dimensions of the quantity acceleration due to gravity?

$$l\sqrt{l/g}$$
, I

being the length, and g the

$$\text{Quantity} = 1 \times \sqrt{\frac{l}{g}} \quad \text{(i)}$$

gravitational acceleration, g = $\frac{\text{velocity}}{\text{time}}$

$$\therefore g = \frac{\text{distance}}{\text{time} \times \text{time}}$$

Substituting in equation (i),

Quantity =
$$l \times \sqrt{\frac{l \times \text{time}^2}{\text{distance}}}$$

: Dimensional formula of quantity

$$= [extbf{L}] imes rac{\left[extbf{L}^{1/2}
ight] \left[extbf{T}^{2 imes 1/2}
ight]}{ extbf{L}^1/2} = [extbf{L}] imes \left[extbf{T}^1
ight] = \left[extbf{L}^1 extbf{T}^1
ight]$$

Exercises | Q 2. (iii) | Page 14

Define absolute error.

SOLUTION

- 1. For a given set of measurements of a quantity, the magnitude of the difference between mean value (Most probable value) and each individual value is called absolute error (Δa) in the measurement of that quantity.
- 2. absolute error = [mean value measured value]

$$\Delta a_1 = |a_{mean} - a_1|$$
 Similarly, $\Delta a_2 = |a_{mean} - a_2|$, $\Delta a_n = |a_{mean} - a_n|$

Exercises | Q 2. (iii) | Page 14

Define Mean absolute error.

For a given set of measurements of the same quantity, the arithmetic mean of all the absolute errors is called mean absolute error in the measurement of that physical quantity.

$$\triangle \mathbf{a}_{\mathrm{mean}} = \frac{\triangle \mathbf{a}_1 + \triangle \mathbf{a}_2 + \ldots + \triangle \mathbf{a}_n}{\mathbf{n}} = \frac{1}{\mathbf{n}} \sum_{i=1}^n \triangle a_i$$

Exercises | Q 2. (iii) | Page 14

Define mean percentage error.

SOLUTION

The relative error represented by percentage (i.e., multiplied by 100) is called the percentage error.

Percentage error =
$$\frac{\triangle a_{mean}}{a_{mean}} \times 100\%$$

Exercises | Q 2. (iv) | Page 14

Answer the following question.

Describe what is meant by significant figures and order of magnitude.

SOLUTION

1. Significant figures in the measured value of a physical quantity is the sum of reliable digits and the first uncertain digit.

OR

The number of digits in a measurement about which we are certain, plus one additional digit, the first one about which we are not certain is known as significant figures or significant digits.

- 2. The larger the number of significant figures obtained in a measurement, the greater is the accuracy of the measurement. The reverse is also true.
- 3. If one uses the instrument of smaller least count, the number of significant digits increases.

Rules for determining significant figures:

- 1. All the non-zero digits are significant, for example, if the volume of an object is 178.43 cm³, there are five significant digits which are 1,7,8,4 and 3.
- 2. All the zeros between two nonzero digits are significant, eg., m = 165.02 g has 5 significant digits.

- 3. If the number is less than 1, the zero/zeroes on the right of the decimal point and to the left of the first nonzero digit are not significant e.g. in <u>0.00</u>1405, the underlined zeroes are not significant. Thus the above number has four significant digits.
- 4. The zeroes on the right-hand side of the last nonzero number are significant (but for this, the number must be written with a decimal point), e.g. 1.500 or 0.01500 both have 4 significant figures each.

On the contrary, if a measurement yields length L given as L = 125 m = 12500 cm = 125000 mm, it has only three significant digits.

Exercises | Q 2. (v) | Page 14

Answer the following question.

If the measured values of the two quantities are A \pm Δ A and B \pm Δ B, Δ A and Δ B being the mean absolute errors. What is the maximum possible error in A \pm B?

SOLUTION

The maximum possible error in $(A \pm B)$ is $(\Delta A + \Delta B)$.

Exercises | Q 2. (v) | Page 14

Answer the following question.

Show that if Z =
$$\frac{A}{B}$$
, $\frac{\triangle Z}{Z} = \frac{\triangle A}{A} + \frac{\triangle B}{B}$

SOLUTION

Errors in divisions:

Suppose, Z = $\frac{A}{B}$ and measured values of A and B are (A \pm Δ A) and (B \pm Δ B) then,

$$\begin{split} & \textbf{Z} \pm \Delta \textbf{Z} = \frac{\textbf{A} \pm \triangle \textbf{A}}{\textbf{B} \pm \triangle \textbf{B}} \\ & \therefore \textbf{Z} \bigg(\textbf{1} \pm \frac{\triangle \textbf{Z}}{\textbf{Z}} \bigg) = \frac{\textbf{A} [\textbf{1} \pm (\Delta \textbf{A}/\textbf{A})]}{\textbf{B} [\textbf{1} \pm (\Delta \textbf{B}/\textbf{B})]} \\ & = \frac{\textbf{A}}{\textbf{B}} \times \frac{\textbf{1} \pm (\Delta \textbf{A}/\textbf{A})}{\textbf{1} \pm (\Delta \textbf{B}/\textbf{B})} \end{split}$$

As,
$$\frac{\triangle B}{B} \ll 1$$
, expanding using Binomial theorem,

$$\text{Z}\bigg(1\pm\frac{\triangle Z}{Z}\bigg) = Z\bigg(1\pm\frac{\triangle A}{A}\bigg)\times\bigg(1\ \mp\frac{\Delta B}{B}\bigg) \\bigg(\because\frac{A}{B}=Z\bigg)$$

$$\therefore 1 \pm \frac{\Delta Z}{Z} = \pm \frac{\Delta A}{A} \mp \frac{\Delta B}{B} \pm \frac{\Delta A}{A} \times \frac{\Delta B}{B}$$

Ignoring term
$$\frac{\Delta A}{A} imes \frac{\Delta B}{B}, \frac{\Delta Z}{Z} = \pm \; \frac{\Delta A}{A} \; \mp \; \frac{\Delta B}{B}$$

This gives four possible values of $\frac{\Delta Z}{Z}$ as

$$\left(+\frac{\Delta A}{A}-\frac{\Delta B}{B}\right),\left(+\frac{\Delta A}{A}+\frac{\Delta B}{B}\right),\left(-\frac{\Delta A}{A}-\frac{\Delta B}{B}\right) \text{ and } \left(-\frac{\Delta A}{A}+\frac{\Delta B}{B}\right)$$

$$\therefore$$
 Maximum relative error of $\frac{\Delta Z}{Z} \pm \left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)$

Thus, when two quantities are divided, the maximum relative error in the result is the sum of relative errors in each quantity.

Exercises | Q 2. (vi) | Page 14

Answer the following question.

Derive the formula of the kinetic energy of a particle having mass 'm' and velocity 'v', using dimensional analysis.

SOLUTION

The kinetic energy of a body depends upon mass (m) and velocity (v) of the body.

Let K.E. \propto m^x v^y

$$\therefore$$
 K.E. = km^x v^y(1)

where, k = dimensionless constant of proportionality. Taking dimensions on both sides of equation (1),

$$\begin{split} & \left[\mathbf{L}^{2} \mathbf{M}^{1} \mathbf{T}^{-2} \right] = \left[\mathbf{L}^{0} \mathbf{M}^{1} \mathbf{T}^{0} \right]^{x} \left[\mathbf{L}^{1} \mathbf{M}^{0} \mathbf{T}^{-1} \right]^{y} \\ & = \left[\mathbf{L}^{0} \mathbf{M}^{x} \mathbf{T}^{0} \right] \left[\mathbf{L}^{y} \mathbf{M}^{0} \mathbf{T}^{-y} \right] \\ & = \left[\mathbf{L}^{0+y} \mathbf{M}^{x+0} \mathbf{T}^{0-y} \right] \\ & \left[\mathbf{L}^{2} \mathbf{M}^{1} \mathbf{T}^{-2} \right] = \left[\mathbf{L}^{y} \mathbf{M}^{x} \mathbf{T}^{-y} \right] \(2) \end{split}$$

Equating dimensions of L, M, T on both sides of equation (2),

$$x = 1 \text{ and } y = 2$$

Substituting x, y in equation (1), we have

$$K.E. = kmv^2$$

Exercises | Q 3. (i) | Page 14

Solve the numerical example.

The masses of two bodies are measured to be 15.7 ± 0.2 kg and 27.3 ± 0.3 kg. What is the total mass of the two and the error in it?

SOLUTION

Given: A $\pm \Delta A = 15.7 \pm 0.2 \text{ kg}$ and

 $B \pm \Delta B = 27.3 \pm 0.3 \text{ kg}.$

To find: Total mass (Z), and total error (ΔZ)

Formulae: i. Z = A + Bii. $\pm \Delta Z = \pm \Delta A \pm \Delta B$

Calculation: From formula (i),

$$Z = 15.7 + 27.3 = 43 \text{ kg}$$

From formula (ii),

$$\pm \Delta Z = (\pm 0.2) + (\pm 0.3)$$

$$= \pm (0.2 + 0.3)$$

$$= \pm 0.5 \text{ kg}$$

Total mass is 43 kg and total error is ± 0.5 kg.

Exercises | Q 3. (ii) | Page 14

Solve the numerical example.

The distance travelled by an object in time (100 \pm 1) s is (5.2 \pm 0.1) m. What are the speed and its maximum relative error?

SOLUTION

Given: Distance (D \pm Δ D) = (5.2 \pm 0.1) m, time (t \pm Δ t) = (100 \pm 1) s.

To find: Speed (v), the maximum relative error $\left(\frac{\triangle \mathbf{v}}{\mathbf{v}}\right)$

Formulae: i. $v = \frac{D}{t}$

ii.
$$\frac{\triangle v}{v} = \pm \left(\frac{\triangle D}{D} + \frac{\triangle t}{t}\right)$$

Calculation: From formula (i),

$$\text{v} = \frac{5.2}{100} = 0.052 \text{ m/s}$$

From formula (ii),

$$\frac{\triangle v}{v}\biggr)=\pm\biggl(\frac{0.1}{5.2}+\frac{1}{100}\biggr)$$

$$=\pm \left(\frac{1}{52} + \frac{1}{100}\right) = \pm \frac{19}{650}$$

 $= \pm 0.029 \text{ m/s}$

The speed is 0.052 m/s and its maximum relative error is $\pm 0.029 \text{ m/s}$.

Exercises | Q 3. (iii) | Page 14

Solve the numerical example.

An electron with charge e enters a uniform magnetic field \overrightarrow{B} with a velocity \overrightarrow{v} . The velocity is perpendicular to the magnetic field. The force on the charge is given by $|\overrightarrow{F}| = B e v$.

Obtain the dimensions of \overrightarrow{B} .

Given:
$$|\overrightarrow{\mathbf{F}}| = \mathsf{B} \; \mathsf{e} \; \mathsf{v}$$

Considering only magnitude, given equation is simplified to,

$$F = B e v$$

$$\therefore \mathsf{B} = \frac{\mathsf{F}}{\mathsf{e} \; \mathsf{v}}$$

but, F = ma =
$$m \times \frac{distance}{time^2}$$

$$\therefore [F] = \left[M^1\right] \times \left[\frac{L^1}{T^2}\right]$$

$$= [L^{1}M^{1}T^{-2}]$$

Electric charge, e = current × time

∴ [e] =
$$[I^1T^1]$$

$$Velocity \ v = \frac{\mathbf{distance}}{\mathbf{time}}$$

$$\stackrel{.}{.} \left[v\right] = \left[\frac{L}{T}\right] = \left[L^1 T^{-1}\right]$$

Now, [B] =
$$\left[\frac{F}{e \ v}\right]$$

$$=\frac{\left[L^1M^1T^{-2}\right]}{\left[T^1I^1\right]\left[L^1T^{-1}\right]}$$

$$: [B] = [L^0M^1T^{-2}I^{-1}]$$

Exercises | Q 3. (iv) | Page 14

Solve the numerical example.

A large ball 2 m in radius is made up of a rope of square cross-section with edge length 4 mm. Neglecting the air gaps in the ball, what is the total length of the rope to the nearest order of magnitude?

SOLUTION

Volume of ball = Volume enclosed by rope.

 $\frac{4}{3}\pi$ (radius)³ = Area of cross-section of rope × length of rope.

$$\therefore \text{ length of rope I} = \frac{\frac{4}{3}\pi r^3}{A}$$

Given: r = 2 m and

Area = A = $4 \times 4 = 16 \text{ mm}^2 = 16 \times 10^{-6} \text{ m}^2$

$$\begin{split} \therefore \mid &= \frac{4\times3.142\times2^3}{3\times16\times10^{-6}}\\ &= \frac{3.142\times2}{3}\times10^6 \text{m} \end{split}$$

 \therefore Total length of rope to the nearest order of magnitude = 10^6 m = 10^3 km

Exercises | Q 3. (v) | Page 14

Solve the numerical example.

Nuclear radius R has a dependence on the mass number (A) as R = 1.3×10^{-16} A^{1/3} m. For a nucleus of mass number A = 125, obtain the order of magnitude of R expressed in the meter.

SOLUTION

$$R = 1.3 \times 10^{-16} \times A^{1/3} m$$

For
$$A = 125$$

$$R = 1.3 \times 10^{-16} \times (125)^{1/3}$$

$$= 1.3 \times 10^{-16} \times (5^3)^{1/3}$$

$$= 1.3 \times 10^{-16} \times 5$$

$$= 6.5 \times 10^{-16}$$

$$= 0.65 \times 10^{-15} \text{ m}$$

∴ Order of magnitude = - 15

Exercises | Q 3. (vi) | Page 14

Solve the numerical example.

In a workshop, a worker measures the length of a steel plate with Vernier calipers having a least count 0.01 cm. Four such measurements of the length yielded the following values: 3.11 cm, 3.13 cm, 3.14 cm, 3.14 cm. Find the mean length, the mean absolute error, and the percentage error in the measured value of the length.

SOLUTION

Given: $a_1 = 3.11$ cm, $a_2 = 3.13$ cm,

$$a_3 = 3.14$$
 cm, $a_4 = 3.14$ cm

Least count L.C. = 0.01 cm.

To find: i. Mean length (a_{mean})

- ii. Mean absolute error ($\triangle a_{mean}$)
- iii. Percentage error.

Formulae: 1.
$$a_{mean} = \frac{a_1 + a_2 + a_3 + a_4}{4}$$

$$2.\,\triangle a_n = |a_{mean} - a_n|$$

3.
$$\triangle a_{mean} = \frac{\triangle a_1 + \triangle a_2 + \triangle a_3 + \triangle a_4}{4}$$

4. Percentage error =
$$\frac{\triangle a_{mean}}{a_{mean}} imes 100$$

Calculation: From formula (i),

$$\mathbf{a}_{mean} = \frac{3.11 + 3.13 + 3.14 + 3.14}{4} = \text{3.13 cm}$$

From formula (ii),

$$\triangle a_1 = |3.13 - 3.11| = 0.02$$
cm

$$\triangle a_2 = |3.13 - 3.13| = 0$$

$$\triangle a_3 = |3.13 - 3.14| = 0.01$$
 cm

$$\triangle a_4 = |3.13 - 3.14| = 0.01$$
 cm

From formula (iii),

$${a_{mean}} = rac{0.02 + 0 + 0.01 + 0.01}{4}$$
 = 0.01 cm

From formula (iii),

% error =
$$\frac{0.01}{3.13} \times 100$$

$$= \frac{1}{3.13} = 0.3196 \dots (using reciprocal table)$$

- i. Mean length is 3.13 cm.
- ii. Mean absolute error is 0.01 cm.
- iii. Percentage error is 0.32 %.

Exercises | Q 3. (vii) | Page 14

Solve the numerical example.

Find the percentage error in kinetic energy of a body having mass 60.0 ± 0.3 g moving with a velocity of 25.0 ± 0.1 cm/s.

Given: m = 60.0 g, v = 25.0 cm/s, $\Delta m = 0.3 \text{ g}$, $\Delta v = 0.1 \text{ cm/s}$

To find: Percentage error in E

Formula: Percentage error in E

$$= \left(\frac{\triangle m}{m} + 2\frac{\triangle v}{v}\right) \times 100\%$$

Calculation: From formula,

Percentage error in E =
$$\left(\frac{0.3}{60.0} + 2 imes \frac{0.1}{25.0}\right) imes 100\%$$

= 1.3 %

The percentage error in energy is 1.3%.

Exercises | Q 3. (viii) | Page 15

Solve the numerical example.

In Ohm's experiments, the values of the unknown resistances were found to be 6.12 Ω , 6.09 Ω , 6.22 Ω , 6.15 Ω . Calculate the (mean) absolute error, relative error, and percentage error in these measurements.

SOLUTION

Given:
$$a_1 = 6.12 \Omega$$
, $a_2 = 6.09 \Omega$, $a_3 = 6.22 \Omega$, $a_4 = 6.15 \Omega$

To find: i. Absolute error (Δa_{mean})

ii. Relative error

iii. Percentage error

Formulae: 1.
$$a_{mean}=\dfrac{a_1+a_2+a_3+a_4}{4}$$

2.
$$\Delta \mathbf{a}_n = |\mathbf{a}_{mean} - \Delta \mathbf{a}|$$

3.
$$\Delta a_{mean} = \frac{\Delta a_1 + \Delta a_2 + \Delta a_3 + \Delta a_4}{4}$$

4. Relative error =
$$\frac{\Delta \mathbf{a}_{mean}}{\mathbf{a}_{mean}}$$

5. Percentage error =
$$\frac{\Delta a_{mean}}{a_{mean}} imes 100\%$$

Calculation: From formula (i),

$$\mathrm{a_{mean}} = rac{6.12 + 6.09 + 6.22 + 6.15}{4}$$
 24.58

$$=rac{24.58}{4}=6.145 ext{ cm}$$

Exercises | Q 3. (ix) | Page 15

Solve the numerical example.

An object is falling freely under the gravitational force. Its velocity after travelling a distance h is v. If v depends upon gravitational acceleration g and distance, prove with the dimensional analysis that $v = \sqrt{gh}$ where k is a constant.

SOLUTION

Given =
$$v = k\sqrt{gh}$$

Quantity	Formula	Dimension
Velocity (v)	$\frac{\text{Distance}}{\text{Time}}$	$\left[\frac{\mathrm{L}}{\mathrm{T}}\right] = \left[\mathrm{L}^1\mathrm{T}^{-1}\right]$
Height (h)	Distance	[L ¹]
Gravitational acceleration (g)	$\frac{\mathrm{Distance}}{\left(\mathrm{Time}\right)^2}$	$\left[rac{ ext{L}}{ ext{T}^2} ight] = \left[ext{L}^1 ext{T}^{-2} ight]$

k being constant is assumed to be dimensionless.

Dimensions of L.H.S. =
$$[v] = [L^1T^{-1}]$$

Dimension of R.H.S. =
$$\left[\sqrt{gh}\right]$$

$$= \left[L^1 T^{-2}\right]^{1/2} \times \left[L^1\right]^{1/2}$$

$$= \left\lceil L^1 T^{-2} \right\rceil^{1/2}$$

$$= \left \lceil L^1 T^{-1} \right \rceil$$

$$As, [L.H.S.] = [R.H.S.],$$

 \Rightarrow v = k \sqrt{gh} is dimensionally correct equation.

Exercises | Q 3. (x) | Page 15

Solve the numerical example.

$$\text{v = at + } \frac{b}{t+c} + v_0$$

t+c is a dimensionally valid equation. Obtain the dimensional formula for a, b and c where v is velocity, t is time and v_0 is initial velocity.

SOLUTION

Given:
$$v = at + \frac{b}{t+c} + v_0$$

As only dimensionally identical quantities can be added together or subtracted from each other, each term on R.H.S. has dimensions of L.H.S. i.e., dimensions of velocity.

$$L$$
: [L.H.S.] = [v] = [L¹T⁻¹]

This means, $[at] = [v] = [L^1T^{-1}]$

Given, $t = time has dimension [T^1]$

$$\therefore \text{[a]} = \frac{\left[L^1 T^{-1}\right]}{\left[t\right]} = \frac{\left[L^1 T^{-1}\right]}{\left[T^1\right]} = \left[L^1 T^{-2}\right] = \left[L^1 M^0 T^{-2}\right]$$

Similarly, $[c] = [t] = [T^1] = [L^0M^0T^1]$

$$\therefore \frac{[b]}{\left[T^1\right]} = [v] = \left[LT^{-1}\right]$$

$$\therefore$$
 [b] = [L¹T⁻¹] × [T¹] = [L¹] = [L¹M⁰T⁰]

Exercises | Q 3. (xi) | Page 15

Solve the numerical example.

The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m and 2.01 cm respectively. Give the area and volume of the sheet to correct significant figures.

SOLUTION

Given: I = 4.234 m, b = 1.005 m, $t = 2.01 \text{ cm} = 2.01 \times 10^{-2} \text{ m} = 0.0201 \text{ m}$

To find: i. Area of sheet to correct significant figures (A)

ii. Volume of sheet to correct significant figures (V)

Formulae: 1. A = 2(lb + bt + tl)

2.
$$V = I \times b \times t$$

Calculation: From formula (i),

 $A = 2(4.234 \times 1.005 + 1.005 \times 0.0201 + 0.0201 \times 4.234)$

 $= 2{[anti log(log 4.234 + log1.005) + antilog(log 1.005 + log0.0201) + antilog(log 0.0201 + log 4.234)]}$

= $2\{[antilog(0.6267 + 0.0021) + antilog(0.0021 + \bar{2}.3010) + antilog(\bar{2}.3010 + 0.6267)]\}$

= 2 {[antilog(0.6288) + antilog($\bar{2}$.3031) + antilog($\bar{2}$.9277)]}

= 2 [4.254 + 0.02009 + 0.08467]

= 2 [4.35876]

 $= 8.71752m^2$

In correct significant figure,

$$A = 8.71 \text{ m}^2$$

From formula (ii),

$$V = 4.234 \times 1.005 \times 0.0201$$

= antilog [log (4.234) + log (1.005) + log (0.0201)]

= antilog $[0.6269 + 0.0021 + \bar{2}.3032]$

= antilog $[0.6288 + \bar{2}.3032]$

= antilog $[\bar{2}.9320]$

 $= 8.551 \times 10^{-2}$

$$= 0.08551 \text{m}^3$$

In correct significant figure (rounding off),

$$V = 0.086 \text{ m}^3$$

- i. Area of a sheet to correct significant figures is 8.72 m².
- ii. ii. Volume of sheet to correct significant figures is 0.086 m³.

Exercises | Q 3. (xii) | Page 15

Solve the numerical example.

If the length of a cylinder is $I = (4.00 \pm 0.001)$ cm, radius $r = (0.0250 \pm 0.001)$ cm and mass $m = (6.25 \pm 0.01)$ g. Calculate the percentage error in the determination of density.

SOLUTION

Given: $I = (4.00 \pm 0.001)$ cm,

In order to have same precision, we use,

 (4.000 ± 0.001) , $r = (0.0250 \pm 0.001)$ cm,

In order to have same precision, we use, (0.025 ± 0.001) m = (6.25 ± 0.01) g

To find: percentage error in density

Formulae:

- 1. Relative error in volume, $\frac{\Delta V}{V} = \frac{2\Delta r}{r} + \frac{\Delta l}{l}$ (: Volume of cylinder, V = $\pi r^2 l$)
- 2. Relative error $\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \frac{\Delta V}{V}$ [:: Density (ρ) = $\frac{mass(m)}{volume(v)}$]
- 3. Percentage error = Relative error × 100 %

Calculation: From formulae (i) and (ii),

$$\therefore \frac{\Delta \rho}{\rho} = \frac{\Delta \mathrm{m}}{\mathrm{m}} + \frac{2\Delta \mathrm{r}}{\mathrm{r}} + \frac{\Delta l}{l}$$

$$=\frac{0.01}{6.25}+\frac{2(0.001)}{0.025}+\frac{0.001}{4.000}$$

$$= 0.0016 + 0.08 + 0.00025$$

= 0.08185

% error in density =
$$\frac{\Delta \rho}{
ho} imes 100$$

 $= 0.08185 \times 100$

= 8.185%

Percentage error in density is 8.185%.

Exercises | Q 3. (xiii) | Page 15

Solve the numerical example.

When the planet Jupiter is at a distance of 824.7 million kilometers from the Earth, its angular diameter is measured to be 35.72" of arc. Calculate the diameter of Jupiter.

SOLUTION

Given: Angular diameter (α) = 35.72"

 $= 35.72'' \times 4.847 \times 10^{-6} \text{ rad}$

 $\approx 1.73 \times 10^{-4} \, \text{rad}$

Distance from Earth (D) = 824.7 million km

 $= 824.7 \times 106 \text{ km}$

 $= 824.7 \times 109 \text{ m}.$

To find: Diameter of Jupiter (d)

Formula: $d = \alpha D$

Calculation: From the formula,

 $d = 1.73 \times 10^{-4} \times 824.7 \times 10^{9}$

 $= 1.428 \times 10^8 \,\mathrm{m}$

 $= 1.428 \times 10^5 \text{ km}$

The diameter of Jupiter is 1.428×10^5 km.

Exercises | Q 3. (xiv) | Page 15

Solve the numerical example.

a⁴b³

If the formula for a physical quantity is $X = c^{1/3}d^{1/2}$ and if the percentage error in the measurements of a, b, c and d are 2%, 3%, 3% and 4% respectively. Calculate percentage error in X.

Given:
$$X = \frac{a^4b^3}{c^{1/3}d^{1/2}}$$

Percentage error in a, b, c, d is respectively 2%, 3%, 3% and 4%.

Now, Percentage error in X

$$\begin{split} &= \left(4\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + \frac{1}{3}\frac{\Delta c}{c} + \frac{1}{2}\frac{\Delta d}{d} \right) \times 100\% \\ &= \left[(4 \times 2) + (3 \times 3) + \left(\frac{1}{3} \times 3 \right) + \left(\frac{1}{2} \times 4 \right) \right] \times 100\% \\ &= [8 + 9 + 1 + 2] \times 100\% = 20\% \end{split}$$

Exercises | Q 3. (xv) | Page 15

Solve the numerical example.

Write down the number of significant figures in the following: $0.003 \,\mathrm{m}^2$, $0.1250 \,\mathrm{gm}\,\mathrm{cm}^{-2}$, $6.4 \times 10^6 \,\mathrm{m}$, $1.6 \times 10^{-19} \,\mathrm{C}$, $9.1 \times 10^{-31} \,\mathrm{kg}$.

SOLUTION

Number	No. of significant figures	Reason
0.003 m ²	1	Rule no. iii
0.1250 g cm ⁻²	4	Rule no. iv
6.4 × 10 ⁶ m	2	Rule no. i
1.6 × 10 ⁻¹⁹ C	2	Rule no. i
$9.1 \times 10^{-31} \text{ kg}$	2	Rule no. i

Exercises | Q 3. (xvi) | Page 15

Solve the numerical example.

The diameter of a sphere is 2.14 cm. Calculate the volume of the sphere to the correct number of significant figures.

SOLUTION

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

= $\frac{4}{3} \times 3.142 \times \left(\frac{2.14}{2}\right)^3$... $\left(\because r = \frac{d}{2}\right)$
= $\frac{4}{3} \times 3.142 \times (1.07)^3$
= $1.333 \times 3.142 \times (1.07)^3$
= $\{\text{antilog [log } (1.333) + \log(3.142) + 3 \log(1.07)]\}$
= $\{\text{antilog } [0.1249 + 0.4972 + 3 (0.0294)]\}$
= $\{\text{antilog } [0.1249 + 0.4972 + 3 (0.0294)]\}$
= $\{\text{antilog } [0.6221 + 0.0882]\}$
= $\{\text{antilog } [0.7103]\}$
= 5.133cm^3

In multiplication or division, the final result should retain as many significant figures as there are in the original number with the least significant figures.

 \therefore Volume in correct significant figures = 5.13 cm³