Mole Concept & Stoichiometry

Gay Lussac's Law – Avogadro's Law

Practice Questions

Question 1.

What volume of oxygen would he required to burn completely 400 ml of acetylene (C_2H_2) ? Calculate the volume of CO_2 formed.

Answer:

400 ml of
$$C_2H_2 = \frac{5}{2} \times 400$$
ml.

Volume of O_2 needed = 1000 ml.

2 vol. of C_2H_2 produce $CO_2 = 4$ vol.

 \therefore 400 ml of C₂H₂ produce CO₂ = $\frac{4}{2} \times 400 = 800$ ml

Volume of CO, produced = 800 ml.

Question 2.

2500 cc of oxygen was burnt with 600 cc of ethane (C_2H_6). Calculate the volume of unused oxygen and the volume of carbon dioxide formed, after writing the balanced equation :

Ethane + Oxygen \rightarrow Carbon dioxide + Water vapour **Answer:**

 $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$ 2 volumes of C_2H_6 need $O_2 = 7$ vols.

- :. 600 cc of C_2H_6 needs $O_2 = \frac{7}{2} \times 600 = 2100$ cc
- :. Volume of O_2 unused = 2500 2100 = 400 cc

2 vols. of C_2H_6 produce $CO_2 = 4$ vols.

 \therefore 600 cc of C₂H₆ will produce CO₂ = $\frac{4}{2} \times 600 = 1200$ cc

Question 3.

80 cm³ of methane are mixed with 200 cm³ of pure oxygen at similar temperature and pressure. The mixture is then ignited. Calculate the composition of resulting mixture if it is cooled to initial room temperature and pressure. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Answer:

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$$

(By Gay Lussac's Law) 1 vol. 2 vol.

l vol. Nil

1 vol. of CH_4 reacts with $O_2 = 2$ vols.

- :. 80 cm³ of CH₄ need O₂ = 80 × 2 = 160 cm³
- \therefore Excess oxygen = 200 160 = 40 cm³

Again 1 vol. of CH_4 produces $CO_2 = 1$ vol.

 \therefore CO₂ produced = 80 cm³

Thus, gaseous composition after reaction is :

Excess oxygen = $200 - 160 = 40 \text{ cm}^3$

 $CO_2 = 80 \text{ cm}^3$ water = negligible

Question 4.

Calculate the volume of HCl gas formed and chlorine gas required when 40 mL of methane reacts completely with chlorine at S.T.P. $CH_4 + 2Cl_2 \rightarrow CH_2Cl_2 + 2HCl$

Answer:

We know that

 $\begin{array}{ccc} \mathrm{CH}_{4} \ + \ 2\mathrm{Cl}_{2} \ \longrightarrow \ \mathrm{CH}_{2}\mathrm{Cl}_{2} \ + \ 2\mathrm{HCl} \\ 1 \ \mathrm{vol.} & 2 \ \mathrm{vol.} & 2 \ \mathrm{vol.} \end{array}$

1 vol. of CH4 produces 2 vols. of HCl

 \therefore 40 ml of CH₄ produces 2 × 40 = 80 ml of CO₂

40 ml of CH_4 reacts completely with $Cl_2 = 2 \times 40 = 80$ ml

Question 5.

What volume of propane is burnt for every 500 cm³ of air used in the reaction under the same conditions ?

 $C_{3}H_{8}\,+\,5O_{2}\rightarrow\,3CO_{2}\,+\,4H_{2}O$

Volume of O_2 in 500 cm³ of air = 20%

$$=\frac{20}{100}$$
 × 500 = 100 cm³

 $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O_1$ 1 vol. 5 vol.

 \therefore Volume of propane burnt = $\frac{100}{5}$ = 20 cm³

Question 6.

450 cm³ of nitrogen monoxide and 200 cm³ of oxygen are mixed together and ignited. Calculate the composition of resulting mixture. 2NO + $O_2 \rightarrow 2NO_2$

Answer:

 $2NO + O_2 \longrightarrow 2NO_2$ 2 vols. 1 vol. 2 vols.

200 cm³

 O_2 (200 cm³) combines with 2 vols. = 2 × 200 = 400 cm³ of NO

2 vols. of NO produces = 2 vols. of NO,

400 cm³ of NO produces NO₂ = 400 cm³

 \therefore Volume of NO left unused = $450 - 400 = 50 \text{ cm}^3$

Question 7.

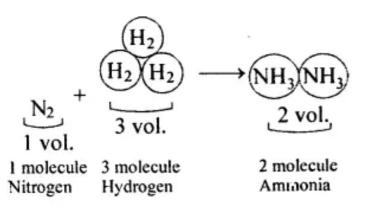
24 cc marsh gas (CH₄) was mixed with 106 cc oxygen and then exploded. On cooling the volume of the mixture became 82 cc of which 58 cc were unchanged oxygen. Which law does their experiment supports ? Explain with calculations. **Answer:**

Marsh gas (CH₄) exploded with oxygen

 $\begin{array}{rcl} CH_4 &+& 2O_2 &\longrightarrow & CO_2 + 2H_2O \\ 1 \text{ vol.} & 2 \text{ vol.} & 1 \text{ vol.} & 0 \text{ vol.} \\ 24 \text{ cc} &\cdot& 48 \text{ cc} & 24 \text{ cc} \\ 1 \text{ vol. of } CH_4 \text{ requires } O_2 = 2 \text{ vols.} \end{array}$

 \therefore 24 cc of CH₄ requires O₂ = 2 × 24 = 48 cc

Also 24 cc of CH_4 produce $CO_2 = 24$ cc


- :. Vol. of O, unused = 106 48 = 58 cc
- \therefore Vol. of mixture on cooling = (unused oxygen + CO₂ formed)

= 58 + 24 = 82 cc

Gay-Lussac's Law supports the experiment.

Avogadro's Law : "Under the same conditions of temperature and pressure equal volumes of all gases contain die same number of molecules." If we assume that 7 litre of oxygen gas contains 'n' molecules of the gas then by Avogadro's Law :

- 1. 1 litre of oxygen will contain 'n' molecules of hydrogen
- 2. 1 litre of nitrogen will contain 'n' molecules of nitrogen.
- 3. 1 litre of any gas will contain 'n' molecules of that gas. e.g.

Relative Molecular Mass : "It is the number that represents how many times one molecule of a substance is heavier than one atom of hydrogen whose weight has been taken unity or 1/12 of ${}_{6}C^{12}$.

Relative Molecular Mass : "It is the number that represents how many times one molecule of a substance is heavier than one atom of hydrogen whose weight has been taken unity or 1/12 of ${}_{6}C^{12}$.

Avogadro's Number : "The number of atoms present in 12 g (gm atomic mass) of ${}_{6}C^{12}$ is called Avogadro's number.

Na or L = 6.023×10^{23}

Element	Symbol	Rel atomic mass	Gram atomic mass
1. Carbon	С	12.0	12g *
2. Hydrogen	н	1.008	1 gm
3. Chlorine	Cl	35.453	55.5g
4. Nitrogen	N	14.007	14g
5. IronFe	55. 8 47	56g	
6. Sulphur	S	32.064	32g

Atomic and Molecular weight of some elements.

Mole : Mole is the mass of substance containing particles equal to Avogadro's number i.e. 6.023×10^{23} .

Gram Atom : "The relative atomic mass of an element expressed in grams is called gram atom.

Gram Mole : "The relative atomic mass of a substance expressed in grams is called gram mole.

Molar Volume : Volume occupied by one mole of any gas at STP is called molar volume.

Applications Of Avogadro'S Law :

- 1. Determines the atomicity of the gas.
- 2. Determines the molecular formula of a gas.
- 3. Determines the relation between molecular weight and vapour density.
- 4. Explains Gay-Lussac's law.
- 5. Determines the relationship between gram molecular weight and gram molecular volume.

1. Determines the atomicity of a gas :

Atomicity : The number of atoms present in one molecule of that element is called atomicity.

Monoatomic : Elements which have one atom in their molecules e.g. Helium, Neon.

Diatomic : Elements which have two atoms in their molecule e.g. Hydrogen, nitrogen, oxygen.

e.g. of Determination of atomicity of a gas :

Nitrogen + Oxygen \longrightarrow Nitric oxide 1 vol. 2 vol. 2

 $N_2 + O_2 \longrightarrow 2NO$

1 molecule + 1 molecule \longrightarrow 2 molecules.

A molecules of nitrogen contains two atoms : atomicity – Diatomic

2. Determines the molecular formula of a gas.

Molecular formula : A chemical formula which gives the actual or exact number of atoms of the elements present in one molecule of a compound.

e.g. Hydrogen + Chlorine \longrightarrow Hydrogen chloride

1 vol. 1 vol. 2 vol. 1 By Gay-Lussac's law

A mole of hydrogen and chlorine contain two atoms-DIATOMIC.

3. Determines the relation between molecular weight and vapour density.

Molecular weight: It is the ratio of the weight of 1 molecule of a substance to the weight of one atom of hydrogen.

Mol. wt = $\frac{\text{mass of 1 molecule of a substance}}{\text{mass of 1 mol. of hydrogen}}$

Vapour Density : It is the ratio of the mass of a certain volume of gas or vapour of the mass of the same volume of hydrogen. Mol. wt. = $2 \times$ vapour density

4. Explains Gay-Lussac's Law :

Gay-Lussac's Law is explained by Avogadro's Law which states "Under similar conditions of temperature and pressure, equal volumes of different gases have same number of molecules."

Since substances react in simple ratio of number of molecules, volumes of gaseous reactants and products will also bear a simple ratio to one another. This is what Gay-Lussac's Law says.

H ₂	+	Cl_2	\longrightarrow	2HCI	
t vol.		l vol.		2 vol.	(by Gay-Lussac's Law)
n-molecules		n-molecules		2n-molecules	s (by Avogadro's Law)

5. Determines relationship between gram molecular mass and gram molecular volume :

Gram molecular mass is the relative molecular mass of a substance expressed in grams. It is also called gram molecule of that element.

Gram molecular volume : The volume occupied by e.g. molecular wt. of a gas at s.t.p.

Gram molecular volume = $\frac{\text{Gram molecular weight}}{\text{wt. per litre of gas at s.t.p.}}$

e.g. Molar volume of $O_2 = \frac{32 \text{ (mol. wt.)}}{1.429 \text{ g/litre}} = \frac{2.016 \text{ (mol. wt)}}{0.09 \text{ g/l}}$

= 22.4 lit. at s.t.p.

Additional Problems

Q.1. Lussac'S Law

Question 1.

Nitrogen reacts with hydrogen to give ammonia. Calculate the volume of the ammonia gas formed when nitrogen reacts with 6 litres of hydrogen. All volumes measured at s.t.p.

Answer:

 $N_2 + 3H_2 \longrightarrow 2NH_3$ 1 vol. 3 vol 2 vol.

3 volumes of hydrogen produces 2 volumes of Ammonia.

6 litres of H₂ produces = $\frac{2}{3} \times 6$ litres of NH₃ = 4 lits.

Question 2.

2500 cc of oxygen was burnt with 600 cc of ethane $[C_2H_6]$. Calculate the volume of unused oxygen and the volume of carbon dioxide formed.

Answer:

- $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O_2$
- 2 vol. 7 vol. 4 vol.

2 cc of C_2H_6 reacts with oxygen = 7 cc

- \therefore 600 cc of C₂H₆ reacts with oxygen = $\frac{7 \times 600}{2}$ = 2100 cc
- $\therefore \text{ Oxygen left unused} = 2500 2100 = 400 \text{ cc}$ 2 vols. of C₂H₆ produce CO₂ = 4 vols.
- $\therefore 600 \text{ cc of } C_2H_6 \text{ produce } CO_2 = \frac{600 \times 4}{2} = 1200 \text{ cc}$

Question 3.

20 ml. each of oxygen and hydrogen and 10 ml. of carbon monoxide are exploded in an enclosure. What will be the volume and composition of the mixture of the gases when they are cooled to room temperature.

2CO	+ 0 ₂	→ 2CO ₂
2 vol.	l vol.	2 vol.
10 ml	5 ml	10 ml

- ... Vol. of oxygen needed = 5 ml and vol. of CO_2 produced = 20 ml Now $2H_2 + O_2 \longrightarrow 2H_2O$ 2 vol. 1 vol. Nil 20 ml 10 ml
- ... Vol. of oxygen used = 10 ml
- \therefore Total vol. of oxygen used = 10 + 5 = 15 ml
- $\therefore \text{ Vol. of O}_2 \text{ left} = 20 15 = 5 \text{ ml}$ and vol. of CO₂ = 10 ml

Question 4.

224 cm³ of ammonia undergoes catalytic oxidation in presence of Pt to given nitric oxide and water vapour. Calculate the volume of oxygen required for the reaction. All volumes measured at room temperature and pressure.

Answer:

 $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$

4 vol. 5 vol.

4 volume of NH_3 require $O_2 = 5$ vol.

OR4 cm³ of NH₃ require O₂ = 5 cm³

 \therefore 224 cm³ of ammonia will need $O_2 = \frac{5}{4} \times 224 = 280 \text{ cm}^3$

Question 5.

Acetylene $[C_2H_2]$ burns in air forming carbon dioxide and water vapour. Calculate the volume of air required to completely burn 50 cm³ of acetylene. [Assume air contains 20% oxygen].

 $2C_2H_2 + 5O_2 \longrightarrow 4CO_2 + 2H_2O_2$ 2 vol. 5 vol.For complete burning $2\text{cm}^3 \text{ of } C_2H_2 \text{ needs oxygen} = 5 \text{ cm}^3$

 \therefore 50 cm³ of C₂H₂ needs oxygen = 50 × $\frac{5}{2}$ = 125 cm³

But if O_2 is 20 cm³ air = 100 cm³

:. If 125 cm³ is O₂, air = $\frac{100 \times 125}{20}$ = 625 cm³

Question 6.

On igniting a mixture of acetylene $[C_2H_2]$ and oxygen, 200 cm³ of CO₂ is collected at s.t.p. Calculate the volume of acetylene & O₂ at s.t.p. in the original mixture.

Answer:

 $2C_{2}H_{2} + 5O_{2} \longrightarrow 4CO_{2} + 2H_{2}O$ 2 vol. 5 vol. 4 vol. ml Vol. of $C_{2}H_{2}$ For 4 vol. of CO₂ vol. of $C_{2}H_{2}$ is 2 For 200 cm³ of CO₂, vol. of $C_{2}H_{2}$ is $= \frac{2}{4} \times 200 = 100$ cm³ Vol. of O₂ For 4 cm³ of CO₂ vol. of O₂ needed = 5 cm³ \therefore For 200 cm³ of CO₂ vol. of O₂ $= \frac{5}{4} \times 200 = 250$ cm³

Question 7.

Ammonia is formed from the reactants nitrogen and hydrogen in presence of a catalyst under suitable conditions. Assuming all volumes are measured in litres at s.t.p. Calculate the volume of ammonia formed if only 10% conversion has taken place.

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 1 Vol. 3 vol. 2 vol. 1 lit. 3 lit. 2 lit.

Vol. of ammonia formed is 10% of reactants

 $\therefore 10\% \text{ of } 2 \text{ lit.} = \frac{10}{100} \times 2 = 0.2 \text{ litres}$ of vol. of N₂ and H₂

Question 8.

100 cc. each of water gas and oxygen are ignited and the resultant mixture of gases cooled to room temp. Calculate the composition of the resultant mixture. [Water gas contains CO and H_2 in equal ratio]

Answer:

This means vol. of CO = 50 cc and volume of $H_2 = 50$ cc $2CO + O_2 \longrightarrow 2CO_2$ 2 vol. 1 vol. 2 vol. 1 vol. of O_2 produces $CO_2 = 2$ vol. 25 cc of O_2 produces $CO_2 = 50$ cc $2H_2 + O_2 \longrightarrow 2H_2O$ 1 vol Nil 25 cc 25 cc of O_2 is consumed in burning H_2 Vol of O_2 produces $CO_2 = 1 - 1 - 50$

 \therefore Vol of O₂ used = 50 cc and vol. of CO₂ produced = 50 cc

Q.2. Mole Concept – Avogadro'S Law – Avogadro'S Number Calculate the following : [all measurement at s.t.p. or as stated in the problem]

Question 1. The mass of 2.8 litres of CO_2 . [C = 12, O = 16] Answer: Molecular mass of $CO_2 = C + 2$ (O)

 $= 12 + 2 (16) = 44 \text{g mol}^{-1}$

s.t.p. 22.4 litres of CO_2 has mass = 44g

:. 2.8 lits. of CO₂ has mass = $\frac{44 \times 2.8}{12.4} = \frac{44}{8} = \frac{11}{2} = 5.5g$

Question 2.

The volume occupied by 53.5g of Cl_2 . [Cl = 35.5] **Answer:**

At. s.t.p. volume occupied by

 $Cl_2 = 35.2 \times 2 = 71 \text{ g mol}^{-1}$

71g of Cl_2 at STP has mass = 22.4 lits.

$$\therefore \text{ Vol. occupied by 53.5 g of Cl}_2 = \frac{22.4 \times 53.5}{71}$$

$$=\frac{1198.40}{71}=16.87$$
 lits.

Question 3.

The number of molecules in 109.5 g of HCl. [H = 1, Cl = 35.5] **Answer:**

Molar mass of HCl = $1 + 35.5 = 36.5 \text{ g mol}^{-1}$

At s.t.p. 36.5g of HCl = 1 mole = 6.023×10^{23} molecules

:. 109.5g of HCl =
$$\frac{109.5 \times 6.023 \times 10^{23}}{36.5} = \frac{219}{73} \times 6.023 \times 10^{23}$$

= $3 \times 6.023 \times 10^{23}$ molecules of HCl

Question 4.

The number of

- 1. molecules [S = 32]
- 2. atoms in 192 g. of sulphur. $[S_8]$

(i) No. of molecules in $S = 6.023 \times 10^{23}$ molecules

(Avog. No.)

٨

(ii) $S_8 = 8$ atoms = $8 \times 32 = 256$ 256 g of S contains atoms = 6.023×10^{23} atoms 6.023×10^{23}

192 g of S contains atoms = $\frac{6.023 \times 10^{23}}{256} \times 192$

 $= 0.75 \times 6.023 \times 10^{23}$ atoms

Question 5.

The mass of (Na) sodium which will contain 6.023×10^{23} atoms. [Na = 23] **Answer:**

One gram atom of sodium = 23 g

We know that one gram atom of an element

 $= 6.023 \times 10^{23}$ atoms

Mass of Na containing 6.023×10^{23} atoms = Atomic mass of sodium = 23 g

Question 6.

The no. of atoms of potassium present in 117 g. of K. [K = 39] **Answer:**

At. wt. of K = 39

 \therefore Gram atoms of K = $\frac{117}{39}$ = 3 gram atoms

One gram atom has = 6.023×10^{23} atoms

 \therefore 3 gram atoms has = 3 × 6.023 × 10²³ atoms of K

Question 7.

The number of moles and molecules in 19.S6 g. of Pb $(NO_3)_2$. [Pb = 207, N = 14, O = 16]

Gram molecular mass of Pb $(NO_3)_2 = 1$ mole

- = Pb + 2 [N + 3 (O)]
- = 207 + 2 [14 + 48] = 331 g = 1 mole
- : 19.86 g of Pb (NO₃)₂ = $\frac{19.86 \times 1}{331}$ = 0.06 moles

One mole of Pb (NO₃)₂ has 6.023×10^{23} molecules

 \therefore 0.06 moles has = 0.06 × 6.023 × 10²³ moleules

Question 8.

The mass of an atom of lead [Pb = 202]. **Answer:**

1 mole of lead (Pb) *i.e.* 202 g has = 6.023×10^{23} atoms

 \therefore 6.023 × 10²³ atoms of lead = 202 g

:. 1 atom has mass = $\frac{202}{6.023 \times 10^{23}} = 33.48 \times 10^{-23} \text{ g}$

Question 9.

The number of molecules in 1 1/2 litres of water. [density of water 1.0 g./cm³. – \therefore mass of water = volume × density] Answer:

s,

Vol. of water = $1.5 L = 150 mL = 1500 cm^3$

Density of water = 1 g/cm^3

 \therefore Mass of water = Volume × Density

$$= 1500 \text{ cm}^3 \times 1 \text{ g cm}^{-3} = 1500 \text{ g}$$

Molar mass of water = 18 g mol^{-1}

 \therefore 18 g of water contain molecules = 6.023×10^{23}

1500 g of water will contain molecules = $\frac{6.022 \times 1500 \times 10^{23}}{18}$

 $= 83.33 \times 6.022 \times 10^{23}$ molecules

Question 10.

The gram-atoms in 88.75 g of chlorine [Cl = 35.5]

Gram-atom = Atomic mass in grams

At. mass of chlorine = 35.5 g

35.5 g of chlorine = 1 gram-atoms

:. 88.75 g of chlorine =
$$\frac{88.75 \times 1}{35.5} = \frac{8875}{3550} = 2.5$$

= 2.5 gram-atoms

Question 11.

The number of hydrogen atoms in 0.25 mole of H_2SO_4 .

Answer:

 $H_2SO_4 = 1$ mole of sulphuric acid

1 mole of H_2SO_4 has hydrogen atoms = 2 × 6.023 × 10²³

:.
$$0.25 = \frac{1}{4}$$
 mole of H₂SO₄ has H atoms = $\frac{1}{4} \times 2 \times 6.023 \times 10^{23}$
= 3.0115 × 10²³ atoms

Question 12.

The gram molecules in 21 g of nitrogen [N = 14] **Answer:**

Gram molecular mass of $N_2 = 2 \times 14 = 28$ g

28 g of $N_2 = 1$ gram molecule

:. 21 g of N₂ =
$$\frac{1 \times 21}{28} = \frac{3}{4} = 0.75$$
 g molecular of N₂

Question 13.

The number of atoms in 10 litres of ammonia [N = 14, H = 1]

Answer:

 NH_3 (Ammonia) mole has 1N + 3H = 4 atoms $NH_3 = 1$ mole = 22.4 litres at s.t.p.

1 mole of NH₃ has atoms = $4 \times 6.023 \times 10^{23}$ atoms *i.e.* 22.4 litres of NH₃ has = $4 \times 6.023 \times 10^{23}$ atoms

:. 10 litres of NH₃ has = $\frac{10 \times 4 \times 6.023 \times 10^{23}}{22.4}$ = 1.786 × 6.23 × 10²³ atoms

Question 14.

The number of atoms in 60 g of neon [Ne = 20]

Answer:

1 g atoms = 6.023×10^{23} atoms Gram atomic mass of Ne = 20 g 20 g of Ne = 6.023×10^{23} atoms ∴ 60 g of Ne = $\frac{60}{20} \times 6.023 \times 10^{23}$

 $= 3 \times 6.023 \times 10^{23}$ atoms

Question 15.

The number of moles of 'X' atoms in 93 g of 'X' [X is phosphorus = 31]

Answer:

Gram atomic mass of phosphorus = 31 g = 1 mole

31 g of X = 1 mole

$$\therefore 93 \text{ g of } X = \frac{93}{31} = 3 \text{ moles of } X$$

Question 16.

The Volume occupied by 3.5 g of O_2 gas at 27°C and 740 mm presure. [O = 16]

Answer:

Mass of 1 mole of gas = $O_2 = 16 \times 2 = 32$ g At. s.t.p. 32 g of O_2 occupies vol. = 22.4 lits.

 $\therefore 3.5 \text{ g of O}_2 \text{ occupies vol.} = \frac{22.4 \times 3.5}{32} = 2.45 \text{ lits.}$

To find, vol. occupied by 3.5 g of O2 at 27°C and 740 mm

 $P_1 = 760 \text{ mm} \qquad P_2 = 740 \text{ mm}$ $T_1 = 273 \text{ K} \qquad T_2 = 27 + 273 = 300 \text{ K}$ $V_1 = 2.45 \text{ L} \qquad V_2 = ?$

Now, applying gas equation,

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \qquad \therefore \quad V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{760 \times 2.45 \times 300}{273 \times 740}$$
$$= 2.76 \text{ lits.} = V_2 = 2.76 \text{ lits.}$$

Question 17.

The moles of sodium hydroxide contained in 160 g of it. [Na = 23, O = 16, H = 1]

Answer:

1 g molecular weight of NaOH = Na + O + H = 23 + 16 + 1 = 40 g = 1 mole 40 g of NaOH represent = 1 mole of NaOH

 \therefore 160 g of NaOH will represent = $\frac{160}{40}$ = 4 moles of NaOH

Question 18.

The weight in g. of 2.5 moles of ethane $[C_2H_6]$. [C = 12, H = 1]**Answer:**

1 mole of ethane $[C_2H_6] = 2(C) + 6(H)$

$$= 2(12) = 6(1)$$

= 24 + 6 = 30

1 mole of C_2H_6 weighs = 30 g

 \therefore 2.5 moles of C₂H₆ weighs = 30 × 2.5 = 75 g

Question 19.

The molecular weight of 2.6 g of a gas which occupies 2.24 lits. at 0°C and 760 mm press.

Volume occupied at 0°C and 760 mm means volume occupied at s.t.p.

2.24 lits of gas at s.t.p. by = 2.6 g of gas

 \therefore 22.4 lits. at. s.t.p. is occupied by = $\frac{2.6 \times 22.4}{2.24}$ = 26 g of gas

But vol. of 22.4 lits. of gas at s.t.p. = molecular mass

 \therefore Molecular weight of gas = 26 g

Question 20.

The gram atoms in 46 g of sodium [Na = 23] **Answer:**

1-g-atoms of Na = 23 g

23 g of Na = 1g-atom

 \therefore 46 g of Na = $\frac{1 \times 46}{23}$ = 2 gram atoms

Question 21.

The number of moles of $KClO_3$ that will be required to give 6 moles of oxygen. **Answer:**

 $2KCIO_3 \xrightarrow{\Delta} 2KCI + 3O_2$

2 moles 3 moles

To produce 3 moles of O_2 , moles of KClO₃ required = 2

To produce 6 moles of O2, moles of KClO3 required

$$=\frac{2\times 6}{3}=4$$
 moles

Question 22.

The weight of the substance of its molecular weight is 70 and in the gaseous form occupies 10 lits. at 27°C and 700 mm pressure.

ns. Molecular weight of substance = 70

P₁ = 700 mm
V₁ = 10 lits.
T₁ = 27 + 273 = 300 K
∴
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

 $V_2 = \frac{P_1V_1T_2}{T_1P_2} = \frac{700 \times 10 \times 273}{300 \times 76} = \frac{7 \times 273}{3 \times 76} = \frac{637}{76}$
at. s.t.p. molecular mass occupies 22.4 lits.
22.4 lits of the gas at STP has mass = 70 g
∴ $\frac{637}{76}$ lits. of the gas at STP will weigh

$$= \frac{70}{22.4} \times \frac{637}{76} = \frac{100 \times 637}{32 \times 76} = \frac{25 \times 637}{8 \times 76}$$
$$= \frac{15925}{608} = 26.19 \text{ g}$$

Question 23.

Has higher number of moles : 5 g. of N_2O or 5 g. of NO [N = 14, O = 16]

Answer:

Molar mass of $N_2O = (2 \times 14) + 16 = 44$ g Molar mass of NO = 14 + 16 = 30 g

 \therefore 5 g of N₂O has number of moles = $\frac{5}{44}$ moles

 \therefore 5 g of NO has number of moles = $\frac{5}{30} = \frac{1}{6}$ moles

and
$$\frac{5}{30} > \frac{5}{44}$$
 \therefore NO has higher number of moles

Question 24.

Has higher mass : 1 mole of CO_2 or 1 mole of CO [C = 12, O = 16]

- 1 mole of CO₂ has mass = $12 + (16 \times 2) = 44$ g
- 1 mole of CO has mass = 12 + 16 = 28 g
- ... Mass of 1 mole of CO2 has more mass

Question 25.

Has higher no. of atoms : 1 g of O_2 or 1 g of Cl_2 [O = 16, Cl = 35.5]

Answer:

Molar mass of $O_2 = 2 \times 16 = 32 \text{ g mol}^{-1}$ 32 g of O_2 have atoms = $2 \times 6.023 \times 10^{23}$

1 g of O₂ will have atoms = $\frac{2 \times 6.023 \times 10^{23}}{32}$

 $= 0.0625 \times 6.022 \times 10^{23}$ atoms

Molar mass of $Cl_2 = 2 \times 35.5 = 71 \text{ g mol}^{-1}$

 \therefore 71 g of Cl₂ have atoms = 2 × 6.023 × 10²³

1 g of Cl₂ will have atoms =
$$\frac{2 \times 6.023 \times 10^{23}}{71}$$

 $= 0.028 \times 6.023 \times 10^{23}$

Thus 1 g of O_2 has more number of atoms than 1 g of Cl_2 .

Q.3. Vapour Density And Molecular Weight

Question 1.

500 ml. of gas 'X' at s.t.p. weighs 0.50 g. Calculate the vapour density and molecular weight of the gas. [1 lit. of H_2 at s.t.p. weighs 0.09 g].

Answer:

Vapour density of gas 'X' = $\frac{\text{weight of 1 lit. of 'X'}}{\text{weight of 1 lit. of H}_2}$

at same temp. and pressure

$$\therefore \text{ V.D.} = \frac{\text{weight of 1000 ml of X}}{\text{weight of 1 lit. of H}_2} = \frac{2 \times 0.50}{0.09} = \frac{100}{9} = 11.1$$

Molecular weight of 'X' = 2 × V.D.
= 2 × 11.1 = 22.2 g

Question 2.

A gas cylinder holds 85 g of a gas 'X'. The same cylinder when filled with hydrogen holds 8.5 g of hydrogen under the same conditions of temperature and pressure Calculate the molecular weight of 'X'.

Answer:

V.D. of 'X' = $\frac{\text{Weight of certain volume of gas}}{\text{Weight of equal vol. of H}_2}$

Under similar conditions of temp. and pressure

$$\therefore \text{ V.D. of gas 'X'} = \frac{\text{wt. of 1 gas cylinder of gas 'X'}}{\text{wt. of 1 gas cylinder of H}_2} = \frac{85 \text{ g}}{8.5 \text{ g}}$$

V.D. of 'X' = 10

 \therefore Molecular weight of gas 'X' = 2 × 10 = 20 g

Question 3.

Calculate the relative molecular mass [molecular weight] of 290 ml. of a gas 'A' at 17°C and 1520 mm pressure which weighs 2.73 g at s.t.p. [1 litre of hydrogen at s.t.p. weighs 0.09 g.]

Answer:

To convert the vol. 290 ml. of gas at s.t.p. V₁ = 290 ml V₂ = ? P₁ = 1520 mm P₂ = 760 mm T₁ = 273 + 17 = 290 K T₂ = 273 K Applying gas equation, $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$. V₂ = $\frac{P_1V_1T_2}{T_1P_2} = \frac{290 \times 1520 \times 273}{290 \times 760} = 546$ ml To calculate V.D. of gas 'X' 546 ml of gas at s.t.p. weighs 273 g ∴ 1000 ml (1 lit.) of gas weighs = $\frac{273 \times 1000}{546} = 500$ g Now V.D. of gas 'X' = $\frac{\text{wt. of 1 lit. of gas 'X'}}{\text{wt. of 1 lit. of H}_2}$

$$=\frac{500}{0.09}=55.55$$

Molecular mass of gas = $2 \times V.D.$

 $= 2 \times 55.55 = 111.10$ g

Question 4.

State the volume occupied by 40 g of a hydrocarbon – CH_4 at s.t.p. if its V.D. is 8.

Answer:

V.D. of hydrocarbon = 8

 \therefore Molecular weight = 2 × V.D. = 2 × 8 = 16 g

16 g of hydrocarbon occupy at S.T.P. = 22.4 lit

 \therefore 40 g of hydrocarbon occupy at S.T.P. = $\frac{22.4 \times 40}{16}$ = 56 lits.

Question 5.

Calculate the atomcity of a gas X [at. no. 35.5] whose vapour density is equal to its relative atomic mass.

Answer: V.D. = At. mass V.D. = 35.5Molecular weight = $2 \times V.D$. = $2 \times 35.5 = 71$ g

Number of atoms = $\frac{\text{Molecular weight}}{\text{Atomic weight}}$

$$n = \frac{71}{35.5} = 2 \text{ atoms}$$

 \therefore Atomicity of gas 'X' = 2

Question 6.

Calculate the relative molcular mass and vapour density of methyl alcohol $[CH_3OH]$ if 160 g. of the alcohol on vaporization has a volume of 112 litres at s.t.p.

Answer:

Mass of 112 L of alcohol vapour at STP = 160 g

 \therefore Mass of 1 L of alcohol vapour at STP hass mass = $\frac{160}{112}$ g

= 1.4286 gMass of 1 L of H₂ at STP = 0.09 g

: Vapour density

 $= \frac{\text{Mass of given vol. of gas or vapour}}{\text{Mass of same vol. of H}_2 \text{ under similar T and P}}$

$$=\frac{1.4286}{0.09}=15.87\approx 16$$

Mol. mass = $2 \times V.D. = 2 \times 15.87 = 31.75 \approx 32$

Percentage Composition – Empirical & Molecular Formula Calculations Based on Chemical

Additional Problems

Q.1. Percentage Composition

Question 1.

Calculate the percentage by weight of :

(a) C in carbon dioxide
(b) Na in sodium carbonate
(c) Al in aluminium nitride.
[C = 12, O = 16, H = 1, Na = 23, Al = 27, N = 14]

Answer:

(a) Weight of C = 12

Weight of $CO_2 = 12 + 2(16) = 44$

% age of C in
$$CO_2 = \frac{\text{wt. of carbon}}{\text{wt. of } CO_2} \times 100$$

$$=\frac{12}{44} \times 100 = \frac{300}{11} = 27.27\%$$

- \Rightarrow Percentage of C in CO₂ = 27.3%
- (b) Wt. of sodium carbonate Na_2CO_3 = 2 (Na) + C + 3 (O)

= 2 (23) + 12 + 3 (16)= 46 + 12 + 48 = 106

Percentage of sodium in $Na_2CO_3 = \frac{wt. of Na}{wt. of Na_2CO_3} \times 100$

$$=\frac{46}{106}\times 100=43.4\%$$

(c) Weight of Aluminium nitride AlN

Molecular weight of AIN = 27 + 14 = 41g

Percentage of Aluminium = $\frac{\text{wt. of Al}}{\text{wt. of AlN}} \times 100$

$$=\frac{27}{41} \times 100 = 65.85\%$$

Question 2.

Calculate the percentage of iron in $K_3Fe(CN)_6$. [K = 39,Fe = 56, C = 12, N = 14]

Answer:

Molecular mass of K3Fe(CN)6

= 3 (K) + Fe + 6 [C + N]= 3 (39) + 56 + 6 [12 + 14] = 329g

Percentage of iron in $K_3Fe(CN)_6 = \frac{\text{wt. of iron} \times 100}{\text{wt. of } K_3Fe(CN)_6}$

$$=\frac{56\times100}{329}=17.03\%$$

Question 3.

Calculate which of the following – calcium nitrate or ammonium sulphate has a higher % of nitrogen.[Ca = 40, S = 32, N = 14, O = 16]

Gram-molecular mass of Ca(NO₃)₂

= Ca + 2 [N + 3(O)] = 40 + 2 [14 + 3(16)] = 40 + 2 [14 + 48] = 164g Gram-molecular mass of [NH₄]₂ SO₄ = 2 [N + 2(H)] + S + 4 (O)²

$$= 2 [14 + 4(1)] + 32 + 4 (16) = 132g$$

% of nitrogen in Ca[NO₃] = $\frac{28}{164} \times 100 = \frac{700}{41} = 17.07\%$

% of nitrogen in
$$[NH_4]_2$$
 SO₄ = $\frac{28}{132} \times 100 = 21.2\%$

 $\therefore \frac{700}{33} > \frac{700}{41}$ or 21.2% > 17.07%

... % N₂ is higher in Ammonium sulphate

Question 4.

Calculate the percentage of pure aluminium in 10kg. of aluminium oxide $[Al_2O_3]$ of 90% purity. [Al = 27, O = 16]

Answer:

Molecular weight of Al_2O_3 = 2 (Al) + 3 (O) = 2 (27) + 3 (16) = 54 + 48 = 102g Wt. of aluminium in aluminium oxide = 54g

% of Al in ore = $\frac{54 \times 100}{102} = \frac{27 \times 100}{51} = \frac{900}{17}$

Pure aluminium is of 90% purity

 \therefore % of 90% pure Aluminium in ore (Al₂O₃)

$$=\frac{900}{17}\times\frac{90}{100}=\frac{810}{17}=47.64\%$$

% purity of Al in ore my be 10kg or else

Question 5. State which of the following are better fertilizers —

- 1. Potassium phosphate [K₃PO₄] or potassium nitrate [KNO₃]
- 2. Urea $[NH_2CONH_2]$ or ammonium phosphate $[(NH_4)_3PO_4]$ [K = 39, P = 31, O = 16, N = 14, H = 1]

Answer:

(i) Out of K_3PO_4 and KNO_3 Molecular weight of $K_3PO_4 = 3$ (K) + P + 4 (O) = 3 (39) + 31 + 4 (16) = 212 g % of potassium in $K_3PO_4 = \frac{117}{212} \times 100 \Rightarrow 55.2\%$ Molecular wt. of $KNO_3 = K + N + 3$ (O) = 39 + 14 + 48 = 101g % of potassium in $KNO_3 = \frac{39}{101} \times 100 = 38.6\%$

- : % of potassium in K₃PO₄ is higher
- ... Potassium phosphate is better than potassium nitrate
- (ii) Molecular weight of NH₂CONH₂

$$= 2(N) + 4(H) + C + O$$

= 2(14) + 4(1) + 12 + 16 = 60g

% of nitrogen in urea = $\frac{28}{60} \times 100 = 46.67\%$

Molecular weight of [NH₄]₃ PO₄

$$= 3(N) + 12(H) + P + 4(O)$$

= 3(14) + 12(1) + 31 + 4(16)
= 42 + 12 + 31 + 64 = 149g

% of N₂ in (NH₄)₃ PO₄ = $\frac{42}{149} \times 100 = 28.19\%$

 \therefore % of N₂ in urea is higher than (NH₄)₃ PO₄

:. Urea is better

Question 6.

Calculate the percentage of carbon in a 55% pure sample of carbon carbonate. [Ca = 40, C = 12, O = 16]

Answer:

= Ca + C + 3(O)= 40 + 12 + 3 (16) = 100g

Weight of carbon in 100 g of $CaCO_3 = 12g$

But purity is 55%

.: Percentage of carbon in CaCO₃

$$=\frac{12\times55}{100}=6.60\%$$

Question 7.

Calculate the percentage of water of crystallisation in hydrated copper sulphate [CuSO₄.5H₂O].

[Cu = 63.5, S = 32, O = 16, H = 1]

Answer:

Molecular weight of CuSO₄.5H₂O

= Cu + S + 4 (O) + 5 [(2H) + O]= 63.5 + 32 + 4 (16) + 5 [2 × (1) + 16] = 249.5g

% of water of crystallisation = $\frac{\text{wt. of water}}{\text{wt. of } \text{CuSO}_4.5\text{H}_2\text{O}}$

$$=\frac{90}{249.5}\times100=36.07\%$$

Question 8.

Hydrated calcium sulphate [CaSO₄xH₂O] contains 21% of water of crystallisation. Calculate the number of molecules of water of crystallisation Le. 'X' in the hydrated compound.

[Ca = 40, S = 32, O = 16, H = 1]

Molecular weight of CaSO₄ = Ca + S + 4(O)= 40 + 32 + 4(16) = 136 g $136 \text{ g of } CaSO_4 \text{ is} = (100 - 21\%) = 79\% \text{ of total mass of}$ $CaSO_4.xH_2O = A (say)$ \therefore 79% of A = 136 $=\frac{79}{100}$ of A = 136 $\therefore A = \frac{136 \times 100}{70}$ X molecules of water = 21% of A $\left(\frac{136 \times 100}{79}\right)$ $=\frac{21}{100}\times\frac{136\times100}{79}=\frac{21\times136}{79}$:. Number of molecules of water $n(18) = \frac{21 \times 136}{79}$ $n = \frac{21 \times 136}{79 \times 18} \Rightarrow 2$ molecules : CaSO₄.2H₂O

Q.2. Empirical And Molecular Formula

Question 1.

A compound gave the following data : C = 57.82%, O = 38.58% and the rest hydrogen. Its vapour density is 83. Find its empirical and molecular formula. [C = 12, O = 16, H = 1]

Element	% composition	At. wt.	R.N. of atoms	Simple ratio
с	57.82	12	$\frac{57.82}{12} = 4.8$	$\frac{4.8}{2.4} = 2$
0	38.58	16	$\frac{38.58}{16} = 2.41$	$\frac{2.4}{2.4} = 1$
н	3.60	1	$\frac{3.60}{1} = 3.6$	$\frac{3.6}{2.4} = \frac{3}{2}$

C: O: H = 2: 1: $\frac{3}{2}$ = 4: 2: 3

Simplest ratio of whole numbers = 4:2:3

.: Empirical formula is C₄O₂H₃ or C₄H₃O₂

$$\therefore$$
 E.F. weight = 4(12) + 2(16) + 3(1)

= 48 + 32 + 3 = 83

Vapour density, V.D. = 83

Molecular formula weight = $2 \times V.D.$

 $= 2 \times 83$ (given) = 166

 $\therefore n = \frac{\text{Molecular formula wt.}}{\text{Empirical formula wt.}} = \frac{166}{83} = 2$

*
$$\therefore$$
 Molecular formula = n [E.F.]
= 2 [C₄O₂H₃] = C₈O₄H₆

.: Molecular formula C₈H₆O₄

Question 2.

Four g of a metallic chloride contains 1.89 g of the metal 'X'. Calculate the empirical formula of the metallic chloride. [At. wt. of 'X' = 64, Cl = 35.5]

Wt. of metallic chloride = 4g

Wt. of metal = 1.89g

:. Wt. of chloride = 4 - 1.89 = 2.11g

Metal X chloride Cl

Symbol	Composite	At. wt.	R.N. of atoms	Simple ratio
x	1.89	64	$\frac{1.89}{64} = 0.03$	$\frac{0.03}{0.03} = 1$
Cl	2.11	35.5	$\frac{2.11}{35.5} = 0.06$	$\frac{0.06}{0.03} = 2$

Empirical formula = $X_1Cl_2 = XCl_2$

Question 3.

Calculate the molecular formula of a compound whose empirical formula is CH_2O and vapour density is 30.

Answer:

Empirical formula weight = C + 2H + O

$$V.D. = 30$$

(given)

 \therefore Molecular weight = 2 × V.D. = 2 × 30 = 60

 $n = \frac{\text{molecular wt.}}{\text{E.F. weight}} = \frac{60}{30} = 2$

 \therefore Molecular formula = *n* [Empirical formula]

= 2 $[CH_2O] = C_2H_4O_2 \Rightarrow CH_3COOH$

Question 4.

A compound has the following percentage composition. Al = 0.2675g.; P = 0.3505g.; O = 0.682g. If the molecular weight of the compound is 122 and its original weight on analysis gave the above results 1.30 g. Calculate the molecular formula of the compounds [Al = 27, P = 31, O = 16]

Element %	composition		Simplest ratio of whole numbers
Al	0.2675	$\frac{0.2675}{27} = 0.0099 = 99$	$\frac{99}{99} = 1 = 1$
Р	0.3505	$\frac{0.3505}{31} = 0.0113 = 113$	$\frac{113}{99} = 1.14 = 1$
0	0.6820	$\frac{0.6820}{16} = 0.0426 = 426$	$\frac{429}{99} = 4.3 = 4$

A1: P: O = 1: 1: 4

 \therefore Empirical formula = AlPO₄

Question 5.

Two organic compounds 'X' and 'Y' containing carbon and hydrogen only have vapour densities 13 and 39 respectively. State the molecular formula of 'X' and 'Y' [C = 12, H = 1]

Vapour density of X = 13

- ∴ Mol. mass of X = 2 × V.D. = 2 × 13 = 26 Vapour density of Y = 39
- ∴ Mol. mass of Y = 2 × V.D. = 2 × 39 = 78
 Let formula of X = C_mH_n
 Where m and n are simple whole numbers.
- \therefore Mol. mass of X = 12m + n = 26

The only simple whole number values of n and n which satisfies this equation are,

m = 2, and n = 2

 $\therefore \text{ Molecular formula of } X = C_2 H_2$

Let formula of $Y = C_x H_y$

Where x and y are simple whole numbers.

 \therefore Mol. mass of Y = 12x + y = 78

The only simple whole number values of x and y which satisfies this equation are ;

x = 6, y = 6

 \therefore Molecular formula of Y = C₆H₆

Question 6.

A compound has the following % composition. Zn = 22.65%; S = 11.15%; O = 61.32% and H = 4.88%. Its relative molecular mass is 287 g. Calculate its molecular formula assuming that all the hydrogen in the compound is present in combination with oxygen as water of crystallization.

[Zn = 65, S - 32, O = 16, H = 1]

Element	% composition	At. ratio	Simplest ratio of whole numbers
Zn	22.65	$\frac{22.65}{65} = 0.35$	$\frac{0.35}{0.35} = 1$
S	11.15	$\frac{11.15}{32} = 0.35$	$\frac{0.35}{0.35} = 1$
о	61.32	$\frac{61.32}{16} = 3.83$	$\frac{3.83}{0.35} = 11$
Н	4.88	$\frac{4.88}{1} = 4.88$	$\frac{4.88}{0.35} = 14$

But all the hydrogen in the compound is present in combination with oxygen as water of crystallization

 \therefore H₂:O

Answer:

 $14:11 \Rightarrow 14:11$

7 molecules of H2 need 7 atoms of oxygen to form

 \therefore 11 – 7 = 4 atoms of oxygen are left

1:1:4:7

Formula of compound is Zn : S : O : H₂O

ZnSO₄.7H₂O

Question 7.

A hydrocarbon contains 82.8% of carbon. Find its molecular formula if its vapour density is 29 [H = 1, C = 12]

Element	% composition	At. ratio	Simplest ratio of whole numbers
At. wt.			
C 12	82.8	$\frac{82.8}{12} = 6.9$	$\frac{6.9}{6.9} = 1$
H 1	100 - 82.8 = 17.2	$\frac{17.2}{1} = 17.2$	$\frac{17.2}{6.9} = 2.5$

:. C: H = 1:
$$\frac{5}{2}$$
 = 2: 5

... E. formula =
$$C_2H_5$$

E.F. wt. = (12 × 2) + 5 (1) = 29 g
M. wt. = 2 × V.D.
= 2 × 29 (given) = 58 g
 $n = \frac{M.F. \text{ wt.}}{E.F. \text{ wt.}} = \frac{58}{29} = 2$

 \therefore Molecular formula = $n [C_2H_5] = 2 [C_2H_5] = C_4H_{10}$

Question 8.

An organic compound on analysis gave H = 6.48% and O = 51.42%. Determine its empirical formula if the compound contains 12 atoms of carbon. [C = 12, H = 1, O = 16]

Element	At. no. %	composition	At. ratio	Simplest ratio of whole numbers
Н	1	6.48	$\frac{6.48}{1} = 6.48$	$\frac{6.48}{3.21} = 2$
0	16	51.42	$\frac{51.42}{16} = 3.21$	$\frac{3.21}{3.21} = 1$
°C	12	42.10	$\frac{42.10}{12} = 3.51$	$\frac{3.51}{3.21} = 1.1$

This shows H: O: C = 2: 1: 1

That is empirical formula no. of oxygen atoms = no. of carbon atoms and number of hydrogen atoms is twice the number of oxygen atoms

 \therefore 2 × oxygen atoms = hydrogen atoms

 $H = 2 \times 12 = 24$

Oxygen atoms = carbon atoms = 12 (given)

 \therefore Empirical formula = C₁₂H₂₄O₁₂

Question 9.

A hydrated salt contains Cu = 25.50%, S = 12.90%, O = 25.60% and the remaining % is water of crystallization. Calculate the empirical formula of the salt.

[Cu = 64, S = 32, O = 16, H = 1]

Answer:

Element	At. no. %	composition	At. ratio	Simplest ratio of whole numbers
Cu	64	25.5	$\frac{25.5}{64} = 0.4$	$\frac{0.4}{0.4} = 1$
s	32	12.9	$\frac{12.9}{32} = 0.4$	$\frac{0.4}{0.4} = 1$
0	16	25.6	$\frac{25.6}{16} = 1.6$	$\frac{1.6}{0.4} = 4$
H ₂ O	18	36	$\frac{36}{18} = 2.0$	$\frac{2.0}{0.4} = 5$

Ratio of $Cu: S: O: H_2O = 1: 1: 4: 5$

 \therefore Empirical formula of compound = CuSO₄.5H₂O

Question 10.

A gaseous hydrocarbon weights 0.70 g. and contains 0.60 g. of carbon. Find the molecular formula of the compound if its molecular weight is 70. [C = 12, H = 1]

Element	At. no. %	composition	At. ratio	Simplest ratio of whole numbers
с	12	0.6	$\frac{0.6}{12} = .05$	$\frac{0.05}{0.05} = 1$
Н	1	0.7 - 0.6 = 0.1	$\frac{0.1}{1} = 0.1$	$\frac{0.1}{0.05} = 2$

Ratio of $C : H = 1 : 2 = CH_2$

E.F. wt. =
$$12 + 2(1) = 14$$

$$n = \frac{\text{Mol. wt.}}{\text{E.F. wt.}} = \frac{70}{14} = 5$$

 \therefore Molecular formula = 5 [CH₂] = C₅H₁₀

Question 11.

A salt has the following % composition Al = 10.50%, K = 15.1%, S = 24.8% and the remaining oxygen. Calculate the empirical formula of the salt. [Al = 27, K = 39, S = 32, O = 16]

Percentage of oxygen = $100 - (Al\% + K\% + S\%)$							
= 100 - (10.50 + 15.10 + 24.80)							
= 100 - 50.40 = 49.50%							
Element	At. no. %	composition	At. ratio	Simplest ratio			
				of whole numbers			
Al	27	10.5	$\frac{10.5}{27} = 0.39$	$\frac{0.39}{0.38} = 1$			
к	39	15.1	$\frac{15.1}{39} = 0.39$	$\frac{0.38}{0.38} = 1$			
S	32	24.8	$\frac{24.8}{32} = 0.78$	$\frac{0.78}{0.38} = 2$			
0	16	49.6	$\frac{49.6}{16} = 3.09$	$\frac{3.09}{0.38} = 8$			

AI: K: S: O = 1: 1: 2: 8

$$\therefore$$
 Empirical formula of salt = AlKS₂O₈

= AlK [SO₄]₂

Q.3. Chemical Equations

Question 1.

What mass of silver chloride will be obtained by adding an excess of hydrochloric acid to a solution of 0.34 g of silver nitrate. [Cl = 35.5, Ag = 108, N = 14, O = 16, H = 1]

Answer:

 $\therefore 0.34 \text{ g of AgNO}_3 \text{ will produce AgCl} = \frac{143.5 \times 0.34}{170} = 0.287 \text{ g}$

Question 2.

What volume of oxygen at s.t.p. will be obtained by the action of heat on 20 g KClO3 [K = 39, Cl = 35.5, O = 16]

Answer:

 $2\text{KClO}_3 \xrightarrow{\Delta} 2\text{KCl} + 3\text{O}_2$ $2 [39 + 35.5 + 48] \qquad 3 \text{ molar vol.}$ 245

2 moles of KClO₃ at s.t.p. evolve $O_2 = 3$ molar vol.

= 3 × 22.4 lits.

or 245 g of KClO₂ produce $O_2 = 3 \times 22.4$ lits.

 $\therefore 20 \text{ g KClO}_3 \text{ produce O}_2 = \frac{3 \times 22.4 \times 20}{245} = 5.48 \text{ lits.}$

Question 3.

From the equation : $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO$. Calculate

- 1. the mass of copper needed to react with 63 g of nitric acid
- 2. the volume of nitric oxide collected at the same time. [Cu = 64, H = 1, O = 16, N = 14]

Answer:

(*i*) 3Cu + 8HNO₃ → 3Cu [NO₃]₂ + 4H₂O + 2NO 3 (64) 8 [1+14+48] 192 8 × 63 = 504 504 g of HNO₃ needs Cu = 192g ∴ 63 g of HNO₃ needs Cu = $\frac{192 \times 63}{504} = \frac{192}{8} = 24g$

(*ii*) $3Cu + 8HNO_3 \rightarrow 3Cu [NO_3] + 4H_2O + 2NO$ 8 vol. 2 vol.

8 volumes of HNO₃ produces NO = 2 vol. = (2×22.4) lit.

or (8×63) g produces NO = (2×22.4) lit.

$$\therefore 63g (HNO_3) \text{ produces NO} = \frac{2 \times 22.4 \times 63}{(8 \times 63)} = 5.6 \text{ lits.}$$

Question 4.

Zinc blende [ZnS] is roated in air. Calculate :

(a) The number of moles of sulphur dioxide liberated by 776 g of ZnS and

(b) The weight of ZnS required to produce 22.4 lits. of SO₂ at s.t.p. [S = 32, O = 16, Zn = 65]

Answer:

(a) $ZnS + O_2 \longrightarrow SO_2$ (65 + 32) 1 mole 97g 97g of ZnS produces $SO_2 = 1$ mole \therefore 776g of ZnS produces $SO_2 = \frac{1 \times 776}{97} = 8$ moles

(b)
$$ZnS + O_2 \longrightarrow SO_2$$

(65 + 32) (1 mole) 22.4 lits.
97g
22.4 lits of SO₂ is produce by 97 g of ZnS

Question 5.

Ammonia reacts with sulphuric acid to give the fertilizer ammonium sulphate. Calculate the volume of ammonia [at s.t.p.] used to form 59 g of ammonium sulphate.

[N = 14, H = 1, S = 32, O = 16]

Answer:

 $2NH_3 + H_2SO_4 \longrightarrow [NH_4] SO_4$ 2 [22.4] lits. 2 [14+4] + 32 + 6436 + 96 = 132g

Vol. of ammonia needed = 2 vols.

$$= (2 \times 22.4)$$
 lits.

132g of $[NH_4]_2$ SO₄ require Ammonia = (2×22.4) lits.

$$\therefore 59g \text{ of } [NH_4]_2 \text{ require Ammonia} = \frac{2 \times 22.4 \times 49}{132} = 20.02 \text{ lits.}$$

Question 6.

Heat on lead nitrate gives yellow lead [II] oxide, nitrogen dioxide and oxygen. Calculate the total volume of NO_2 and O_2 produced on heating 8.5 of lead

nitrate. [Pb = 207, N = 14, O = 16]

Answer:

 $\begin{array}{rcl} 2Pb[NO_3]_2 & \stackrel{\Delta}{\longrightarrow} & 2PbO + 4NO_2 + O_2 \\ 2 \left[207 + 2(14 + 48) & 4 \times (22.4) \text{ lits.} & 22.4 \text{ lits} \\ 2 \left[207 + 124 \right] & 2 \times 331g \\ (2 \times 331)g \text{ of lead nitrate gives } NO_2 = (4 \times 22.4) \text{ lits.} \end{array}$

 $\therefore 8.5 \text{ g of lead nitrate gives NO}_2 = \frac{4 \times 22.4 \times 8.5}{2 \times 331}$ $= 1.15 \text{ lits. of NO}_2$ $(2 \times 331) \text{ g of lead nitrate gives O}_2 = 22.4 \text{ lits}$ $\therefore 8.5 \text{ g of lead nitrate gives O}_2 = \frac{22.4 \times 8.5}{2 \times 331} = 0.287 \text{ lits}$

= 0.287 lits of O₂

 \therefore Total vol. produced = 1.15 + .287 = 1.437 lits.

Question 7.

Calculate the amount of $KCIO_3$ which on thermal decomposition gives 'X' vol. of O_2 , which is the volume required for combustion of 24 g. of carbon.

$2KClO_3 \xrightarrow{A} 2KCl + 3O_2; C + O_2 \xrightarrow{A} CO_2.$

[K = 39, Cl = 35.5, O = 16, C = 12].

C + O₂ $\xrightarrow{\Delta}$ CO₂ 12g 22.4 lits. 12g carbon on combustion produces CO₂ = 22.4 lits. ∴ 24g carbon produces = $\frac{22.4 \times 24}{12}$ = (2 × 22.4) lits. 2KClO₃ $\xrightarrow{\Delta}$ 2KCl + 3O₂ 2 [39+35.5+48] (3×22.4) lits 245g For (3 × 22.4) lits. O₂ wt. of KClO₃ = 245g ∴ For (2 × 22.4) lits O₂ wt. of KClO₃ = $\frac{245 \times (2 \times 22.4)}{(3 \times 22.4)}$

$$=\frac{490}{3}=163.33$$
g

Question 8.

Calculate the weight of ammonia gas.

(a) Required for reacting with sulphuric acid to give 78g. of fertilizer ammonium sulphate.

(b) Obtained when 32.6g. of ammonium chloride reacts with calcium hydroxide during the laboratory preparation of ammonia.

 $\label{eq:constraint} \begin{array}{l} [2\mathsf{N}\mathsf{H}_4\mathsf{C}\mathsf{I} + \mathsf{Ca}(\mathsf{O}\mathsf{H})_2 \rightarrow \mathsf{Ca}\mathsf{C}\mathsf{I}_2 + 2\mathsf{H}_2\mathsf{O} + 2\mathsf{N}\mathsf{H}_3] \ [\mathsf{N} = 14, \ \mathsf{H} = 1, \ \mathsf{O} = 16, \ \mathsf{S} = 32, \\ \mathsf{C}\mathsf{I} = 35.5]. \end{array}$

Answer:

(a)
$$2NH_3 + H_2SO_4 \longrightarrow [NH_4]_2SO_4$$

 $2 [14+3\times1]$ $2 [14+4]+32+64$
 $34g = 132g$
 $132g \text{ of ammonium sulphate is produced from NH}_3 = 34g$
 $\therefore 78g \text{ of } (NH_4)_2SO_4 \text{ is produced from } = \frac{34 \times 78}{132} = 20.09g$
(b) $2NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + 2H_2O + 2NH_3$
 $2 [14+4+35.5 \\ 2 \times 53.5 \\ 34g \\ 107.0g$

107g of ammonium chloride produces $NH_3 = 34g$

 $\therefore 32.6g \text{ of ammonium chloride produces ammonia} = \frac{34 \times 32.6}{107}$ = 10.36g

Question 9.

Sodium carbonate reacts with dil. H_2SO_4 to give the respective salt, water and carbon dioxide. Calculate the mass of pure salt formed when 300 g. of Na_2CO_3 of 80% purity reacts with dil. H_2SO_4 .

[Na = 23, C = 12, O = 16, H = 1, S = 32].

Answer:

80% of 300 (Na₂CO₃) = $\frac{80}{100} \times 300 = 240$ g of Na₂CO₃

106g of Na_2CO_3 produce $Na_2SO_4 = 142g$

:. 240g of Na₂CO₃ produce Na₂SO₄ = $\frac{142 \times 240}{106}$ = 321.51g

Question 10.

Sulphur burns in oxygen to give sulphur dioxide. If 16 g. of sulphur burns in x' cc. of oxygen, calculate the amount of potassium nitrate which must be heated

to produce V cc. of oxygen. [S = 32, K = 39, N = 14, O = 16].

Answer:

 $2KNO_{3} \longrightarrow 2KNO_{2} + O_{2}$ $S + O_{2} \longrightarrow SO_{2}$ $2 \mod KNO_{3} \equiv 1 \mod O_{2} \equiv 1 \mod S$ $= 2 \times (39 + 14 + 16 \times 3) = 32 \text{ g}$ $= 2 \times 101 = 202 \text{ g}$

32 g of sulphur require O_2 obtained from $KNO_3 = 202$ g

16 g of sulphur will require O2 produced from KNO3

$$=\frac{202}{32} \times 16 = 101 \text{ g}$$

Question 11.

Sample of impure magnesium is reacted with dilute sulphuric acid to give the respective salt and hydrogen. If 1 g. of the impure sample gave 298.6 cc. of hydrogen at s.t.p. Calculate the % purity of the sample. [Mg = 24, H = 1].

Answer:

 $Mg + H_2SO_4 \longrightarrow MgSO_4 + H_2\uparrow$ $24g \qquad (dil.)$

22400 cc of H₂ is produced from 24 g pure magnesium

:. 298.6 cc H₂ is produced from
$$\frac{24 \times 298.6}{22400} = \frac{4479}{14000}$$
 g

 $\frac{4479}{14000}$ g of pure Mg is in 1 g impure Mg sample

$$\therefore \% \text{ purity} = \frac{4479}{14000} \times \frac{100}{1} = \frac{4479}{140}$$
$$= \frac{447.9}{14} = 31.99 = 31.99\%$$

Questions

A. Lussac'S Law – Problems based on them

2006

Question 1.

560 ml. of carbon monoxide is mixed with 500 ml of oxygen and ignited. The chemical equation for the reaction is as follows : $2CO + O_2 \rightarrow 2CO_2$. Calculate the volume of oxygen used and carbon dioxide formed in the above reaction.

Answer:

 $\underbrace{\begin{array}{ccc} 2CO \\ 2 \text{ vol.} \end{array}}_{2 \text{ vol.}} + \underbrace{\begin{array}{ccc} O_2 \\ 1 \text{ vol.} \end{array}}_{2 \text{ vol.}} \longrightarrow \underbrace{\begin{array}{ccc} 2H_2O \\ 2 \text{ vol.} \end{array}}_{2 \text{ vol.}}$

2 vol. of CO use oxygen = 1 vol.

560 ml of CO use oxygen = $\frac{1}{2} \times 560 = 280$ ml.

2 vol. of CO produces = 2 vol. of CO_2

560 ml of CO produces =
$$\frac{2}{2} \times 560 = 560$$
 ml

2009

Question 1.

200 cm³ of acetylene is formed from a certain mass of calcium carbide, find the volume of oxygen required and carbon dioxide formed during the complete combustion. The combustion reaction can be represented as below. $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$ Answer: $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$ 2 volumes of acetylene requires 5 volumes of oxygen

1 volume of acetylene requires $\frac{5}{2}$ volumes of oxygen

200 cm³ of acetylene requires =
$$\frac{5}{2} \times 200$$
 cm³

 $= 500 \text{ cm}^3 \text{ of oxygen}$

2 volumes of acetylene is required to form

= 4 volumes of CO_2

1 volume of acetylene is required to form

$$=\frac{4}{2}$$
 volumes of CO₂

200 cm³ of acetylene is required to form = $\frac{4}{2} \times 200$ cm³

= 400 cm³ of CO_2

Thus 500 cm³ of oxygen is required and 400 cm³ of CO_2 is formed.

2010

Question 1.

10 litre of this mixture is burnt, And the total volume of carbon dioxide gas added to the atmosphere. Combustion reaction can be represented as :

$$C_3H_{8(g)} + 50_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$

 $2C_4H_{10(g)} + 13O_{2(g)} \longrightarrow 8CO_{2(g)} + 10H_2O_{(g)}$

 $C_{3}H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_{2}O_{(g)},$ 1 vol 3 vol 6 litres ? 1 vol of propane releases = 3 vol of CO₂ 3

6 litres of propane releases = $\frac{3}{1} \times 6$ litres

Combustion of butane :

 $2C_{4}H_{10(g)} + 13O_{2(g)} \longrightarrow 8CO_{2(g)} + 10H_{2}O_{(g)}$ 2 vol 8 vol
4 litres ?
2 vol of butane releases = 8 vol of CO₂
4 litres of butane releases = $\frac{8}{2} \times 4 = 16 l$ Total CO₂ released O₂ = 18 l + 16 l
= 34 litres of CO₂ gas is added to atmosphere

2012

Question 1.

67.2 litres of H₂ combines with 44.8 litres of N₂ to form NH₃ : N₂(g) + 3H₂(g) \rightarrow 2NH₃(g). Calculate the vol. of NH₃ produced. What is the substance, if any, that remains in the resultant mixture ?

Answer:

3 volume of hydrogen produces 2 volume of ammonia

67.2 litres of hydrogen produces = $\frac{2}{3} \times 67.2 = 44.8$ litres

3 volume of hydrogen reacts with 1 volumes of nitrogen

67.2 litres of hydrogen reacts with = $\frac{1}{3} \times 67.2 = 22.4$ litres

Nitrogen left = 44.8 - 22.4 = 22.4 litres

2013

Question 1.

What volume of oxygen is required to burn completely 90 dm³ of butane under similar conditions of temperature and pressure? $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$

Answer:

 $2C_{4}H_{10}(g) + 13\dot{O}_{2} \longrightarrow 8CO_{2} + 10H_{2}O$ 2Vols. 13Vols. 8 Vols. Nil
(Under similar T and P)

2 volume of butane require O2 for complete combustion

= 13 vol.

90 dm3 of butane will require O, for complete combustion

$$=\frac{13}{2}$$
 × 90 = 585 dm³

2014

Question 1.

What volume of ethyne gas at s.t.p. is required to produce 8.4 dm³ of carbon dioxide at s.t.p.?

 $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$ [H = 1, C = 12, O = 16]

Answer:

 $2C_{2}H_{2} + 5O_{2} \rightarrow 4CO_{2} + 2H_{2}O$ [by Gay Lussac's Law] 2 vol. 5 vol. 4 vol. 4 vol. of CO₂ required ethyne = 2 vol.

 \therefore 4 dm³ of vol. of CO₂ required ethyne = $\frac{2}{4}$ dm³

8.4 dm³ vol. of CO₂ required ethyne = $\frac{2 \times 8.4}{4}$ = 4.2 dm³

2015

Question 1.

If 6 litres of hydrogen and 4 litres of chlorine are mixed and exploded and if

water is added to the gases formed, find the volume of the residual gas.

Answer:

 $H_2 + Cl_2 \longrightarrow 2HCl$

1 volume of chlorine reacts with 1 volume of hydrogen

 \therefore 4 litres of chlorine reacts with $\frac{1}{1} \times 4l$ of hydrogen

∴ Hydrogen used is 4 litres Remaining hydrogen = 6 – 4 = 2 litres

1 volume of chlorine forms 2 volume of HCl

4 litres of chlorine forms = $\frac{2}{1} \times 4 = 8 l$ of HCl

Hence gases after reaction, 8 l HCl and 2 l hydrogen *i.e.*, 10 litres

When water is added to the gases formed HCl dissolves and residual gas is 2 litres of hydrogen.

2016

Question 1.

The equations $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$, represents the catalytic oxidation of ammonia. If 100 cm3 of ammonia is used calculate the volume of oxygen required to oxidise the ammonia completely.

Answer:

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ 4 Vol 5 Vol 5 Vol

If 4 volumes of NH₃ requires 5 vol. of O₂.

Then 100 cm³ of NH₃ requires = $\frac{5}{4} \times 100 = 125$ cm³ oxygen

2017

Question 1.

Propane burns in air according to the following equation :

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$. What volume of propane is consumed on using 1000 cm3 of air, considering only 20% of air contains oxygen.

Amount of oxygen in 1000 cm³ of air = $1000 = \frac{20}{100} = 200 \text{ cm}^3$

For 5 volumes of oxygen, the propane consumption = 1 Vol

 \therefore 200 cm³ of oxygen, the propane consumption = $\frac{200}{5}$ = 40 cm³

B. Mole Concept – Avogadro'S Number – Problems based on them

2004

Question 1.

A flask contains 3.2 g of SO₂. Calculate :

- 1. The moles of SO_2 and the no. of molecules of SO_2 present in the flask.
- 2. The volume occupied by 3.2 g. of SO₂ at s.t.p. (S = 32, O = 16)

Answer:

(i) <u>SO2</u> 1 mol.

Molecular mass = $(32 + 2 \times 16) = 64$ g

64 g of SO, is equal to 1 mole

:. 3.2 of SO₂ is =
$$\frac{1}{64} \times 3.2 = 0.05$$
 mole

1 mole of SO₂ has = 6.02×10^{23} molecules 0.05 mole of SO₂ has = $0.05 \times 6.02 \times 10^{23} = 3.01 \times 10^{22}$ molecules

(ii) 64 g of SO₂ at S.T.P. occupies = 22.4 l

3.2 g of SO₂ at S.T.P. occupies =
$$\frac{22.4}{64} \times 32 = 1.12 l$$

Question 2.

 $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$ Given that the molecular mass KMnO4 is 158, what volume of oxygen (measured at room temperature) would be obtained by the complete decomposition of 15.8 g. of potassium permanganate. (Molar

volume at room temperature is 24 litres.)

Answer:

 $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$ 2 (39 + 55 + 64) 24 lit. 2 × 158 = 316 g

vol. of O_2 produced by 316 g of KMn O_4 = 24 lit.

 \therefore vol. of O₂ produced by 15.8 g of KMnO₄ = $\frac{24 \times 15.8}{316}$ = 1.2 lit.

2005

1. The volumes of gases A, B, C and D are in the ratio, **1** : **2** : **2** : **4** under the same conditions of temp, and press.

(i) Which sample contains the maximum number of molecules. If the temp, and pressure of gas A are kept constant, then what will happen to the volume of A when the no. of molecules is doubled.

Answer:

The sample D and volume of A will get Doubled.

(ii) If this ratio of gas vols. refers to reactants and products of reaction – gas law observed is

Answer:

Gay Lussac's law of combining volumes.

(iii) If the volume of 'A' is 5.6 dm³ at s.t.p., calculate the no. of molecules in the actual vol. of 'D' at s.t.p. (Avog no. is 6×10^{23}). Using your answer, state the mass of 'D' if the gas is "N2O" (N = 14, O = 16). [6 x 1023, 44g.]

Answer:

Vol. of D will be $4 \times 5.6 = 22.4$ lit. and 22.4 lit. of D contain molecules = 6×10^{23} (AV. number) Mass of N₂ O (i.e. D) = $(14 \times 2 + 16 \times 1) = 44g$

2006

Question 1.

Calculate the no. of moles and the no. of molecules present in 1.4 g of ethylene gas (C_2H_4). What is the vol. occupied by the same amount of C_2H_4 . State the vapour density of C_2H_4 .

(Avog. No. = 6×10^{23} ; C = 12, H = 1] (0.05 moles ; 3×10^{22} molecules ; 1.12 lit. ; 14)

Answer:

(a) Mass of ethylene gas = 1.4 g

Number of moles of ethylene = $C_2H_4 = \frac{mass}{molar mass} = \frac{1.4}{28} = 0.5$

Number of molecules in 0.05 mole ethylene = $0.05 \times 6 \times 10^{23}$

 $= 3 \times 10^{22}$ molecules

1 mole of ethylene has volume at s.t.p. = 22.4 lit.

Volume occupied by 0.05 moles of ethylene gas at s.t.p.

 $= 0.05 \times 22.4 = 1.12$ lit.

(b) Vapour density of ethylene = $\frac{\text{mol. wt}}{2} = \frac{28}{2} = 14$

2008

1. The equation for the burning of octane is : $2C_8H_{18}$ + $25O_2 \rightarrow 16CO_2$ + $18H_2O$

(i) How many moles of carbon dioxide are produced when one mole of octane burns ?

Answer:

2 moles of octane produce 16 moles of CO_2 1 mole of octane will produce 16/2 moles of $CO_2 = 8$ moles of carbon dioxide.

(ii) What volume, at s.t.p., is occupied by the number of moles determined in (1) (i) ?

Answer:

1 moles occupy a volume of 22.4 litres. 8 mole will occupy a volume of = $22.4 \times 8 = 179.2$ litres

(iii) If the relative molecular mass of carbon dioxide is 44, what is the mass of carbon dioxide produced by burning two moles of octane ? Answer:

From equation, we know that 2moles of octane produces 16 moles of CO_2 . Mass of CO_2 produced = $16 \times 44 = 704$

2009

Question 1.

Define the term – Mole. A gas cylinder contains 24×10^{24} molecules of nitrogen gas. If Avogadro's number is 6×10^{23} and the relative atomic mass of nitrogen is 14, calculate :

- 1. Mass of nitrogen gas in the cylinder.
- 2. Volume of nitrogen at STP in dm³

Answer:

Definition -A mole is the amount of substance which contains particles (atoms/molecules ions) equal to 6.023×10^{23} i.e. Avogadro's no."

(i) Nitrogen exist as N₂.

Hence its molecular mass = $14 \times 2 = 28g$

 6×10^{23} molecules of nitrogen weigh = 28 g

1 molecule of nitrogen will weigh =
$$\frac{28}{6 \times 10^{23}}$$

(ii) 6×10^{23} molecules will occupy a volume of 22.4 dm³

1 molecule will occupy a volume of $\frac{22.4}{6 \times 10^{23}}$ dm³

 24×10^{24} molecules will occupy a volume of

$$= \frac{22.4}{6 \times 10^{23}} \times 24 \times 10^{24} = 895.9 \text{ dm}^3$$

Question 2.

Gas 'X' occupies a volume of 100 $\rm cm^3$ at S.T.P and weighs 0.5 g. find its relative molecular mass.

Answer:

 100 cm^3 of a gas weighs = 0.5g

 $1 \text{ cm}^3 \text{ of a gas will weigh} = \frac{0.5}{100} \text{ g}$

22400 cm³ of a gas will weigh =
$$\frac{0.5}{100} \times 22400 = 112g$$

2010

Question 1.

Dilute hydrochloric acid (HCl) is reacted with 4.5 moles of calcium carbonate. Give the equation for the said reaction. Calculate :

- 1. The mass of 4.5 moles of $CaCO_3$.
- 2. The volume of CO₂ liberated at stp.
- 3. The mass of CaCl₂ formed ?
- 4. The number of moles of the acid HCl used in the reaction (relative molecular mass of $CaCO_3$ is 100 and of $CaCl_2$ is 111].

Answer:

- (i) $CaCO_3 + 2HC1 \rightarrow CaCl_2 + H_2O + CO_2$ Molar mass of $CaCO_3 = 100 \text{ g} = 1 \text{ mole }$
- :. 4.5 mole of CaCO₃ = $4.5 \times 100 = 450$ g
- (ii) 1 mole of CaCO₃ produces 1 mole of CO₂
 4.5 moles of CaCO₃ will produce 4.5 moles of CO₂
- ∵ 1 mole of CO₂ occupies 22.4 *l* at at S.T.P.
- \therefore 4.5 moles of CO₂ will = 4.5 × 22.4 *l* = 100.80*l*
- (iii) 1 mole = 22.4
 - 1 mole of CaCO3 gives 111 g of CaCl2
 - 4.5 mole of CaCO₃ gives $111 \times 4.5 = 499.5g$
- (iv) 1 mole uses 2 moles of HCl

4.5 mole uses $4.5 \times 2 = 9$ moles

2011

Question 1. Calculate the mass of :

- 1. 10^{22} atoms of sulphur.
- 2. 0.1 mole of carbon dioxide. [S = 32, C = 12 and O = 16 and Avogadro's Number 6×10^{23}]

(i) 6. 022×10^{23} atoms of sulphur weight = 32

1 atom of sulphur weigh = $\frac{32}{6.022 \times 10^{23}}$

$$10^{22}$$
 atoms of sulphur weigh = $\frac{32}{6.022 \times 10^{23}} \times 10^{22} = 0.531$ g

(ii) 1 mole of CO₂ weigh = 44 g 0.1 mole of CO₂ weigh = $44 \times 0.1 = 4.4$ g

Question 2.

Calculate the volume of 320 g of SO_2 at stp. [S = 32 and O = 16]

Answer:

 SO_2 M.W. = 32 + 16 × 2 = 64 64 g of SO_2 occupy 22.4 litres

1 g of SO₂ will occupy = $\frac{22.4}{64}$ litres

320 g of SO₂ will occupy = $\frac{22.4}{64} \times 320 = 22.4 \times 5 = 112$ litres

2012

Question 1.

The mass of 5.6 dm^3 of a certain gas at STP is 12.0 g. Calculate the relative molecular mass of the gas.

Answer:

 $5.6 \text{ dm}^3 \text{ of gas weighs} = 12 \text{ g}$

22.4 dm³ of gas weighs =
$$\left(\frac{12.0}{5.6} \times 22.4\right)$$
 gm = 48 gm

2013

Question 1.

The vapour density of a gas is 8. What would be the volume occupied by 24.0 g

of the gas at STP ?

Answer:

V.D. of gas = 8

- \therefore Molecular mass of gas = 2 × V.D. = 2 × 8 = 16
- Gram molecular mass of gas = 16 g 16 g of gas at STP occupies = 22.4 l at S.T.P.
- \therefore 24 g of gas at STP occupies = $\frac{22.4 \times 24}{16}$ = 33.6 l

Question 2.

Calculate the volume occupied by 0.01 mole of CO_2 at STP.

Answer:

1 mole of carbon dioxide gas at STP occupies = 22.4 l

... 0.01 mole of carbon dioxide gas at STP occupies

$$=\frac{22.4\times0.01}{1}=0.224l$$

2014

Question 1.

State Avogadro's Law. A cylinder contains 68g of ammonia gas at s.t.p.

- 1. What is the volume occupied by this gas?
- 2. How many moles and how many molecules ammonia are present in the cylinder? [N = 14, H = 1]

Avogadro's Law states that "equal vol. of all gases under similar conditions of temperature and pressure contain the same no. of molecules."

- (i) Molecular gram atom wt. of $NH_3 = 17$ gms 17 gm of NH_3 has vol. at s.t.p. = 22.4 lt.
- :. 68 gm of NH₃ has vol. at s.t.p. = $\frac{22.4 \times 68}{17}$ = 89.6 lt.
- (ii) No. of moles in 68 gm of $NH_3 = \frac{68}{17} = 4$ moles.
- \Rightarrow 1 mole of ammonia = 6.023 × 10²³ molecules
- \Rightarrow 4 moles of ammonia = 4 × 6.023 × 10²³

 $= 24.092 \times 10^{23}$ molecules

2015

Question 1.

From A, B, C, D, which weighs the least — **A**: 2 g. atoms of Nitrogen **B**: 1 mole of Silver **C**: 22.4 litres of oxygen gas at 1 atmospheric pressure and 273K **D**: 6.02×10^{23} atoms of carbon. [Ag = 108, N=14, 0=16, C=12]

Answer:

D: 6.02×10^{23} atoms of carbon.

Question 2.

Calculate the mass of Calcium that will contain the same number of atoms as are present in 3.2 gm of sulphur. [S = 32, Ca = 40]

Atomic weight of element contains Avogadro number of atoms

:. 32 g of sulphur contains 6.02 × 10²³ atoms

3.2 g of sulphur contain = $\frac{6.02 \times 10^{23}}{32} \times 3.2 = 6.02 \times 10^{22}$ atoms 6.02 × 10²³ atoms of calcium weighs 40 g 6.02 × 10²² atoms of calcium weigh

$$= \frac{40}{6.02 \times 10^{23}} \times 6.02 \times 10^{22} = 4 \text{ g}$$

2016

Question 1.

Select the correct answer from A, B, C and D : The ratio between the number of molecules in 2g of hydrogen and 32g of oxygen is: k

(A) 1 : 2 (B) 1 : 0.01 (C) 1:1 (D) 0.01 : 1 [H = 1, O = 16]

Answer:

(C) 1 : 1

Question 2.

A gas of mass 32 gms has a volume of 20 litres at S.T.P. Calculate the gram mol. weight of the gas.

Answer:

The mass of 22.4 l of gas at S.T.P. is equal to its gram molecular mass.

20 litres of gas at S.T.P. weighs = 32 g

1 litre of gas at S.T.P. weighs = $\frac{32}{20}$ g

 \therefore 22.4 litres of gas will weigh = $\frac{32}{20} \times 22.4 = 35.84$ g

Question 3.

A gas cylinder contains 12 x 1024 molecules of oxygen gas. Calculate :

- 1. the mass of 02 present in the cylinder.
- 2. the volume of O₂ at S.T.P. present in the cylinder.[0 = 16] Avog. no. is 6 × 10^{23} [640g. ; 448 I]

Answer:

(i) Let mass of molecules

$$= \frac{\text{No. of molecues}}{N_A} \times \text{Molecular mass}$$
$$= \frac{12 \times 12^{24}}{6 \times 10^{23}} \times (2 \times 16)$$
$$= 2 \times 10 \times 32 = 640 \text{ g}$$

(ii) Volume of molecule = $\frac{\text{No. of molecules}}{N_A} \times \text{Molar volume}$

$$= \frac{12 \times 10^{24}}{6 \times 10^{23}} \times 22.4$$

= 2 × 10 × 22.4 = 448 litres

2017

Question 1.

Calculate the number of gram atoms in 4.6 grams of sodium [Na = 23]

Answer:

23 g of sodium = 1 g-atom

$$\therefore 4.6 \text{ g of sodium} = \frac{4.6}{23} = 0.2 \text{ g-atom}$$

Question 2.

The mass of 11.2 litres of a certain gas at s.t.p. is 24 g. Find the gram molecular mass of the gas.

1 gram molecular mass = mass of 22.4 litres of gas at s.t.p.

Now, 11.2 litres of gas weighs = 24 g

- \therefore 22.4 litres of gas weighs = $\frac{22.4 \times 24}{11.2}$ = 48 g
- : Gram molecular weight of gas = 48 g

C. Mole Concept – Avogadro'S Law – problmes based on them

2001

Question 1.

The gases chlorine, nitrogen, ammonia and sulphur dioxide are collected under the same conditions of temperature and pressure. If 20 litres of nitrogen contain 'X' no. of molecules state the no. of molecules in 10 litres of chlorine, 20 litres of ammonia and 5 litres of sulphur dioxide, (x/2, x, x/4)

Gas	Volume milliliters	Number of molecules	
Chlorine	10	0x/2	
Nitrogen	20	x	
Ammonia	20	x	
Sulphur dioxide	5	x/4	

Answer:

This is because of Avogadro's laws which states "Equal volumes of all gases, under similar conditions of temperature and pressure, contain equal number of molecules.

- ... 20 lit. nitrogen contains x molecules
- \therefore 10 lit. of chlorine will contain $\frac{x \times 10}{20} = \frac{x}{2}$ mol.

and 20 lit. of Ammonia will also contain = x molecules

and 5 lit. of SO₂ will contain =
$$\frac{x \times 5}{20} = \frac{x}{4} = \text{mol.}$$
 2002

Question 1.

Samples of gases O_2 , N_2 , CO and CO_2 under the same conditions of temperature and pressure contain the same number of molecules represented by X. The molecules of oxygen occupy V litres and have a mass of 8 g. Under the same conditions of temperature and pressure, what is the volume occupied by :

- 1. X molecules of N_2 .
- 2. 3X molecules of CO.
- 3. What is the mass of \mbox{CO}_2 in grams.
- 4. In answering the above questions, whose law has been used. (C = 12, N = 14, O = 16)

Answer:

 (i) According to Avogadro's law Volume of X molecules of N₂ = Volume of X molecules of O₂ = V litres

(Under similar T and P)

- (ii) Volume of X molecules of CO = Volume of X molecules of O₂ = V litres
- ... Volume of 3 X molecules of CO = 3 V litres

(Under similar T and P)

- (iii) Molar mass of $O_2 = 32 \text{ g mol}^{-1}$
- \therefore 8 g of O₂ occupy volume = V litres
 - \therefore 32 g of O₂ will occupy = $\frac{V}{8} \times 32 = 4$ V litres
 - $\therefore \text{ Molar volume} = 4 \text{ V litres}$ $\text{Molar mass} = \text{CO}_2 = 12 + 16 \times 2 = 12 + 32 = 44 \text{ g mol}^{-1}$
 - \therefore 4 V litres of CO₂ have mass = 44 g

V litres of CO₂ will have mass = $\frac{44}{4V} \times V = 11$ g

(iv) Avogadro's Law has been used in answering the above problems.

. . .

2005

Question 1.

Define the term atomic weight :

Atomic weight : is the number of times one atom of an element is heavier than 1/2 the mass of an atom of carbon (C¹²)

2008

Question 1.

The gas law which relates the volume of a gas to the number of molecules of the gas is :

A Avogadro's Law

- **B** Gay-Lussac's Law
- C Boyle's Law
- **D** Charle's Law

Answer:

A Avogadro's Law

2009

Question 1.

Correct the following – Equal masses of all gases under identical conditions contain the same number of molecules.

Answer:

Equal volumes of all gases under identical conditions contain the same number of molecules.

2013

Question 1.

A vessel contains X number of molecules of hydrogen gas at a certain temperature & pressure. Under the same conditions of temperature & pressure, how many molecules of nitrogen gas would be present in the same vessel.

Answer:

According to Avogadro's law, equal volume of all gases under similar conditions of temperature and pressure contain equal number of molecules. Hence, number of molecules of N_2 = Number of molecules of H_2 = X

2017

Question 1.

A gas cylinder can hold 1 kg. of H₂ at room temp. & press.:

1. Find the number of moles of hydrogen present

- 2. What weight of CO_2 can the cylinder hold under similar conditions to temp. & press
- 3. If the number of molecules of hydrogen in the cylinder is X, calculate the number of CO_2 molecules in the cylinder under the same conditions of temp. & press
- 4. State the law that helped you to arrive at the above result.

- 1. 2 g of hydrogen gas = 1 mole.
 - \therefore 1000 g of hydrogen gas 1000/2 = 500 moles.
- 2. 1 mole of carbon dioxide = 44 g
 - \therefore 500 moles of carbon dioxide = 44 x 500 = 22000 g = 22 kg Weight of carbon dioxide in cylinder = 22 kg
- 3. Equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules.
 - \therefore Molecules in the cylinder of carbon dioxide = X.
- 4. Avogadro's law.

D. Vapour Density & Molecular Weight – Problems based on them

1996

Question 1.

Find the relative molecular mass of a gas, 0.546 g of which occupies 360 cm3 at 87°C and 380 mm Hg pressure. (1 litre of hydrogen at s.t.p. weighs 0.09 g)

Answer:

 $V_1 = 360 \text{ cm}^3$ $V_2 = ?$ $P_1 = 380 \text{ mm}$ $P_2 = 760 \text{ mm}$ $T_1 = 87^\circ\text{C} = 87 + 273 = 360 \text{ K}$ $T_2 = 273 \text{ K}$ Applying gas equation,S.T.P.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{380 \times 360 \times 273}{360 \times 760} = 136.5 \text{ cm}^3 = 0.1365 \text{ I}$$
0.1365 L of the gas at STP have mass = 0.546 g

 \therefore 1 L of the gas at S.T.P will have mass = $\frac{0.546 \times 1}{0.1365}$ = 4 g

Vapour density = $\frac{\text{Mass of given volume of gas}}{\text{Mass of same volume of H}_2}$

(Under similar T and P)

Vapour density, V.D. =
$$\frac{4 \text{ g}}{0.09 \text{ g}} = 44.444$$

∴ Mol. wt. = 2 × V.D. = 2 × 44.444 = 88.888 = 88.89

2001

Question 1.

Mention the term defined by the following : The mass of a given volume of gas compared to the mass of an equal volume of hydrogen.

Answer:

Vapour Density.

2004

Question 1.

Some potassium permanganate was heated in a test tube. After collecting one litre of oxygen at room temperature, it was found that the test tube had undergone a loss in a mass of 1.32 g. If one litre of hydrogen under the same conditions of temperature and pressure has a mass of 0.0825 g. Calculate the relative molecular mass of oxygen.

 $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2 (K_2MnO_4 + MnO_2)$ is the solid residue)

Answer:

$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$$
Potassium permanganate Solid residue

Loss in mass is due to the evolution of O_2 gas = 1.32 g

Volume of O_2 produced = 1 L

 \therefore Mass of 1 L of O₂ produced = 1.32 g

V.D. = $\frac{\text{Mass of given volume of the gas}}{\text{Mass of same volume of H}_2}$

(Under Similar T and P)

٨

 $= \frac{\text{Mass of } 1 \text{ L of the gas}}{\text{Mass of } 1 \text{ L of } \text{H}_2}$ $= \frac{1.32 \text{ g}}{0.0825 \text{ g}}$ $= \frac{13200}{825} = 16$ Mol. mass = 2 × V.D. = 2 × 16 = 32

2009

Question 1.

A gas cylinder of capacity of 20 dm³ is filled with gas X the mass of which is 10 g. When the same cylinder is filled with hydrogen gas at the same temperature and pressure the mass of the hydrogen is 2g, hence the relative molecular mass of the gas is :

- **(A)** 5
- **(B)** 10
- **(C)** 15
- **(D)** 20

Answer:

(B) 10

2012

Question 1.

The vapour density of carbon dioxide [C = 12, O = 16] is

- **(A)** 32
- **(B)** 16
- **(C)** 44
- **(D)** 22

Answer:

(D) 22

2014

Question 1.

Give one word or phrase for : The ratio of the mass of a certain volume of gas to the mass of an equal volume of hydrogen under the same conditions of temperature and pressure.

Answer:

Vapour density.

E. Percentage Composition – Problems based on them

1996

Question 1.

Find the total percentage of oxygen in magnesium nitrate crystals : $Mg(NO_3)_2$. $6H_2O$

(H = 1, N = 14, O = 16, Mg = 24)

Answer:

Molecular mass of Mg (NO₃)₂. 6H₂O

 $= 24 + (2 \times 62) + 6 \times 18 = 24 + 124 + 108 = 256$

Mass due to oxygen = $(2 \times 48) + 16 \times 16 = 192$

% of oxygen = $\frac{192}{256} \times 100 = 75\%$

1997

Question 1.

What is the mass of nitrogen in 1000 kg of urea $[CO(NH_2)_2]$.[C = 12] (Answer to

the nearest kg.)

Answer:

Molecular mass of area [CO(NH₂)₂]

 $= 12 + 16 + (14 \times 2)_{2} = 60g$

60 g of urea contains nitrogen = 28 g

1000 kg. area contains nitrogen = $\frac{28}{60} \times \frac{1000 \times 1000}{1000} = 467$ kg

1998

Question 1.

Calculate the % of boron (B) in borax $Na_2 B_4 O_7$. $10H_2O$. (H = 1, B = 11, O = 16, Na = 23)

Answer:

Molecular wt. of borax = $(Na_2B_4O_7: 10H_2O)$

= 2(Na) + 4(B) + 7(O) + 10 (2H + O)= 2 × 23 + 4 × 11 + 7 × 16 + 10 (2 × 1) + 16 = 46 + 44 + 112 + 180 = 382 g

Amount of Boron in $(Na_2B_4O_7 . 10H_2O) = 4(B) = 4 \times 11 = 44g$

% of Boron = $\frac{44}{328} \times 100 = 11.51 = 11.51\%$

1999

Question 1.

If a crop of wheat removes 20 kg of nitrogen per hectare of soil, what mass in kg. of the fertilizer calcium nitrate would be required to replace the nitrogen in a 10 hectare field. (N = 14 ; O = 16 ; Ca = 40)

Total area of the field = 10 hectare Total nitrogen that has to be replaced = $20 \times 10 = 200$ kg Molecular mass of Ca(NO₃)₂ = $40 + 2 \times 62 = 164$ 164 kg of Ca(NO₃)₂ contain 28 kg of nitrogen Now 28 kg of nitrogen are present in 164 kg of Ca(NO₃)₂

 \therefore 200 kg of nitrogen are present in = $\frac{164 \times 200}{28}$ = 1171 kg (app.)

2001

Question 1.

Calculate the percentage of phosphorus in the fertilizer superphosphate $Ca(H_2PO_4)_2$. (correct to 1dp) (H = 1 ; O = 16 ; P = 31 ; Ca = 40)

Answer:

Molecular mass of Ca(H₂PO₄)₂

 $= 40 + 2(1 \times 2 + 31 + 16 \times 4) = 234$ g

Mass of phosphorus in 234 g superphosphate = 62 kg

 \therefore Percentage of phosphorus = $\frac{62}{234} \times 100 = 26.5\%$

2002

Question 1.

Calculate the percentage of platinum in ammonium chloroplatinate $(NH_4)_2 PtCl_6$ (Give your answer correct to the nearest whole number). (N = 14, H = 1, Cl = 35.5, Pt = 195)

Answer:

Molecular mass of $(NH_4)_2$ Pt Cl₆ = 2(14 + 1 × 4) + 195 + 35.5 × 6 = 36 + 195 + 213 = 444 = 444 g of (NH_4) Pt Cl₆ contains Pt = 195 g

Percentage of pt = $\frac{195}{444} \times 100 = 43.92\% \approx 44\%$

2005

Question 1.

 $\overline{Calculate}$ the percentage of nitrogen in aluminium nitride. (Al = 27, N = 14)

Answer:

Molecular mass of Aluminium nitride

AIN = 27 + 14 = 41

41 g of Al N contains nitrogen = 14 g

:. % of nitrogen in AlN =
$$\frac{14}{41} \times 100 = 34.146\%$$

2006

Question 1.

Calculate the percentage of sodium in sodium aluminium fluoride (Na₃AlF₆) correct to the nearest whole number. (F = 19 ; Na = 23 ; A1 = 27)

Answer:

Molecular mass of Na, (AlF_6)

 $= 3 \times 23 + 27 + 6 \times 19$

= 69 + 27 + 114 = 210 g

% of Sodium in Na₃(AlF₆)

$$= \frac{\text{mass of sodium}}{\text{mass of Na}_3 \text{AIF}_6} \times 100 = \frac{69}{210} \times 100 = 329\%$$

2007

Question 1.

Determine the percentage of oxygen in ammonium nitrate (O = 16)

Molar mass of NH_4NO_3 (or $N_2H_4O_3$)

- $= 14 \times 2 + 4 + 16 \times 3 = 80 \text{ g mol}^{-1}$
- $\therefore \text{ Mass of 1 mole of } NH_4NO_3 = 80 \text{ g}$ Mass of oxygen in 1 mole of $NH_4NO_3 = 16 \times 3 = 48 \text{ g}$

Percentage of oxygen in amm. nitrate = $\frac{48}{80} \times 100 = 60\%$

2010

Question 1.

If the relative molecular mass of ammonium nitrate is 80, calculate the percentage of nitrogen and oxygen in ammonium nitrate. (N = 14, H = 1, O = 16).

Answer:

Molar mass of NH_4NO_3 (or $N_2H_4O_3$)

 $= 2 \times 14 + 4 + 16 \times 3$

 $= 28 + 4 + 48 = 80 \text{ g mol}^{-1}$

Mass of nitrogen in 1 mole of $NH_4NO_3 = 2 \times 14 = 28$ g Mass of oxygen in 1 mole of $NH_4NO_3 = 16 \times 3 = 48$ g Mass of 1 mole of $NH_4NO_4 = 80$ g

Percentage of nitrogen in $NH_4NO_3 = \frac{28}{80} \times 100 = 35\%$

2012

Question 1.

Find the total percentage of Magnesium in magnesium nitrate crystals, $Mg(NO_3)_2.6H_2O/$ [Mg = 24; N = 14; O = 16 and H = 1]

Molar mass of $Mg(NO_3)_2.6H_2O$ = 24 + (14 × 2) + (16 × 12) + (1 × 12) = 256 g

Mass percent of Magnesium nitrate crystals = $\frac{24}{256} \times 100$

= 9.375%

2017

Question 1.

Calculate the percentage of water of crystallization in $CUSO_4.5H_2O$. [H = 1, O = 16, S = 32, Cu = 64]

Answer:

Molecular weight of $CuSO_4.5H_2O = 64 + 32 + 64 + 5$ (18)

= 250 amu

Molecular weight of $5H_2O = 5 \times 18 = 90$ amu.

 \therefore % of water of crystallisation = $\frac{90}{250} \times 100 = 36\%$

F. Empirical Formula And Molecular Formula – Problems based on then

2000

Question 1.

Determine the empirical formula of the compound whose composition by mass is : 42% nitrogen 48% oxygen and 9% hydrogen. (H = 1 ; N = 14 ; O 16).

Element	% composition	At. wt. Ratio	Atomic ratio Ratio	Simplest
N	42	14	$\frac{42}{14} = 3$	$\frac{3}{3} = 1$
0	48	16	$\frac{48}{16} = 3$	$\frac{3}{3} = 1$
н	9	1	$\frac{9}{1} = 9$	9/3 = 3

The ratio of N : O : H = 1 : 1 : 3

Empirical formula of compound = NOH_3

2001

Question 1.

A metal M forms a voltaic chloride containing 65.5% chlorine. If the density of the chloride relative to hydrogen (i.e. V.D.) is 162.5, find the molecular formula of the chloride. (M = 56, Cl = 35.5)

Answer:

Percentage of M in the chloride = 110 - 65.5 = 34.5

Element	Mass % age	Atomic mass	Rel. number of atoms	Simplest ratio
М	34.5	56	$\frac{34.5}{56} = 0.62$	$\frac{0.62}{0.62} = 1$
CI	65.5	35.5	$\frac{65.5}{35.5} = 1.84$	$\frac{18.4}{0.62}$ =3

Empirical formula of chloride = MCl,

Empirical formula mass = $56 + 35.5 \times 3 = 162.5$ g

Vapour density = 162.5

Molecular mass = $2 \times$ vapour density = $2 \times 162.5 = 325.0$ g

Molecular formula = (Empirical formula)

and $n = \frac{\text{Molecular Mass}}{\text{Empirical formula mass}} = \frac{325.0}{162.5} = 2$

 \therefore Molecular formula = (MCl₃)₂ or M₂Cl₆

2002

•9

Question 1.

The percentage composition of sodium phosphate as determined by analysis is 42.1% sodium, 18.9% phosphorus and 39% oxygen. Find the empirical formula of the compound (work to two decimal places). (Na = 23, P = 31, O = 16)

Answer:

Element	% composition	Atomic wt.	Rel. number of atoms	Simplest
Na	42.1%	23	$\frac{42.1}{23} = 1.8$	$\frac{1.8}{0.6} = 3$
Р	18.9%	31	$\frac{18.9}{31} = 0.6$	$\frac{0.6}{0.6} = 1$
0	39	16	$\frac{39}{16} = 2.4$	$\frac{2.4}{0.6} = 4$

The ratio Na : P : O ; 3 : 1 : 4

Empirical formula = Na_3PO_4

2004

Question 1.

An experiment showed that in a lead chloride solution, 6.21 g of lead combined with 4.26 g. of chlorine. What is the empirical formula of this chloride. (Pb = 207 ; Cl = 35.5)

In lead chloride Mass of lead = 6.21 g Mass of chlorine = 4.26 g Total mass of lead chloride = 6.21 + 4.16 = 10.47 g Percentage of lead in lead chloride = $\frac{6.21}{10.47} \times 100 = 59.31\%$

Percentage of chlorine in lead chloride = $\frac{4.26}{10.47} \times 100 = 40.69\%$

To calculate empirical formula of lead chloride

Element	Percentage	Atomic mass	Atomic ratio	Simplest atomic ratio	Simplest whole no. ratio
Lead	59.31	207	$\frac{59.31}{207} = 0.287$	$\frac{0.287}{0.287} = 1$	1
Chlorine	40.69	35.5	$\frac{40.69}{35.5} = 1.146$	$\frac{1.146}{0.287} = 3.99$	4

2006

Question 1.

Determine the empirical formula of a compound containing 47.9% potassium, 5.5% beryllium and 46.6% fluorine by mass.

(At. weight of Be = 9; F = 19; K = 39) Work to one decimal place.

Element	% age	Atomic wt.	Atomic ratio	Simplest ratio
К	47.9	39	$\frac{47.9}{39} = 1.22$	$\frac{1.22}{0.61} = 2$
Be	55	9	$\frac{55}{9} = 0.61$	$\frac{0.61}{0.61} = 1$
F	46.6	19	$\frac{46.6}{19} = 2.45$	$\frac{2.45}{0.61} = 4$

K = 47.9%, Be 5.5 %, F = 46.6%

Empirical formula $K_2Be_1F_4 = K_2BeF_4$

2007

Question 1.

A compound X consists of 4.8% carbon and 95.2% bromine by mass

- 1. Determine the empirical formula of this compound working correct to one decimal place
- 2. If the vapour density of the compound is 252, what is the molecular formula of the compound. (C = 12 ; Br = 80) (CBr₃, C₂Br₆).

Answer:

Element	% age	Atomic wt.	Atomic ratio	Simplest ratio
С	4.8	12	$\frac{4.8}{12} = 0.4$	$\frac{0.4}{0.4} = 1$
Br	95.2	80	$\frac{95.2}{80} = 1.2$	$\frac{1.2}{0.4} = 3$

Empirical formula = CBr,

V.D = 252

Empirical formula = CBr₃

Empirical molecular mass = $12 + 80 \times 3 = 252$

 $n = \frac{\text{mol. wt}}{\text{Emp. formula wt.}} = \frac{2 \times \text{V.D.}}{252}$

$$=\frac{2\times252}{252}=2$$

Molecular formula = $2 \times \text{Emp. formula} = 2(\text{CBr}_3)$

Molecular formula = $2 \times \text{Emp. formula} = 2(\text{CBr}_3) = \text{C}_2\text{Br}_6$.

2008

Question 1.

What is the empirical formula of octane (C_8H_{18}) ?

Answer:

M.F. of octane = $C_8H_{18} = (c_4H_9)_2$ \therefore E.F. of octane = C_4H_9

Question 2.

A compound has the following percentage composition by mass, Carbon 14.4%, hydrogen 1.2% and chlorine 84.5%. Determine the empirical formula of this compound. Work correct to 1 decimal place. The relative molecular mass of this compound is 168, so what is its molecular formula? (H = 1; C = 12; Cl = 35.5)

Element	% age	At mass	%age/ At mass	Simplest ratio	Simplest whole no. `ratio
Carbon	14.4	12	$\frac{14.4}{12} = 1.2$	$\frac{1.2}{1.2} = 1$	1
Hydrogen	1.2	1	$\frac{1.2}{1} = 1.2$	$\frac{1.2}{1.2} = 1$	1
Chlorine	84.5	35.5	$\frac{84.5}{35.5} = 2.38$	$\frac{2.38}{1.2} = 1.98$	2

Empirical formula = CHCl₂

Empirical formula mass

 $= 12 \times 1 + 1 \times 1 + 35.5 \times 2 = 12 + 1 + 71 = 84$

Relative molecular mass (given) = 168

$$n = \frac{\text{M.F.M.}}{\text{E.F.M.}} = \frac{168}{84}$$
$$n = 2$$

Molecular formula = $(CHCl_2)_2 = C_2H_2Cl_4$

2009

Question 1.

A gaseous compound of nitrogen and hydrogen contains 12.5% hydrogen by mass. Find the molecular formula of the compound if its relative molecular mass is 37.

[N = 14, H = 1].

Elements	%	At wt	Simplest ratio	Simplest whole no ratio
Nitrogen	87.5	14	$\frac{87.5}{14} = 6.25$	$\frac{6.25}{6.25} = 1$
* Hydrogen	12.5	1	$\frac{12.5}{1} = 12.5$	$\frac{12.5}{6.25} = 2$

Empirical Formula = NH₂

Empirical formula mass = 14 + 2 = 16

 $n = \frac{\text{Molecular mass}}{\text{Empirical mass}} = \frac{37}{16}, \qquad n = 2.31 = 2$

Hence M.F. = $(NH_2)_2 = N_2 H_4$

2011

Question 1.

An organic compound with vapour density 94. It contains C = 12.67%, H = 2.13%, and Br = 85.11%. Find the molecular formula of the organic compound. [C = 12, H = 1, Br = 80]

Answer:

Element	Symbol	Atomic No.	Percentage	Relative no. of Atoms	Simplest ratio
Carbon	с	12	12.67	$\frac{12.67}{12} = 1.055$	$\frac{1.055}{1.055} = 1$
Hydrogen	н	1	2.13	$\frac{2.13}{1} = 2.13$	$\frac{2.13}{1.055} = 2$
Bromine	Br	80	85.11	$\frac{85.11}{80} = 1.0638$	$\frac{1.0638}{1.055} = 1$

E. F. = CH_2 Br

Given V.D. = 94

Molecular mass = $2 \times V.D. = 2 \times 94 = 188$

M.F.M = (E.F.M) $n \implies 188 = (94)n \implies n = \frac{188}{94} = 2$

Molecular formula = (Empirical formula) × $n = (CH_2Br) \times 2$ = $C_2H_4Br_2$

2014

Question 1.

A compound having empirical formula X_2Y is made of two elements X and Y. Find its molecular formula. If the atomic weight of X is 10 and that of Y is 5 and the compound has a vapour density 25.

Answer:

Empirical formula = X_2Y , Empirical mass = $2 \times 10 + 5 = 25$ Vapour density of $X_2Y = 25$

:. Molecular weight of $X_2Y = 2 \times \text{vapour density} = 2 \times 25 = 50$ Now Molecular weight = $n \times \text{empirical weight} = 50 = n \times 25$

$$\Rightarrow n = \frac{50}{25} = 2$$

:. Molecular formula = n × Empirical formula = $2 \times X_2 Y = X_4 Y_2$

2015

Question 1.

If the empirical formula of a compound is CH and it has a vapour density of 13, find the molecular formula of the compound. [C = 12, H = 1]

Answer:

Given : Empirical formula = CH, Vapour density = 13

Molecular weight = $2 \times \text{Vapour density} = 2 \times 13 = 26$

 Empirical formula of a compound with molecular mass 26 is CH.

 $n = \frac{\text{Molecular mass}}{\text{Empirical formula}} = \frac{26}{(12+1)} = \frac{26}{13} = 2$

: Molecular formula of the given compound is $2 \times (CH) = (CH)_2 = C_2H_2$.

2016

Question 1.

A gaseous hydrocarbon contains 82.76% of carbon. Given that its vapours density is 29, find its molecular formula. [C=12,H=1]

Answer:

Symbol	Percentage	Atomic mass	No. of atoms	Simplest ratio	Rounding of ratio
С	82.76	12	$\frac{82.76}{12} = 6.89$	6.89/6.89 = 1	2
H	17.24	1	$\frac{17.24}{1} = 17.24$	17.24/6.89 = 2.5	5

Empirical formula = C,H,

Empirical formula mass = $12 \times 2 + 5 \times 1 = 24 + 5 = 29$

V.D. = 29

Mole ular $ass = 2 \times V.D. = 2 \times 29 = 58$

$$n = \frac{M.M}{E.F.M} = \frac{58}{29} = 2$$

Molecular formula = $(C_2H_5)_2 = C_4H_{10}$

2017

Question 1.

A compound of X and Y has the empirical formula XY_2 . Its vapou density is equal to its empirical formula weight. Determine its Molecular formula.

Answer:

Molecular f $rmula = 2 \times V.D.$

... Molecular formula = 2 × Empirical formula

 $= 2 \times XY_2 = X_2X_4$

G Chemical Equations – Problems based on them

2000

Question 1.

Washing soda has the formula $Na_2CO_3.10H_2O$. What mass of anhydrous sodium carbonate is left when all the water of crystallization is expelled by heating 57.2 g of washing soda.

Answer:

Na₂CO₃.10H₂O
$$\xrightarrow{\text{Heat}}$$
 → Na₂CO₃ + 10H₂O
Molecular weight of Na₂CO₃.10H₂O
= 23 × 2 + 12 + 16 × 3 + 10 (1 × 2 + 16)
= 46 + 12 + 48 + 10 (18) = 106 + 180 = 286
Molecular weight of Na₂CO₃ = 106
∴ 286 g Na₂CO₃.10H₂O left 106 g Na₂CO₃
∴ 57.2 g Na₂CO₃.10H₂O left 106 g Na₂CO₃ = $\frac{57.2 \times 106}{286}$

= 21.2 g Na₂CO₃

Mass of anhydrous sodium carbonate is 21.2 g

Question 2.

 $Na_2SO_4 + Pb(NO_3)_2 \rightarrow PbSO_4 + 2NaNO_3$ When excess » lead nitrate solution was added to a solution of sodium sulphate, 15.15 g of lead sulphate were precipitated. What mass of sodium sulphate was present in the original solution. (H = 1 ; C = 12 ; O = 16 ; Na = 23; S = 32 ; Pb = 207)

Na₂SO₄ + Pb(NO₃)₂ → PbSO₄ + 2NaNO₃. Mol. mass of Na₂SO₄ = 2 × 23 + 32 + 16 × 4 = 46 \cdot 32 + 64 = 142 g Mol. mass of lead sulphate = 207 + 32 × 4 × 16 = 270 \cdot 32 + 64 = 366 g

Now 366 g of PbSO₄ is obtained from 142 g of Na₂SO₄

15.15 g of PbSO₄ obtained from =
$$\frac{142}{366} \times 15.15 = 7$$
 g (app.)

2001

Question 1.

From the equation : $(NH_4)_2 Cr_2O_7 \rightarrow Cr_2O_3 + 4H_2O + N_2$ Calculate :

- 1. the vol. of nitrogen at STP, evolved when 63g. of ammonium dichromate is heated. (5.6 lits.)
- 2. the mass of Cr_2O_3 formed at the same time. (N = 14, H = 1, Cr = 52, O = 16) (38 g.)

Answer:

$(NH_4)_2Cr_2O_7(s) \longrightarrow$	$Cr_{2}O_{3}(s) +$	$4{\rm H_{2}O}\left(g\right) + {\rm N_{2}}\left(g\right)$
1 mol	1 mol	1 mol
$= 2 \times (14 + 4) + 2 \times 52 + 7 \times 16$	$= 2 \times 52 + 16 \times 3$	= 22.4 L
= 252 g	= 152 g	

 (i) 252 g of ammonium dichromate on decomposition give N₂ at S.T.P. = 22.4 L

63 g of ammonium dichromate on decomposition will give

$$N_2$$
 at S.T.P. = $\frac{22.4}{252} \times 63 L = 5.6 L$

(ii) 252 g of ammonium dichromate on thermal decomposition give $Cr_2O_3 = 152$ g

63 g of ammonium dichromate or thermal decomposition

will give
$$Cr_2O_3 = \frac{152}{252} \times 63 = 38 \text{ g}$$

2003

Question 1.

10g. of a mixture of NaCI and anhydrous Na_2SO_4 is dissolved in water. An excess of $BaCl_2$ soln. is added and 6.99 g. of BaSO is precipitated according to the equation :

 $Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2NaCl.$ Calculate the percentage of sodium sulphate in the original mixture.

(O = 16 ; Na = 23 ; S = 32; Ba = 137)

Answer:

Na₂SO₄ + BaCl₂ \rightarrow BaSO₄ + 2NaCl [(2 × 23) + 32 + 4 × 16] (137 + 32 + 64) 142 g 233 g Now 223 g of BaSO₄ is obtained from 142 g Na₂SO₄ 6.99 g of BaSO₄ is obtained from = $\frac{142 \times 6.99}{233}$ = 4.26 g. of Na₂SO₄ Na₂SO₄

:. NaSO₄ in 10 g of mixture = $\frac{4.26 \times 100}{10}$ = 42.6%

2004

Question 1.

The reaction of potassium permanganate with acidified iron (II) sulphate is given below :

2KMnO₄ + 10FeSO₄ + 8H₂SO₄ → K₂SO₄ + 2MnSO₄ + 5 Fe₂(SO₄)₃ + 8H₂O. If 15.8 g. of potassium permanganate was used in the reaction, calculate the mass of iron (II) sulphate used in the above reaction. (K = 39, Mn = 55, Fe = 56, S = 32, O = 16)

 $2KMnO_{4} + 10FeSO_{4} + 8H_{2}SO_{4} \rightarrow K_{2}SO_{4} + 2MnSO_{4} + 5$ Fe₂(SO₄)₃ + 8H₂O Molecular mass of 2KMnO₄ = 2(39 + 55 + 4 × 16) = 2 (39 + 35 + 64) = 2 (158) = 316 g Molecular mass of 10FeSO₄ = 10(56 + 32 + 4 × 16) = 10(56 + 32 + 64) = 10(152) = 1520 g 316 g of KMnO₄ used iron (III) sulphate = 1520 g

15.8 g of KMnO₄ used =
$$\frac{1520}{316} \times 15.8 = 71$$
 g

2005

Question 1.

The equation given below relate to the manufacture of sodium carbonate (Mol), wt. of $Na_2CO_3 = 106$

- 1. NaCl + NH₃ + CO₂ + H₂O \rightarrow NaHCO₃ + NH₄Cl
- 2. $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$

Questions (a) and (b) are based on the production of 21.2 g. of sodium carbonate.

(a) What mass of sodium hydrogen carbonate must be heated to give 21.2 g. of sodium carbonate (Molecular weight of NaHCO₃ = 84).

(b) To produce the mass of sodium hydrogen carbonate calculated in (a), what volume of carbon dioxide, measured at s.t.p., would be required.

(a) $2\text{NaHCO}_3 \longrightarrow \text{Na}_2\text{CO} + \text{H}_2\text{O} + \text{CO}_2$ $2 \text{ mol} \qquad 1 \text{ mol}$ $= 2 \times 84 = 168 \text{ g} \qquad = 106 \text{ g}$ $106 \text{ g} \text{ of Na}_2\text{CO}_3 \text{ is obtained from NaHCO}_3 = 168 \text{ g}$ $21.2 \text{ g} \text{ of Na}_2\text{CO}_3 \text{ is obtained from NaHCO}_3$ $= \frac{168}{106} \approx 21.2 = 33.6 \text{ g}$ (b) $\text{NaCl} + \text{NH}_3 + \text{CO}_2 + \text{H}_2\text{O} \longrightarrow \text{NaHCO}_3 + \text{NH}_4\text{Cl}$ $1 \text{ mol} \qquad 1 \text{ mol}$ $= 22.4 \text{ L at S.T.P.} \qquad = 84 \text{ g}$ $84 \text{ g of NaHCO}_3 \text{ is obtained from CO}_2 \text{ at STP} = 22.4 \text{ L}$ $33.6 \text{ g of NaHCO}_3 \text{ is obtained from CO}_2 \text{ at STP}$ $= \frac{22.4}{22.4} = 32.6 = 8.06 \text{ L}$

$$=\frac{22.4}{84}=33.6=8.96$$
 L

2006

Question 1.

The relative molecular mass (mol. wt.) of copper oxide is 80. What vol. of HN₃ (measured at s.t.p.) is required to completely reduce 120 g of cuO. ($3CuO + 2NH_3 \rightarrow 3Cu + 3H_2O + N_2$].

Answer:

 $\begin{array}{rcl} 3\mathrm{CuO} & + & 2\mathrm{NH}_3 & \longrightarrow & 3\mathrm{Cu} & + & 3\mathrm{H}_2\mathrm{O} & + & \mathrm{N}_2\\ 3 \text{ moles} & & 2 \text{ moles} \\ 3 \times 80 \text{ g} & = 2 \times 22.4 \text{ litres at S.T.P.} \end{array}$

240 g of CuO requires NH, for reduction = 2×22.4 litres

 \therefore 120 g of CuO requires NH₃ for reduction = $\frac{2 \times 22.4}{240} \times 120$

= 22.4 L

:. Volume of NH₄ required at S.T.P. = 22.4 L

2007

Question 1.

A sample of ammonium nitrate when heated yields 8.96 litres of steam

(measured at stp.) $NH_4 NO_3 \rightarrow N_2O + 2H_2O$

- 1. What volume of dinitrogen oxide is produced at the same time as 8.96 litres of steam.
- 2. What mass of ammonium nitrate should be heated to produce 8.96 litres of steam (Relative molecular mass of NH_4NO_3 is 80)

Answer:

 $\begin{array}{ccc} \mathrm{NH}_4\mathrm{NO}_3 (s) & \xrightarrow{\mathrm{Heat}} & \mathrm{N}_2\mathrm{O} (g) + 2\mathrm{H}_2\mathrm{O} (g) \\ 1 \,\mathrm{mol} = 80 \,\mathrm{g} & 1 \,\mathrm{vol} & 2 \,\mathrm{vol} \end{array}$

(i) Volume
$$N_2O = \frac{8.96}{2} = 4.48 L$$

[: 1 vol of N_2O is produced at the same time as 2 vol. of steam]

(ii) 2×22.4 L steam at S.T.P. is produced from NH_4NO_3 = 80 g

8.96 L of steam at S.T.P. is produced from NH₄NO₃

$$=\frac{80}{2\times22.4}$$
 × 8.96 = 16 g

(iii) Percentage of oxygen in NH₄NO₃ = $\frac{16 \times 3}{80} \times 100 = 60\%$

2008

Question 1.

From the equation : $C + 2H_2SO_4 \rightarrow CO_2 + 2H_2O + 2SO_2$ Calculate :

- 1. The mass of carbon oxidised by 49 g of sulphuric acid (C = 12; relative molecular mass of sulphuric acid = 98).
- 2. The volume of SO_2 measured at s.t.p., liberated at the same time.

$$C_{12g} + 2H_{2}SO_{4} \longrightarrow CO_{2} + 2H_{2}O + 2SO_{2}$$
(i) 196 g of sulphuric acid is required to oxidise
= 12g of carbon
1 g of sulphuric acid is required to oxidise = $\frac{12}{196}$ g of carbon
49g of sulphuric acid is required to oxidise = $\frac{12}{196} \times 49$ g
of carbon = 3 g of carbon
(ii) 12 g of carbon will liberate (22.4 × 2) litres of SO₂
1 g of carbon will liberate $\frac{22.4 \times 2}{12}$ litres of SO₂
3 g of carbon will liberate $\frac{22.4 \times 2}{12} \times 3 = 11.2$ litres of SO₂

2009

Question 1.

Commercial NaOH weighing 30 g. has some NaCl in it. The mixture on dissolving in water and treatment with excess AgNO₃ soln. formed a precipitate weighing 14.3 g. What is the percentage of NaCl in the commercial sample of NaOH. NaCl + AgNO₃ \rightarrow AgCl + NaNO₃ [Relative molecular mass of NaCl = 58 ; AgCl = 143]

NaCl + AgNO₃ \longrightarrow AgCl + NaNO₃ J43g \rightarrow AgCl is formed from = 58g of NaCl 1g of AgCl is formed from = $\frac{58}{143}$ of NaCl 14.3 g of AgCl is formed from = $\frac{58}{143} \times 14.3 = 5.8$ g

% of sodium chloride = $\frac{5.8}{30} \times 100 = 19.3\%$

2011

Question 1.

Calculate the volume of oxygen required for the complete combustion of 8.8g of propane (C₃ H₈). (C = 12, O = 16, H = 1, Molar Volume = 22.4 dm³ at stp)

Answer:

 $C_{3}H_{8} \quad 5O_{2} \longrightarrow 3CO_{2} + 4 H_{2}O$ M.W. of $C_{3}I = 12 \times 3 + 4 = 44$ Volume of $5O_{2} = 12 \times 2.4 = 12$ litres
44 g of propane requires = 112 litres of oxygon

1 g of propane requires = $\frac{112}{44}$ litres

8.8 g of propane requires = $\frac{112}{44} \times 8.8 = 112 \times .2 - 22.4$ litres

2013

Question 1. $2KClO_3 \xrightarrow{MnO_2} ?K^l + 3O_1$

- (i) Calculate the mass of KClO₃ required to produce 6.72 litre of O₂ at S.T. [K = 39, Cl = 35 5, O = 16]
- (ii) Calculate the no. of moles of O₂ in the above volume and also the no. of namelecules.

2KClO3	MnO ₂	2KCl	+ 30 ₂
2[35+35.5+48] g		2[39+35.5]g	3[22.4] lt
245 g			67.2 lt

- (i) 67.2 lt of oxygen at STP is librated from $KClO_3 = 245$ g
- ... 6.72 lt of oxyg n is liberated from KClO₃

$$=\frac{245\times6.72}{67.2}=24.5g$$

(ii) 22.4 lt of oxyge and ST = nole.

:. 6.72 't of oxygen at STF = $\frac{6.72}{22.4}$ = 0.3 moles

1 mole of oxy ren contains number of molecules

 $= 6 \times 10^{23}$

0.3 mole of ox gen contain number of molecules

 $= 6.02 \times 10^{23} \times 0.3 = 1.806 \times 10^{23}$ molecules

2015

Question 1. From the equation : $(NH_4)_2Cr_2O_7 \xrightarrow{heat} N_2(g) + 4H_2O(g) + Cr_2O_3$

Calculate:

- 1. the quantity in moles of $(NH_4)_2Cr_2O_7$ if 63gm oft $[NH_4)_2Cr_2O_7$ is heated.
- 2. the quantity in moles of nitrogen formed.
- 3. the volume in litres or dm^3 of N₂ evolved at s.t.p.
- 4. the mass in grams of Cr_2O_3 formed at the same time. [H=I, Cr= 52, N=14]

The given reaction is as follows:

$$(NH_4)_2 Cr_2 O_7 \xrightarrow{heat} N_2(g) + 4H_2 O(g) + Cr_2 O_3$$

(i) Given : Weight of $(NH_4)_2Cr_2O_7 = 63 \text{ gm}$ Molar mass of $(NH_4)_2Cr_2O_7$ $= (2 \times 14) + (8 \times 1) + (2 \times 52) + (7 \times 16)$ = 28 + 8 + 104 + 112 = 252 gm1 mole $(NH_4)_2Cr_2O_7 = 252 \text{ gm}$

Hence, 63 gm of $(NH_4)_2 Cr_2 O_7 = \frac{63}{252} = 0.25$ moles

The quantity of moles of $(NH_4)_2Cr_2O_7$ if 63 gm of $(NH_4)_2Cr_2O_7$ is heated is **0.25** moles.

 (ii) From the given chemical equation, 1 mole of (NH₄)₂Cr₂O₇ produces 1 mole of nitrogen gas.

Hence, 0.25 moles of $(NH_4)_2Cr_2O_7$ can produce 0.25 moles of nitrogen gas.

The quantity in moles of nitrogen formed is 0.25 moles.

(iii) One mole of an ideal gas at S.T.P. occupies 22.4 litres or dm³.

Hence, 0.25 moles of $(NH_4)_2Cr_2O_7$ will occupy 0.25 × 22.4 = 5.6 litres or dm³.

The volume in litres or dm^3 of N_2 evolved at S.T.P. is **5.6** litres or dm^3 .

(iv) From the given chemical equation, 1 mole of (NH₄)₂Cr₂O₇ produces 1 mole of Cr₂O₃.

Hence, 0.25 moles of $(NH_4)_2 Cr_2 O_7$ will produce 0.25 moles of $Cr_2 O_3$. Molar mass of Cr $O_2 = (2 \times 52) + (3 \times 16) = 104 + 48 = 104$

Molar mass of $Cr_2O_3 = (2 \times 52) + (3 \times 16) = 104 + 48 = 152 \text{ gm}$

 $1 \text{ mole } Cr_2O_3 = 152 \text{ gm}$

Hence, 0.25 moles of $Cr_2O_3 = 0.25 \times 152 = 38 \text{ gm}$

The mass in grams of Cr_2O_3 formed at the same time is **38** gm.

2016

Question 1.

How much calcium oxide is formed when 82g. of calcium nitrate is heated. Also find the volume of nitrogen dioxide evolved : $2C_2(NO_2)^2 = 2C_2O_2 + 4NO_2 + O_2(C_2) = 40$ N = 14. O = 16

 $2Ca(NO_3)2 \rightarrow 2CaO + 4NO_2 + O_2 \text{ (Ca = 40, N = 14, O = 16)}$

Answer:

 When calcium nitrate is 328 g, the calcium oxide formed = 112 g

When calcium nitrate is 82 g the calcium oxide formed

$$=\frac{112\times82}{328}=28$$
 g

(ii) When calcium nitrate is 328 g, the volume of NO_2 formed = 89.6 l

When calcium nitrate is 82 g the volume of NO₂ formed

$$=\frac{89.6\times82}{328}=22.4$$
 *l*t at S.T.P.