TEST

OPERATING SYSTEM

Directions for questions 1 to 30: Select the correct alternative from the given choices.

- 1. A program is _____ entity, while a process is _____ entity.
 - (A) Active, passive
 - (B) Active, sometimes active
 - (C) Passive, active
 - (D) Both (B) and (C)
- **2.** All the information associated with a specific process is contained in:
 - (A) Process control block
 - (B) Program control block
 - (C) TLB
 - (D) Heap
- Kernel-level threads and user-level threads are supported, respectively, by _____.
 - (A) Operating system and operating system
 - (B) Operating system and user
 - (C) User and user
 - (D) None of these
- **4.** Which of the following is false about user-level threads?
 - (A) User-level threads are visible to the programmer and are unknown to the Kernel.
 - (B) These are faster to create.
 - (C) Kernel never interferes.
 - (D) There is no effect of a system call () on process.
- **5.** Which of the following interprocess communication models are implemented using system calls?
 - (A) Shared memory
 - (B) Message passing
 - (C) Both (A) and (B)
 - (D) Neither (A) nor (B)
- 6. Peterson's solution
 - (i) is restricted to two processes
 - (ii) share two data items turn and flag [i]
 - (iii) mutual exclusion is achieved
 - (iv) is a hardware solution

Which of the above are true?

- (A) (i), (ii), (iii)
- (B) (ii), (iii), (iv)
- (C) (iv), (i), (ii)
- (D) (i), (ii), (iii), (iv)
- 7. Which of the following requires a mode switch from one thread to another?
 - (A) One process multiple thread
 - (B) User-level thread
 - (C) Kernel-level threads
 - (D) Both (B) and (C)

- 8. When a process is created, its state is
 - (A) New
 - (B) Ready
 - (C) Block
 - (D) Suspend
- 9. The data section of a process in memory contains
 - (A) Local variables, function parameters
 - (B) Return addresses
 - (C) Global variables
 - (D) None of the above
- 10. Which one of the following is true about process states?
 - (i) A process which is running must have terminated as next state.
 - (ii) From running state process can go to either waiting, ready or terminated state.
 - (iii) Only one process can run at any instant.
 - (iv) Ready process can go to waiting state.
 - (A) (i), (ii), (iii)
 - (B) (ii) and (iii) only
 - (C) (i) and (iv) only
 - (D) (ii), (iii), (iv)
- **11.** Message passing model of inter process communication can be
 - (A) Blocking only
 - (B) Blocking and non-blocking
 - (C) Synchronous and asynchronous
 - (D) Both (B) and (C)
- **12.** The definition of wait() is as follows:
 - wait (S) {
 while (S <=0);</pre>
 - S - ;
 - }

The semicolon after while statement, signifies

- (A) Infinite looping
- (B) Blank statement
- (C) Depends on interpretation of compiler
- (D) No operation
- **13.** To avoid race condition, the number of processes using the critical sections is/are:
 - (A) 1 (B) 2
 - (C) 3 (D) More than 3
- 14. The 'Critical Section' is the region in which
 - (A) Any number of processes can enter without any permission
 - (B) Only one process enters at a time and others wait for it.
 - (C) Section is very critical
 - (D) None of these

Time: 60 min.

7.96 Unit 7 • Operating System

- 15. What does process control block contain?
 - (A) Process Identification
 - (B) Process state information
 - (C) Process control information
 - (D) All of the above
- **16.** Match the following

(i)	Multiprogramming	(x)	Managing multiple pro- cesses executing on multiple computers
(ii)	Multiprocessing	(y)	Management of multiple pro- cesses within a uniprocessor system.
(iii)	Distributed process Management	(z)	Management of multi- ple processes within a multiprocessor.

- (A) (i) -y (ii) -z (iii) -x
- (B) (i) -z (ii) -x (iii) -y
- (C) (i) -y (ii) -x (iii) -z
- (D) Ambiguous
- **17.** For '*n*' number of fork() system call, how many parent and child processes will be created?
 - (A) 1, $2^n 1$, respectively
 - (B) $1, 2^n$, respectively
 - (C) $2^n 1$, 1, respectively
 - (D) n, 2n, respectively
- 18. If the value of binary semaphore is initialized with 1 and three wait() operations are performed, how many processes are there in the block list?(A) 1 (B) 0

(A) I	(Б) О
(C) 3	(D) 2

19. A counting semaphore is initialized with the value 3. A list of 'P' and 'V' operations are performed on the semaphore as: 1P, 2V, 2P, 3V, 5P, 7V, 2P, 3V. The final value of semaphore is?

		1	
(A)	5		(B) 8
(C)	7		(D) 6

20. The final value of semaphore after 10 '*P*' operations and 23 '*V*' operations is 1. What will be the initial value of this counting semaphore?

(A) –14		(B) –13
(C) -12		(D) –11

- **21.** For a machine-instruction approach to enforce mutual exclusion, following are its properties:
 - (i) starvation and deadlock free
 - (ii) it is applicable to any number of processes.
 - (iii) it can be used to support multiple critical sections, each defined by its own variable.
 - (iv) it is simple, easy to verify and employed with busy waiting

Which of the above is false?

(A) (iv) only (B) (ii), (ii)	(11) Only
------------------------------	-----------

(C) (i), (ii) only (D) (i) only (D)

22. Consider the following code:

```
if (fork() == 0)
{
    a = a + 5;
    printf("%d,%d\n",a,&a);
    else
    {
        a = a - 5;
    printf("%d,%d\n",a,&a);
    }
```

Let p, q be the values printed by the parent process, and s, t be the values printed by the child process. Which one of the following is true?

(A) p = s + 10 and q = t(B) p = s + 10 and $q \uparrow t$ (C) p + 10 = s and q = t

- (D) p + 10 = s and $q \uparrow t$
- **23.** Consider the following statements with respect to user-level threads:
 - (i) Context switch is faster with kernel-supported threads.
 - (ii) For user-level threads, a system call can block the entire process.
 - (iii) Kernel-supported threads can be scheduled independently.
 - (iv) User-level threads are transparent to the Kernel.
 - Which of the above statements are true?
 - (A) (i), (iii) and (iv) only
 - (B) (ii) and (iii) only
 - (C) (i) and (iii) only
 - (D) (i) and (ii) only
- 24. Suppose there are 'n' CPUs and 'm' processes such that m > n. What will be the minimum and maximum number of ready, running and blocked process, respectively?
 (A) 0, 0, 0 and m, n, m
 (B) 1, m, 1 and n, n, n
 (C) m, 1, 0 and m, m, n
 (D) 0, 0, 0 and n, m, m
- **25.** Consider the following signal semaphore code signal (semaphore *s)

Choose the suitable options for (I) and (II), respectively

- (A) S.value = 0 and wakeup(P);
- (B) S.value <= 0 and wakeup(P);
- (C) S.value <0 and block();
- (D) S.value <= 0 and block();

26. Consider the methods used by processes P_1 and P_2 for accessing their critical sections whenever needed. The initial values of shared Boolean variables S_1 and S_2 are randomly assigned.

Method used by P_1

While $(S_1 = = S_2)$; Critical section $S_1 = S_2$;

Method used by P_2

While $(S_1 != S_2)$; Critical section $S_2 = !(S_1)$;

Which of the following statements describes the properties achieved?

- (A) Mutual exclusion but not progress
- (B) Progress only
- (C) Bounded waiting, progress
- (D) Mutual exclusion, progress, bounded waiting
- 27. Consider the following statements regarding spin locks:
 - (i) No context switch is required when a process wait on a lock
 - (ii) Spin locks are useful when locks are expected to be held for short times.
 - (iii) They are often employed on multiprocessor systems
 - (iv) Process 'spins' while waiting for a lock
 - Choose the correct option:
 - (A) (i), (ii), (iii), (iv) are true
 - (B) Only (i) and (ii) are true
 - (C) (iii) is false
 - (D) (ii) is true and (iv) is false

Common data for questions 28, 29 and 30: From the Readers-Writers problem, the data structure for reader process is:

semaphore mutex, wrt; int readcount;

```
while(1)
{
  wait(mutex);
  readcount++;
  if(readcount == 1)
  wait(wrt);
  signal(mutex);
  - - - - -
  wait(mutex);
  readcount - -;
  if(readcount ==0)
  signal(wrt); signal(mutex);
}
```

mutex and wrt are initialized to 1 and readcount is initialized to 0.

- 28. Mutual exclusion for readers is attained by
 - (A) Wrt
 - (B) Mutex
 - (C) Readcount
 - (D) Both (A) and (B) (
- **29.** Which of the following semaphore or semaphores is used by the first or last reader that enters or exits the critical section?
 - (A) Wrt
 - (B) Mutex
 - (C) Readcount
 - (D) Both (A) and (B)
- **30.** The readcount variable keeps track of how many processes are _____.
 - (A) Currently reading the object
 - (B) Currently writing the object
 - (C) Waiting in the queue
 - (D) Reading the shared data

Answer Keys									
11. D	12. D	13. A	14. B	15. D	16. A	7. C 17. A 27. A	18. D	19. B	20. C