Determine the Percentage Purity Of the Given Sample Of Oxalic Acid. Ask For Your Requirement

Determine the percentage purity of the given sample of oxalic acid. Ask for your requirement.

Requirement

A standard solution of
$$KMnO_4\left(\frac{N}{20}\right)$$
.

Chemical equations

Same as in Experiment 11.16.

Indicator, End point and Procedure are also same as in Experiment 11.16. Weigh exactly 1.0 g of the given sample of oxalic acid and dissolve in water to prepare exactly 250 ml solution using a 250 ml measuring flask.

Observations

Solution taken in burette =
$$\frac{N}{20}$$
 KMnO₄

Volume of oxalic acid solution taken for each titration = 20.0 ml.

S. No.	Initial reading of the burette	Final reading of the bilirette	Volume of the ElfnO ₄ solution used
1.	_	_	— ml
2.	<u>-</u>	_	— ml
3.	_ '	_	— ml
4.		_	— ml

Concordant volume = x ml (say).

Calculations

(a) Normality of oxalic acid solution

x ml of $\frac{N}{20}$ KMnO₄ solution are equivalent to 20 ml of N₁ oxalic acid solution.

Applying normality equation,

$$N_1 V_1 = N_2 V_2$$
Oxalic acid KMnO₄

$$N_1 \times 20 = \frac{1}{20} \times x$$

- \therefore Normality of oxalic acid, $N_1 = \frac{x}{400}$.
- (b) Strength of oxalic acid solution (in g/litre)

=
$$\frac{x}{400}$$
 × 63 = y g/litre (say) (: Eq. mass of crystalline oxalic acid = 63)

(c) Percentage purity of oxalic acid

=
$$\frac{\text{Strength of the pure sample}}{\text{Strength of the given sample}} \times 100$$

= $\frac{y}{4} \times 100$.

Instructions for the Preparation of Solutions

Provide the following:

- 1. Solid oxalic acid
- 2. KMnO₄ solution (1.58 g/litre)
- 3. 4N H₂SO₄.