4.1 Application in Mechanics and dy/dx as a Rate Measure

4.1.1 Velocity and Acceleration in Rectilinear Motion

The velocity of a moving particle is defined as the rate of change of its displacement with respect to time and the acceleration is defined as the rate of change $v = v + \delta v$ but to time.

Let a particle *A* moves rectilinearly as shown in figure.

Let s be the displacement from a fixed point O along the path at time t; s is considered to be positive on right of the point O and negative on the left of it.

Also, Δs is positive when s increases *i.e.*, when the particle moves towards right.

Thus, if Δs be the increment in s in time Δt . The **average velocity** in this interval is $\frac{\Delta s}{\Delta t}$

And the instantaneous velocity *i.e.*, velocity at time *t* is $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$

If the velocity varies, then there is change of velocity Δv in time Δt .

Hence, the acceleration at time $t = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$

- **Example: 1** The distance travelled s (in metre) by a particle in t second is given by $s = t^3 + 2t^2 + t$. The speed of the particle after 1 sec. will be
 - (a) 8 cm/sec.
- (b) 6 cm/sec.
- (c) 2 cm/sec
- (d) None of these

Solution: (a) $s = t^3 + 2t^2 + t$, $v = \frac{ds}{dt} = 3t^2 + 4t + 1$

Speed of the particle after 1 second

$$v_{(t=1)} = \left(\frac{ds}{dt}\right)_{(t=1)} = 3 \times 1^2 + 4 \times 1 + 1 = 8cm / \sec.$$

- **Example: 2** A particle moves in a straight line in such a way that its velocity at any point is given by $v^2 = 2 3x$, where x is measured from a fixed point. The acceleration is
 - (a) Zero
- (b) Uniform
- (c) Non-uniform
- (d) Indeterminate

Solution: (b) Velocity, $v^2 = 2 - 3x$

Differentiating with respect to t, we get

$$2v\frac{dv}{dt} = -3.\frac{dx}{dt} \implies 2v\frac{dv}{dt} = -3v \implies \frac{dv}{dt} = -\frac{3}{2}$$

ition	of a point in tin	ne 't' is given by $x = a + bt - ct^2$, $y = a$ Hence, acceleration is uniform.	$at + bt^2$. Its acce	eleration at time 't' is [M	IP PET 2					
;	(b)	(b+c) (c) $2b-2c$	(d)	$2\sqrt{b^2+c^2}$						
	Solution: (d) Acceleration in <i>x</i> -direction = $\frac{d^2x}{dt^2} = -2c$ and acceleration in <i>y</i> -direction = $\frac{d^2y}{dt^2} = 2b$									
	Example: 4 If the path of a moving point is the curve $x = at$ $y = b \sin at$, then its acceleration at any instant [S									
		(a) Is constant		(b) Varies as the distar	nce from the axis of x					
		(c) Varies as the distance from th	e axis of y	(d) Varies as the of the	point from the origin					
	Solution: (c)	$\frac{dx}{dt} = v_x = a \implies \frac{d^2x}{dt^2} = 0 = a_x$								
		a_x is acceleration in x -axis								
		$\frac{d^2y}{dt^2} = -ba^2 \sin at \implies a_y = -a^2y$								

Hence, a_y changes as y changes.

Example: 5 A stone thrown vertically upwards from the surface of the moon at velocity of 24 m/sec. reaches a height of $s = 24t - 0.8t^2m$ after t sec. The acceleration due to gravity in m/sec^2 at the surface of the moon is [MP PET 1992]

Solution: (b)
$$\frac{ds}{dt}$$
 = velocity = 24 = 24 - 1.6 *t*

So acceleration at t, is $\left[\frac{d^2s}{dt^2}\right] = -1.6$

As stone is thrown upwards, so acceleration due to gravity (which acts downwards) = 1.6.

4.1.2 Derivative as the Rate of Change

If a variable quantity y is some function of time t *i.e.*, y = f(t), then small change in time Δt have a corresponding change Δy in y.

Thus, the average rate of change = $\frac{\Delta y}{\Delta t}$

When limit $\Delta t \rightarrow 0$ is applied, the rate of change becomes instantaneous and we get the rate of change with respect to t.

i.e.,
$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt}$$

Hence, it is clear that the rate of change of any variable with respect to some other variable is derivative of first variable with respect to other variable.

Note: \square The differential coefficient of y with respect to x *i.e*, $\frac{dy}{dx}$ is nothing but the rate of increase of y relative to x.

Example: 6 The rate of change of the surface area of a sphere of radius *r* when the radius is increasing at the rate of 2cm/sec is proportional to

(a)
$$\frac{l}{r}$$

(b)
$$\frac{l}{r^2}$$

(d)
$$r^2$$

$$\frac{ds}{dt} = 4\pi \times 2r \frac{dr}{dt} = 8\pi \times 2 = 16\pi \implies \frac{ds}{dt} \propto r.$$

If the volume of a spherical balloon is increasing at the rate of $900 \text{ cm}^2/\text{sec}$, then the rate of change of Example: 7 radius of balloon at instant when radius is 15 cm [in cm/sec]

(a)
$$\frac{22}{7}$$

(c)
$$\frac{7}{22}$$

(d) None of these

Solution: (c) $V = \frac{4}{3}\pi r^3$

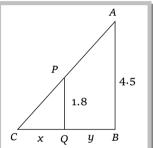
Differentiate with respect to t

$$\frac{dV}{dt} = \frac{4}{3}\pi 3r^2 \cdot \frac{dr}{dt} \Rightarrow \frac{dr}{dt} \Rightarrow \frac{1}{4\pi r^2} \cdot \frac{dV}{dt}$$

$$\frac{dr}{dt} = \frac{1}{4 \times \pi \times 15 \times 15} \times 900 = \frac{1}{\pi} = \frac{7}{22}$$
.

Example: 8 A man of height 1.8 m is moving away from a lamp post at the rate of 1.2 m/sec. If the height of the lamp post be 4.5 meter, then the rate at which the shadow of the man is lengthening

(b)
$$0.8 \ m/sec.$$


(d) None of these

Solution: (b) $\frac{dy}{dt} = 1.2$ According to the figure,

$$x = \frac{2}{3}y$$

$$\Rightarrow \frac{dx}{dt} = \frac{2}{3} \cdot \frac{dy}{dt}$$

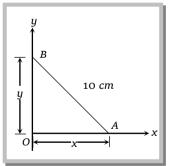
 \Rightarrow Rate of length of shadow $\frac{dx}{dt} = 0.8 \, m / s$.

A 10 cm long rod AB moves with its ends on two mutually perpendicular straight lines OX and OY. If Example: 9 the end A be moving at the rate of 2 cm/sec. then when the distance of A from O is 8 cm, the rate at which the end B is moving, is [SCRA 1996]

(a)
$$\frac{8}{3}$$
 cm/sec (b) $\frac{4}{3}$ cm/sec (c) $\frac{2}{9}$ cm/sec.

(b)
$$\frac{4}{3}$$
 cm / sec

(c)
$$\frac{2}{9} cm / \sec x$$


(d) None of these

Solution: (a) By figure, $x^2 + y^2 = 100$

x = 8

$$\Rightarrow 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

....(ii)

Therefore by (i) and (ii), $\frac{dy}{dt} = -\frac{16}{6} = -\frac{8}{3} cm / sec$.

 \therefore B is moving at the rate $\frac{8}{3}$ cm / sec.

(d) $\frac{1}{y}$

Application in Mechanics

Basic Level

A stone is falling freely and describes a distance s in t seconds given by equation $s = \frac{1}{2}gt^2$. The acceleration of

The displacement of a particle in time t is given by $s=2t^2-3t+1$. The acceleration is

(b) 3

(b) $\frac{1}{4}$

are cm and sec. The acceleration of the particle will be zero after

the stone is

(a) o

9.

(a) Uniform (b) Zero		(b) Zero	(c) Non-uniform	(d) Indeterminate			
3.	The velocity of a particle	at time t is given by the relationship at time t	ation $v = 6t - \frac{t^2}{6}$. The distance	e travelled in 3 seconds is, if			
	s=0 at $t=0$						
	(a) $\frac{39}{2}$	(b) $\frac{57}{2}$	(c) $\frac{51}{2}$	(d) $\frac{33}{2}$			
4.	_	of a car is $s = t^2 - 2t$, where car is 15 km , the velocity of the		ds in <i>kilometers</i> , when the			
	(a) $2km/h$	(b) $4km/h$	(c) 6km/h	(d) $8km/h$			
5.	A particle is moving in a	straight line according as $s = 4$	$45t+11t^2-t^3$, then the time w	hen it will come to rest, is			
	(a) – 9 seconds	(b) $\frac{5}{3}$ seconds	(c) 9 seconds	(d) $-\frac{5}{3}$ seconds			
6.	If $t = \frac{v^2}{2}$, then $\left(-\frac{df}{dt}\right)$ is equal to $\frac{df}{dt} = \frac{df}{dt}$	$rac{1}{2}$ qual to (where f is acceleration	n)	[MP PET 1991]			
	(a) f^2	(b) f^3	(c) $-f^3$	(d) $-f^2$			
7•	-	straight line according to the hen the average velocity of th		be measured in $meters$ and t			
	(a) 14 m/sec	(b) 13 <i>m/sec</i>	(c) 15 m/sec	(d) None of these			
Q	If $2t - v^2$ then dv/dt is eq	ual to					

(c) $\frac{1}{2}$

The equation of motion of a particle moving along a straight line is $s = 2t^3 - 9t^2 + 12t$, where the units of s and t

	(a) $\frac{3}{2}$ sec	(b) $\frac{2}{3}$ sec	(c) $\frac{1}{2}$ sec	(d) Never							
10.	A body moves according to the formula $v = 1 + t^2$, where v is the velocity at time t . The acceleration after 3 sec will be (v in cm/sec)										
	(a) 24 cm/sec ²	(b) 12 <i>cm/sec</i> ²	(c) 6 cm/sec ²	[MP PET 1988] (d) None of these							
l1 .	·	•	·	y $v^2 = a + bx$, where $a, b \neq 0$ are							
	constant. The acceleration	_	,, F 8	, ,							
	(a) Zero	(b) Uniform	(c) Non-uniform	(d) Indeterminate							
12.	The distance in seconds, described by a particle in t seconds is given by $s = ae^t + \frac{b}{e^t}$. The acceleration of the										
	particle at time <i>t</i> is										
	(a) Proportional to t	(b) Proportional to s	(c) s	(d) Constant							
13.	A stone thrown verticall is [SCRA 1996]	y upwards rises 's' metre in	t seconds, where $s = 80t - 16t^2$	² , then velocity after 2 seconds							
	(a) 8 m per sec.	(b) 16 <i>m per sec</i> .	(c) 32 m per sec.	(d) 64 m per sec.							
14.	If the distance 's' travell	ed by a particle in time t is s	$s = a \sin t + b \cos 2t$, then the according	eleration at $t = 0$ is							
	(a) a	(b) - a	(c) 4b	(d) - 4 <i>b</i>							
15.	If the distance travelled	by a point in time t is $s = 180$	$t-16t^2$, then the rate of char	nge in velocity is							
	(a) - 16 <i>t unit</i>	(b) 48 unit	(c) - 32 unit	(d) None of these							
16.	The motion of stone thr Then its velocity at $t = 1$		$s = 13.8t - 4.9t^2$, where <i>s</i> is	s in $metres$ and t is in seconds.							
	(a) 3 <i>m/s</i>	(b) 5 <i>m/s</i>	(c) 4 m/s	(d) None of these							
17.	A particle is moving in a straight line. Its displacement at time t is given by $s = -4t^2 + 2t$, then its velocity and										
	acceleration at time $t = \frac{1}{2}$ second are										
	(a) -2, -8	(b) 2, 6	(c) -2, 8	(d) 2, 8							
18.		y upwards falls back on the $tut - 4.9t^2$, where s is in metr	_	Assuming that the equation of the velocity at $t=0$							
	(a) o <i>m/s</i>	(b) 1 m/s	(c) 29.4 m/s	(d) None of these							
19.	A particle is moving in a velocity (v) is	straight line according as s	$t = \sqrt{1+t}$, then the relation b	etween its acceleration (a) and							
	(a) $a \propto v^2$	(b) $a \propto v^3$	(c) $a \propto \frac{1}{v^3}$	(d) $a \propto v$							
20.	The distance travelled by particle is	by a particle moving in a st	raight line in time t is $s = x$	$\sqrt{at^2 + bt + c}$. Acceleration of the							
		0.5	-3	[Kerala (Engg.) 2002]							
	(a) Proportional to <i>t</i>	(b) Proportional to s	(c) Proportional to s^{-3}	(d) None of these							
		Advan	ce Level								
21.	A particle is moving alor	ag the curve $x = at^2 + bt + c$. If	$ac = b^2$, then the particle wo	ould be moving with uniform[Orise							
	(a) Rotation	(b) Velocity	(c) Acceleration	(d) Retardation							

22.	$s = 9.8t - 4.9t^2$ respectively		tained by the first one is h .	ously are $s = 19.6t - 4.9t^2$ and When the height of the first		
	(a) $h/3$	(b) 2h	(c) h	(d) o		
23.	by $s = at^2 + bt + 6$, $t \ge 0$. If if	_	comes to rest after 4 secon	n of time t (in seconds) given ds at a distance of 16 metres		
	(a) $-1m/\sec^2$	(b) $\frac{5}{4} m / \sec^2$	(c) $-\frac{1}{2}m/\sec^2$	(d) $-\frac{5}{4}m/\sec^2$		
24.	A point moves in a straig velocity is	ght line during the time $t=0$	to $t=3$ according to the	law $s = 15t - 2t^2$. The average		
	(-) 0	(h) a	(-) 1-	[MP PET 1992]		
		(b) 9	(c) 15	(d) 27		
25.		f a stone, thrown vertically u les at maximum height in 3sec		re the units of s and t are cm		
s = 9 ston (a) f (a) f (by s from (a) 24. A po velo (a) f 25. The and (a) f 26. Radii cm, (a) 27. A 10 be n mov (a) 28. If y (a) f 29. The char (a) 30. A lad from is 4. (a) f 31. If th the n (a) f 32. Gas	(a) 18.9 cm/sec	(b) 12.6 cm/sec	(c) 37.8 cm/sec	(d) None of these		
				Rate Measures		
		Basic L	evel			
26.	Radius of a circle is increacm, will be	asing uniformly at the rate of	3 <i>cm/sec</i> . The rate of incre	ase of area when radius is 10		
	(a) $\pi cm^2/s$	(b) $2\pi cm^2 / s$	(c) $10\pi cm^2 / s$	(d) None of these		
27.	_			lines OX and OY . If the end A he rate at which the end B is		
	(a) $\frac{8}{3}$ cm/sec	(b) $\frac{4}{3}$ cm/sec	(c) $\frac{2}{9}$ cm/sec	(d) None of these		
28.	If $y = x^3 + 5$ and x changes	from 3 to 2.99, then the appro	oximate change in y is			
	(a) 2.7	(b)27	(c) 27	(d) None of these		
	(a) $\frac{5}{2}$ sq cm/min.	(b) 5 sq cm/min.	(c) 10 <i>sq cm/min</i> .	(d) 20 sq cm/min.		
30.	from the wall at the rate of is 4.0 <i>m</i> away from the wa	of 1.5 m/sec . The length of th all decreases at the rate of	e highest point of the ladde	pulled along the ground away r when the foot of the ladder		
	(a) 2 m/sec	(b) 3 <i>m/sec</i>	(c) 2.5 m/sec	(d) 1.5 m/sec		
31.	If the rate of increase of a the rate of increase of are	area of a circle is not constar	nt but the rate of increase o	f perimeter is constant, then		
	(a) As the square of the pe		Inversely as the perimeter	c (c) As the radius (d)		
		Advance	e Level			
32.	Gas is being pumped into increases when its reacher		rate of 30 ft^3/min . Then t	the rate at which the radius		

	(a) $\frac{1}{30\pi} ft / \min$.	(b) $\frac{1}{15\pi} ft / \min$.	(c) $\frac{1}{20} ft / \min$.	(d) $\frac{1}{25} ft / \min$.
33.		ationary water circular ripples m, then fluid rate of increase		of ripples is 6 <i>cm</i> /sec. When
	(a) $120 \pi cm / \sec$	(b) 120 <i>sqcm</i> / sec	(c) $\pi sqcm/sec$	(d) $120 \pi sqcm/sec$
34.	edge is 90 cm	eases at the rate of 60 cm per		_
	(a) 486000 cu cm per sec	(b) 1458000 cu cm per sec	(c) 43740000 cu cm per s	ec (d) None of these
35∙	If a spherical balloon has a	a variable diameter $3x + \frac{9}{2}$, th	en the rate of change of its	volume with respect to <i>x</i> is
	(a) $27 \pi (2x+3)^2$	(b) $\frac{27\pi}{16}(2x+3)^2$	(c) $\frac{27\pi}{8}(2x+3)^2$	(d) None of these

(b) $\frac{27\pi}{16}(2x+3)^2$ Two cyclists start from the junction of two perpendicular roads, their velocities being 3v metres/minute and 4v36. metres/minute. The rate at which the two cyclists are separating is

(a) $\frac{7}{2}$ vm / min

(b) 5 vm / min

(c) vm/\min

(d) None of these

A stick of length a cm rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a 37. constant velocity of b cm/s then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is

(a) $\frac{b}{\sqrt{2}}cm/s$

(b) $\frac{b}{2} cm / s$

(c) $\frac{ab}{2}$ cm/s

(d) None of these

If $y = \int_0^x \frac{t^2}{\sqrt{t^2 + 1}} dt$ then the rate of change of y with respect to x when x = 1, is

(a) $\sqrt{2}$

(b) 1/2

(c) $1/\sqrt{2}$

(d) None of these

Answer Sheet

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	a	С	d	С	b	b	d	a	С	b	С	b	d	С	С	a	С	b	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
С	d	b	b	С	d	a	b	С	a	С	a	d	b	С	b	a	С		