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2.2 THE FIRST LAW OF THERMODYNAMICS. HEAT CAPACITY

2.26 Intemnal energy of air, treating as an ideal gas

m _m R _rv
U-:MCVT—M_T—_lT—Y-I (1)
Using Cv-y-—l’ smceCF-C.',-Rand—EV-=y

Thus at constant pressure U = constant, because the volume of the room is a constant,

Puling the value of p=p__ and Vin Eq, (1), we get U=10MJ.

2.27 From energy conservation

1 2
U + -2-—(VM)‘V = Uf

or, AU = %VM v '6)
But from U = v yR—Tl , AU = ;{—v—}% AT (trom the previous problem) 2
Hence from Eqs. (1) and (2).
2
AT = My 2(RI -1}

2.28 On opening the valve, the air will flow from the vessel at heigher pressure to the vessel
at lower pressure till both vessels have the same air pressure. If this air pressure is p, the
total volume of the air in the two vessels will be (V; +V,). Also if v, and v, be the

number of moles of air initially in the two vessels, we have

P1Vi= v, RT; and p, V,= v, RT) (1)
After the air is mixed up, the total number of moles are (v, + v;) and the mixture is at
temperature T.

Heuce p(V,+Vy)= (vi+v))RT )

Let us look at the two portions of air as one single system. Since this system is contained

in a thermally insulated vessel, no heat exchange is involved in the process. That is, tolal

heat transfer for the combined system Q= 0

Moreover, this combined system does not perform mechanical work either. The walls of

the containers are rigid and there are no pistons etc to be pushed, locking at the total

system, we know A = 0.

Hence, intemal energy of the combincd sysiem does not change in the process. Initially

energy of the combined system is equal to the sum of internal enesgies of the two portions

of air :

vwRT, v,RT,
y-1 ' y-1

U= U +U,= ()
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Final internal energy of (n, + n,) moles of air at temperature T is given by

(v, + v} RT
U= =41 4)

Therefore, U;= Uy implies :
T "1T1+"2T2_ pVitmV, e T T VPV,
vV, O, Vi/T)+ (0, Vo/T)) 1 2p VT, +p,V, T,
From (2), therefore, final pressure is given by :

ViV, R pPVi+p, Y,
P= VI+V2RT (V1T1+V2T2)*"—'V'l—+-‘}'2—-—

VeV,
This process in an example of free adiabatic expansion of ideal gas.

By the first law of thermodynamics,
O=AU+A
Here A = 0, as the volume remains constant,

vR
So, Q= AU= quAT
From gas law, poV=vRT,
P VAT
So, AU= F——=-025K
Ty(v-1)

Hence amount of heat lost = — AU = 0.25 kJ

By the first law of thermodynamics Q = AU +A
= AV— i
But AU E_‘Y-—l 1-1 (as p is constant)
. S A7 S L.
Q-Y-1+A_Y“1-1'4—1)(2 7]

Under isobaric process A= pAV= RAT(as v=1)= 0-6 kJ
From the first law of thermodynamics
AU= Q-A=Q-RAT= 1K

Again increment in internal energy AU = ::Af, for v=1
_ RAT e
Thus Q-RAT= y-1 or Y_Q—RAT_Iﬁ
Let v = 2 moles of the gas. In the first phase, under isochoric process, A, = 0, therefore

from gas law if pressure is reduced # times so that temperature i.c. new temperature
becomes Ty/n.

Now from first law of thermodynamics

vRAT

y-1

Q,= AU, =
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vk (T, vRT,(1-n)
- (e-n)- et
During the second phase (under isobaric process),
A= pAV= vRAT
Thus from first law of thermodynamics :

Q,= AU, +A,= "—YR—AI-J-'+ vRAT

vR (T - —1:9-]
o= 1Y vRT (n-1)y
Y-1 T k-1
Hence the total amount of heat absorbed
vRT,{(1-n) vRT (n-1)y
ny-1) ' nl-1)
= %l(_l +y)= vRTn(l —%]

2.33 Total no. of moles of the mixture v = v, + v,

Q=) +0p=

At a certain temperature, U= U, + U, or vCy= v, Cy +v, CVz
1

R
vi———+v
vlc“,1+v2C‘,2 (1‘!1"1 2'\'2"1)

Thus Cy= " a "
v,C, +v,C
Similarly cp-+ﬁ
v Y1 R v YzR]
1, = 27
V171 Gy, t Va1 Oy ¥ -1 t2-1
= v = v
Lf Y2
£
Thus Y= C,V- R R
v +V
by, -1 2’)‘2“1

. vivi (=1 +v,7,(0,-1)
vita-D+vy(y -1}

L3 Trom e pievious problem

VT A VT

-1 -1

Cy= h * = 152 ¥ /mole. K
V4V,
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v N R +v ______yzR
1 -1 2 -1
and C - —2 2 o 3385 1/mole. K
P v+ vy
Total mass 20+7
N 1 i - - -
ow molar mass of the mixture (M) Towl number of moles — 1 1 36
.=
2 4
Cy c,
Hence Cy= p = 042J/g K and ¢, = T 0-661/g°K
Let S be the arca of the piston and F be the force exerted by the external agent.

Then, F + pS= p,S (Fig.) at an arbitrary instant of time. Here p is the pressure at the
instant the volume is V. (Initially the pressure inside is pg)
n¥

A (Work done by the agént)= fF dx

Vﬂ
n¥ "’lVo F
- [ @o-p5-dc= [ @o-prav POSl [
V'J vu
nY, nv, v TPS V
=P9(’1—1)Vg—fpdV= po(l]-—I)VowvaT"f,-
v, v,

= (n-1)p,V,~nRT Inn= (n=1)vRT - vRT Inn
=vRT(Mm=-1-iam)= RT(n -1 -Inn}(For v= 1mole)
Let the agent move the piston to the right by\x, In equilibirium position,
J 20 +Fagm = p,S, o Fagw = {p,~-p))S
Work done by the agent in an infinitesmal change dx is
Foppes " dx = (py - p)}Sdx= (p, - p))dV
By applying pV = constant, for the two parts,
P (Vo+Sx)= py V, and p, (V- Sx) = p,
Po V 25x - VoV
Vi-St Vi- VP

When the volume of the left end is 7 times the volume of the right end

So, Py-p = (where Sx= V)

-1
(Vo+ V)= nq(V,-V), or, V= :]]+1V0
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v

v
2,V V v
A=f(p2-p1)dV-f 7oz dV - "Povo[]“(voz"vz)]
0 A Vo=V 0

= -pDVo[ln(V(f—Vz)-—anoZ]
- _pﬂvo[ln{vg-(—‘]‘—lz)vg}-lnvg]
n+1

4 (n+1y
- —p, V,[In—0—= = p, V,1
Py n( (ﬂ+1)2) Pg¥pin 47

2.37 In the isothermal process, heat transfer to the gas is given by

v, Vi py
= VRT In = vRT,In Formm = —
o, oy, oM [ n v, p,
In the isochoric process, A = 0
Thus heat transfer to the gas is given by
Q= AU= vCyAT= KA1 [tor ¢ym £
-1 y-1
But 23--:{—.{l I, T-Tﬂ-nT forn-gl—
p T ) ° Py
vR
or, AT=nT;-Tp= n-1)T, so, Q2=:{—;—1-(n—1)TD
Thus, net heat transfer to the gas
Q= vRTolnn+YVR1-(n-1)T0
Q n=t £ inen=i
or, RT, 1nn+Y_1, of, RT, Inm Y1
n-1 6-1
or, -1+ =1+ = 14
T I A T T
vRT, 3x8314x273

2.38 (a) From ideal gas law p = (—‘;—?] Tw kT |where k= %3-

For isochoric process, obviously k = constant, thus p = kT, represents a straight line passing
through the origin and its slope becomes k.

For isobaric process p = constant, thus on p - T curve, it is a horizontal straight line parallel
to T - axis, if T is along horizontal (or x - axis)

For isothermal process, T= constant, thus on p - T curve, it represents a vertical straight
line if T is taken along horizontal (or x — axis)

For adiabatic process T¥p'~"= constant

After diffrentiating, we get (1-y)p Tdp - T'+yp! V-7 - dT=0
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= (75) o= 7 ) ()7

The approximate plots of isochoric, isobaric, isothermal, and adiabatic processess are drawn
in the answersheet,

(b} As p is not considered as variable, we have from ideal gas law
V= XET- K T|where &' = R
r P

On V - T co-ordinate system let us, take T along x - axis.

For isochoric process V = constant, thus k&' = constant and V= &'T obviously represents a
straight line pasing through the origin of the co-ordinate system and &’ is its slope.

For isothermal process T = constant, Thus on the stated co- ordinate system it represents
a straight line parallel to the V- axis.
For adiabatic process TV' ™ = constant
After differentiating, we get (y=1) V'™ 24V -T+ V' ' dT= 0

& _(13)Y

dT ¥y-1).T
The approximate plots of isochoric, isobaric, isothermal and adiabatic processess are drawn
in the answer sheet.

According to T - p relation in adiabatic process, T' = Ap"'l {(where k= constant)
-1
T\ v
and 22) B So, T, 1" | for ‘r]-&
T, Py b p
Hence Te T, n %1 w200 x 1001414 o 056 KK
(b) Using the solution of part (a), sought work done
VRAT v'RTO (y-1yy . .
A y-1 - y=1 (n - 1) = 5-61 kJ (on substitution)

Let (py, Vg, Ty} be the initial state of the gas.

-vRAT
v-1

But from the equation TV "™ ' = constant, we get AT = T, (11 -1_ 1)

‘VRTo(nT—lﬂl)
y-1

We know A . = work done by the gas
adia Y

Thus Aldil =

On the other hand, we know A, , = vRT;In (%) = - vR T;Inn (work done by the gas)

Aadia_ ﬂl-l—l 5G4—l
A, (y-lnm 04xIn$

150

Thus 1-4
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2.41 Since here the piston is conducting and it is moved slowly the temperature on the two
sides increases and maintained at the same value.

Elementary work done by the agent = Work done in compression - Work done in expansion
ic.dA= p,dV-p dVa (p,-p,)dV

where p, and p, are pressurcs at any instant of the gas on expansion and compression
side respectively.

From the gas law p, (V,, + S5x) = vRT and p, (V- Sx) = vRT, for each section

(x is the displacement of the piston towards section 2)

235x 2V
So, —-p = VRT———F—= vRT-———(as Sx =
=P Vg_szxz Voz_vz( V)
So dA = VRT"'EZ"K"EdV
Vo -V

Also, from the first law of thermodynamics

dA= —dU = —ZVYLdT (as dQ = 0)

So, work done on the gas = —dA = 2v —-IS—dT

v-1
Thus ZVLdTu vRTzii.‘d—Vz‘,
y-1 Vo-V
of, ar 1 vav
> FEATY T 2
T Vi~V AS
When the left end is m times the volume of |
the right end. &S
n-1 o™
(Vo+Vi=n(Vy-V} or V=1'I+1V° agent
T v
{4
On integrating f %= y-1) f V;/(_i 2
T, o °
v
or lnTT;-‘- (Y-l)[-‘;‘lﬂ(voz“vz)]
0
=_I-%l[m(vg-Vz)-mvg-vz)-mvg]
2
2
R PU SIS UL AT S U 5 S L2 Vi
5 {I“V{) ]nVo{l [1“_1 5 in an
=t

.7 (@)
Hence T= TO( an
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From energy conservation as in the derivation of Bernoullis theorem it reads

%+ %vz +gz+u+Q, = constant (n
In the Eq. (1) u is the internal energy per unit mass and in this case is the thermal energy
per unit mass of the gas. As the gas vessel is thermally insulated @, = 0, also in our case.

c,T
A‘:{ - M({:{ T also f)—-i{—T - Inside the vessel v = 0 also. Just

outside p =0, and u =0. Ingeneral gz is not very significant for gases.
Thus applying Eq. (1} just inside and outside the hole, we get

Just inside the vessel 4 =

_RT _RT___ _yRT
M ME-1) M{i-1)

2y RT 2yRT
Hence v o= <t or, v = =X . 3.22 km/s.
My-1) M(y-1)
Note : The velocity here is the velocity of hydrodynamic flow of the gas into vaccum.
This requires that the diameter of the hole is not too small (D > mean free path /). In the
opposite case (D < <) the flow is called effusion. Then the above result does not apply
and kinetic theory methods are needed.

The differential work done by the gas

vRT? a
dA = pdV = p, (—}a—]dTa —vRdT

(as pV=vRT and V= %)
T+ AT

So, = —f vRAT = - vyRAT
T
From the first law of thermodynamics

O=AU+A = YV—R—AT—VRAT

= vRAT'%—E—-;{-= RAT':{Z-E-} {for v =1 mole)

According to the problem : Aa U or dA = aU (where a is proportionality constant)
avRdT
- — 1
or, pdV .Y -1 ( )
From idcal gas law, pV= vR7T, on differentiating

pdV + Vdp = v RdT )
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Thus from (1) and (2)

pdV = 2 oV + Vi)

a a
or,pdV(Y_l—l)+Y_1Vdpu 0

or, pdV(k-1)+kVdp= 0 (where k= "{LI = another constant)

or, pde‘,_c1 +Vdp=0

or, pdVn+ Vdp= 0 (where k-1 = 1= ratio)

k

Dividing both the sides by pV

dv _dp
nV+P 0

On integrating # In V+1In p = In C (where C is constant)
or, n(PV")= InC of, pV'= C (const)
2.45 In the polytropic process work done by the gas

Lo YRIT-T))
n-1

(where T; and T, are initial and final temperature of the gas like in adiabatic process)
vR

and AU*:{":—'I'(Tf-T})

By the first law of lhclmodynamics Q= AU+A

ot (r T)

1 1 vR [n -]
-(Tf_T')VR[Y—l_H—l] -1~ 1)AT

According to definition of molar heat capacity when number of moles
v=1 and AT = 1 then O = Molar heat capacity.

Here, C"-E;I%%T:{I_)—ﬁ<0 for 1<n<y

2.46 et the process be polytropic according to the law pV" = constant

P.
Thus, Vi pV? or, LY .
Py Vy= D V; (Pf) 3
So, a"=f or Inf=nlna or nzllﬁ
Ina

In the polytropic process molar heat capacity is given by
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R{n~vy) . R___R
n-1)(y-1) y-1 n-1

R Rlna Inf
-y—l_lnﬁ—lna’ where " ha

8314 8314In4
So, Ce= 166-1 8 -ind

C =

= - 42 J/mol.K

2.47 (a) Increment of internal energy for A7, becomes

aU< XRAT_ RAT_ 3243(as v= 1mole)
v-1 y~-1
From first law of thermodynamics
RAT RAT
y-l n-1

vy

PQ=AU+A=

= 011 kJ

k
V”dv
v

(b) Sought work done, A, = f pdV =

(where pV" = k= p, V= p. V()

(Pfo' ViTm -Vl Vilﬂ)
1-n
A AU 1)
1-n 1-n

vRAT RAT
el 0-43kJ (as v = 1 mole)

- 1l-cn(Vfl-n Vi)

2.48 Law of the process is p= AV or pV'1 =0
so the process is polytropic of index n= -1
As p=aV so, p;=aV,and p,=anV,
(2) Increment of the internal energy is given by
AU = vR [7,-T,]= PfV[‘P;V.'
y-145f 7 y-1

(b) Work done by the gas is given by
VAL ‘PLVI o Vg -—an V-V,

n-1 -1-1
ﬂ'V(lz(l-"'lz) 1 2, 2
- = Euvo(n -1)
(c) Molar heat capacity is given by
C = R{n-y) R(-1-y) _Ry+1

T r-DE-1) C1-DE-D 2y-1
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249 (a) AU= R AT and 0= vC, AT

2.50

y-1
where C, is the molar heat capacity in the process. It is given that Q = - AU

So, c aT= Boar o = -2
y-1 S
(b} By the first law of thermodynamics, dQ = dU +dA,
or, 2dQ = dA (as dQ = -dU)
WC,dT = pdV, or, ;‘R"l T+ pdV = 0
2RV vRT 2 dT dv
y—ldT+ v dvV= 10, or (y--l)T+ V-
ar y-1dv
or, T + 5V 0,
(n-7)R
(n=-1)(y-1)
But from part (a), we have C, = — Y—R—l—
__R __(r-yIR
y-1 (r-1)-1
.15y
"2
From part (b); we know TV 2 2 constant
T v (-1)2
So, -I-,'i - “—/—) = 1]("'1)/2 (where T is the final temperature)
0
Work done by the gas for one mole is given by
(T,-T)  2RT,[1-n"'"1)

n-1 y-1

So,

0

or, TW~¥2. constant

(c) We know C,_ =

Thus

which yields

A=R

Given p= a T® (for one mole of gas)

So, pT™ %= a or p(%v) = q,

or, pl V%= aR™® or, pV*® = constant

Here polytropic exponent » = )

(a) In the polytropic process for one mole of gas :
RAT RAT

gl-n- o
[1-=%)

{b) Molar heat capacity is given by

R R R R R
_— - - = .R 1—
y-1 n-1 y-1 % __4 y-1+ (i-a)
a-1

A

= RAT(1-qa)

Cm
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2.51 Given U= av*®

or, vC,T= aV®, or, VCV%- aVvV®
a R 1 a-1, -1 Cv
or, aV co v 1, o, V P Ra
or pvi-oa 2—‘:- constant= gy —1)jas Cym :{—%]

So polytropric index n= 1 -,
(a} Work done by the gas is given by

A= ~vR AT and AU = v RAT
n-1 vy-1
Hence A= “AUG-1) _ AUG-1) {as n= 1-0a)
n-1 a

‘By the first law of thermodynamics, Q= AU +A
- AU+ AU(a"l) - AU[I +3’;—1]

(b) Molar heat capacity is given by

C= R R R _ R
y-1 n-1 y-1 1-a-1
R R
=y—1+a (asn= 1-0a)

2.52 (a) By the first law of thermodynamics
dQ = dU +dA = vC,,dT + pdV

Molar specific heat according to definition

Ce a0 CydT +pdvV
vdT vdT

vRT
Yodr L RTav
vdT v v ar:

We have T= Toeav

After differentiating, we get dT7 = a T, e®V.av
dv 1

So, m'w’

v
RT 1 RTye® R
Hece €= Oy 0 g O e ey

(b) Process is p= pye” v

RT
= .._‘./_upoe



208

or, T-%e“V-V
RT dV R R
Sor €= Cusfyar= Corpoe™ e sy TTvav
2.53 Using 2.52
(a) C=Cy+ RJ;“; C +L(for one mole of gas)
o RT o
Wehavcp-p0+—v-,, or, —V—=P°+\—f’ o, RT=p,V+a
dV R

Therefore RdT = p,dvV, So, ﬁup—o

al R R a
Hence CuCo+lp.+=—|-—= +|1+—|R

v [Po V) Po Y-1 ( PuV)

= |R + R +aR = YR +aR
Y=1) pV y-1 ppV
(b) Work done is given by

1A

o v,
A= p0+—‘; a'V-p(,(VZ,-—Vl)+cxan1

Y

V, pV
AU= Cy(Ty-T) = c‘,(p L2 -%—%) (for one mole)

- G‘“:Rl_)ﬁ(l’z Va-py V)

1 a Po{Va-V)
‘}_:T{(PD"'GVZ)Vz_[PO'FVl)Vl]z y-1

By the first law of thermodynamics Q = AU +A

V. V,-V.
=po(Va-V)+aln = -2 p____________o( 2= V)

7T
N\ Vl) oln V2
y-1 vy
2.54 (a) Heat capacity is given by
C=Cy+ 75 (see solution of 2.52)
T,
We have TeTy+aV o Val_22
a
; - v _ 1
After differentiating, we get, TG
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Hence C-qu.—v—-a-y_l.,. = =
R Ty YR RI, RT RT,
-Y-1+R[aV+1)- atevT vt TSt

(b) Given T~ Ty+aV

As T= %V for one mole of gas

R RT
prP= V(T0+0.V)- v = oR

V‘Z V‘l
RT,
Now AafpdV-f T+aR dV (for one mole)
Vl Vl
V,
= RIyIn =+ a (V- V)

Vi
AU= Cy(T2-T))

= Cy[Th+aVy-ThaV)= aCy (V- V)
By the first law of thermodynamics Q= AU+ A

ok Va
V,
-QR(VZ V])[l"‘ ]+RT0]I\—"
Vi
C,(V,-V, +RT,1 é:
- 0t -V, + n -
p\T2 1 4] Vl

v,
= aC,(Vy=Vy) +RTyIn 2

Vi
2.55 RT dV
Heat capacity is given by C= Cy, + vV dT
(a) Given C= C,+aTl
RT dV a dv
So, Cp+al=Cu+— 7 dT EdT- v

Integrating both sides, we get %T =V +inCy=In VC;,C, is a constant.
Or, V-Cym e®7E or V-e*TRa .é..., constant

1]
(b) C= Cp+ BV
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2.56

RT dV RT dV
and Cs= CV+-V_-&-f so, Cy37 vV oar- = Cy+pV
RT dv &V _ Bdr o dT
of, T BVor,VQRTOr,Va
-1
Integrating both sides, we get — B ; =InT+inCy=In TC,
Cow R ma RV —rpv 1
So, InT-C, BV T-Cy= e o, Te c, constant
RT 4V
{(¢) C=Cy+apand C= Cy+—— V T
RT dV RT dV
So, Cyp+ap= Cy+ v ar % Py ar
RT RT 4V RT
or, TV I {as p= v for one mole of gas)
or, ﬂ- a or, dVe adT or, dT-Q
dT a
So,T= %+constant ot V-aTl= constant
(2) By the first law of thermodynamics A = Q - AU
or, = CdT - C,dT = (C - C,) dT (for onc mole)
Given C= %
nl,
T,
So, A-fﬂ-c,, dT= a2 ¢, Ty-Ty)
T Ty
T,

RT
=aln-C,T,(n-1) = alnn + ;_—1(71-1)

wc=+L. T, ¢,

Given C.%, 50 CV+%ZZ_‘T7_<;
o YR“% %-%d&r
or, QVV- I:Fdr _ITdTrT
R

Integrating both sides, we get
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2.58

2.59

y-1)InV= -a—(;{‘%ll-lnTHnK

or,

-1 -oaly-1)
or, InV X RT

v-1.0Y _ =a@-1
nv RK PV

E_ﬂ_ e~ b -1V
RK

or,
afy-0pV

or, pv'e = RK = constant
The work done is

v %

RT a
A-fpdv-f(v_b-vz)dv
Vl vl

CRTI 270, (L L
vi-s Y, Y,

(a) The increment in the internal energy is

i)
o- [ (%)
Vl
But from second law

au as 3
| = Tlaw| =T -p
() (6] 2 (),

RT «a
On the other hand P v~ 7
a9 4
or, T(BT) Vo b and (aU) V2
So, AU= q ( ]

(b) From the first law
O=A+AU=Rl In

V1 -b
(a}) From the first law for an adiabatic

d0=dU+pdV=10
From the previous problem

U
AU = (a[;) ar+ (BV) dV= CVdT+V2

RTdV

s
° b

s Om CVdT+

211
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This equation can be integrated if we assume that C,, and b are constant then

R dV dr R
va_b+ ™ 0, or, lnT+CVln(V—b)- conslant

or, T(V-b)*C = constant
(b} We use
dU = CVdT+—§2—dV
RT
Now, dQ = C,dTl + V_de
RT [oV
So along constant p, Cp - Cy+ =% (ar )P
RT (aV RT a
Thus Cp-Cv= m(aT)p’ But p= v 5\
. . RT 2a\ oV R
On differentiating, 0= (— (V—b)2+ V2) (BT )_,,+ V-
] RT/V-b V-b
on Tﬁf’ RT 2a 2a(V = bYP
) BT 207 2a(-bf
(V-b° Vv RTV?
R
d C ~-Cpm oo
o e _2a(V-by
RTV>

2.60 From the first law
Q= Up-U;+A= 0, as the vessels arc themally insulated.
As this is free expansion, A= 0, so, Up= U
2

av
But U= vCVT-—V—
a a’ —aVz‘V
So, Cv(Tf—T;‘)’ (V1+V2 - VI)V —"—"—-—"‘Vl (V1 n Vg)
~—aly-1)Vyv
or, AT = ___(Y._._)..._..Z_
RV, (V;+ V)

Substitution gives AT = -3K
261 Q= U;-U;+A=U,-U;, (as A= 0 in free expansion).
So at constant temperature.

- av? 2 V,-V.
0= ﬂV__E_'\L__m,z 2 1
v, V-V,

= 033 kJ from the given data.



