Indices

Exercise 5:

Solution 1:

	Index form	Read as	Product form	Base	Index	Value
1	54	5 raised to 4	5 × 5 × 5 × 5	5	4	625
2	15 ²	15 raised to 2	15 × 15	15	2	225
3	17	1 raised to 7	1×1×1×1×1×1×1	1	7	1
4	2 ⁵	2 raised to 5	2×2×2×2×2	2	5	32
5	10 ³	10 raised to 3	10 × 10 × 10	10	3	1000

Exercise 6:

	Exponent	Product form	In words
1.	10 ⁷	10×10×10×10×10×10×10	7 th power of 10
2,	(-4) ⁶	$(-4) \times (-4) \times (-4) \times (-4) \times (-4) \times (-4)$	6 th power of (-4)
3.	93	9x9x9	Cube of 9
4.	m ⁸	$m \times m \times m \times m \times m \times m \times m \times m$	8 th power of m
5.	(1.4)2	(1.4)×(1.4)	Square of (1.4)
6.	$\left(\frac{2}{5}\right)^4$	$\left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right)$	4^{th} power of $\left(\frac{2}{5}\right)$
7.	$\left(-\frac{3}{4}\right)^5$	$\left(-\frac{3}{4}\right) \times \left(-\frac{3}{4}\right) \times \left(-\frac{3}{4}\right) \times \left(-\frac{3}{4}\right) \times \left(-\frac{3}{4}\right)$	5^{th} power of $\left(-\frac{3}{4}\right)$
8.	(-1) ³	(-1)×(-1)×(-1)	Cube of (-1)
9.	$\left(2\frac{1}{3}\right)^2 = \left(\frac{7}{3}\right)^2$	$\left(\frac{7}{3}\right) \times \left(\frac{7}{3}\right)$	Square of $\left(\frac{7}{3}\right)$
10.	a ³	axaxa	Cube of a

Solution 2:

1.
$$\frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} = \left(\frac{7}{9}\right)^5$$

$$2.8 \times 8 \times 8 = 8^3$$

3. $m \times m \times m \times m = m^4$

$$4. \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) \times \dots \times 6 \text{ times } = \left(-\frac{5}{7}\right)^6$$

5.
$$\frac{2}{3} \times \frac{2}{3} \times ... \times 9 \text{ times} = \left(\frac{2}{3}\right)^9$$

6.
$$a \times a \times a \times a = a^4$$

7.
$$b \times b \times b \times \dots \times 10$$
 times = b^{10}

1.
$$\frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} = \left(\frac{7}{9}\right)^5$$

$$2.8 \times 8 \times 8 = 8^3$$

3.
$$m \times m \times m \times m = m^4$$

$$4. \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) \times \dots \times 6 \text{ times } = \left(-\frac{5}{7}\right)^6$$

5.
$$\frac{2}{3} \times \frac{2}{3} \times \dots \times 9 \text{ times} = \left(\frac{2}{3}\right)^9$$

6.
$$a \times a \times a \times a = a^4$$

7.
$$b \times b \times b \times \dots \times 10$$
 times = b^{10}

Exercise 7:

Solution 1:

1.
$$11^3 = 11 \times 11 \times 11 = 1331$$

2.
$$(-5)^2 = (-5) \times (-5) = 25$$

3.
$$(-3)^3 = (-3) \times (-3) \times (-3) = (-27)$$

4.
$$10^7 = 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 10000000$$

5.
$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

6.
$$\left(\frac{2}{3}\right)^5 = \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) = \frac{32}{243}$$

7.
$$\left(-\frac{1}{5}\right)^4 = \left(-\frac{1}{5}\right) \times \left(-\frac{1}{5}\right) \times \left(-\frac{1}{5}\right) \times \left(-\frac{1}{5}\right) = \left(\frac{1}{625}\right)$$

8.
$$2^8 = 2 \times 2 = 256$$

$$9. (-1)^8 = (-1) \times (-1) = 1$$

$$10. \left(-1\right)^9 = \left(-1\right) \times \left(-1\right) = \left(-1\right)$$

Solution 2:

1.
$$(-4)^2 = 64$$
 is false.

Correct statement: $(-4)^2 = 16$

2.
$$2^5 = 128$$
 is false.

Correct statement : $2^5 = 32$

3.
$$(-7)^2 = -49$$
 is false.

Correct statement : $(-7)^2 = 49$

4.
$$\left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$$
 is true.

5.
$$3^4 = 81$$
 is true.

6.
$$(-5)^4 = -625$$
 is false.

Correct statement: $(-5)^4 = 625$

7.
$$(-1)^{20} = 1$$
 is true.

8.
$$(-1)^{15} = -1$$
 is true.

Exercise 8:

Solution 1:

1.
$$2^8 \times 2^3 = 2^{8+3}$$

2.
$$\left(\frac{6}{11}\right)^4 \times \left(\frac{6}{11}\right) = \left(\frac{6}{11}\right)^{4+1} = \left(\frac{6}{11}\right)^{5}$$

3.
$$\left(\frac{4}{5}\right)^{11} \times \left(\frac{4}{5}\right)^2 = \left(\frac{4}{5}\right)^{11+2} = \left(\frac{4}{5}\right)^{\frac{13}{5}}$$

4.
$$(-3)^{15} \times (-3)^{10} = (-3)^{15+10} = (-3)^{25}$$

5.
$$(5.7)^4 \times (5.7)^2 = (5.7)^{4+2} = (5.7)^6$$

6.
$$m^2 \times m^7 = m^{2+7} = m^9$$

7.
$$\left(\frac{1}{3}\right)^8 \times \left(\frac{1}{3}\right)^6 = \left(\frac{1}{3}\right)^{8+6} = \left(\frac{1}{3}\right)^{\frac{14}{3}}$$

8.
$$p^4 \times p^4 = p^{4+4} = p^9$$

Exercise 9:

1.
$$3^{10} \div 3^6 = 3^{10-6}$$

$$2.7^{19} \div 7^4 = 7^{19-4} = 7^{15}$$

3.
$$\left(\frac{1}{2}\right)^{20} \div \left(\frac{1}{2}\right)^{12} = \left(\frac{1}{2}\right)^{20-12} = \left(\frac{1}{2}\right)^{8}$$

4.
$$(2.1)^{15} + (2.1)^{13} = (2.1)^{15-13} = (2.1)^{2}$$

5. $x^{14} + x^{10} = x^{14-10} = x^{4}$

5.
$$x^{14} \div x^{10} = x^{14-10} = x^{4}$$

6.
$$x^6 \div x^4 = x^{6-4} = x^2$$

Solution 2:

1.
$$6^4 + 6^7 = \frac{6^4}{6^7} = \frac{1}{6^{7-4}} = \frac{1}{6^3}$$

2.
$$(-4)^3 \div (-4)^{15} = \frac{(-4)^3}{(-4)^{15}} = \frac{1}{(-4)^{15-3}} = \frac{1}{(-4)^{12}}$$

3.
$$\left(\frac{11}{12}\right)^2 \div \left(\frac{11}{12}\right)^3 = \frac{\left(\frac{11}{12}\right)^2}{\left(\frac{11}{12}\right)^3} = \frac{1}{\left(\frac{11}{12}\right)^{3-2}} = \frac{1}{\left(\frac{11}{12}\right)^1} = \frac{1}{\left(\frac{11}{12}\right)}$$
4. $m^{12} \div m^{19} = \frac{m^{12}}{m^{19}} = \frac{1}{m^{19-12}} = \frac{1}{m^7}$

4.
$$m^{12} + m^{19} = \frac{m^{12}}{m^{19}} = \frac{1}{m^{19-12}} = \frac{1}{m^7}$$

5.
$$a^2 \div a^9 = \frac{a^2}{a^9} = \frac{1}{a^{9-2}} = \frac{1}{a^7}$$

Exercise 10:

1.
$$(17)^{\circ} = 1$$

2.
$$(-11)^{\circ} = 1$$

$$3. \left(-\frac{9}{13}\right)^0 = 1$$

4.
$$(ab)^{\circ} = 1$$

5.
$$\left(\frac{273}{894}\right)^0 = 1$$

Exercise 11:

Solution 1:

1.
$$\left[\left(-2 \right)^3 \right]^4 = \left(-2 \right)^{3 \times 4}$$

2.
$$\left[\left(-\frac{12}{13} \right)^{2} \right]^{5} = \left(-\frac{12}{13} \right)^{2 \cdot 5} = \left(-\frac{12}{13} \right)^{10}$$

3.
$$(10^5)^6 = 10^{5 \times 6} = 10^{30}$$

4.
$$\left[\left(\frac{5}{3} \right)^{10} \right]^3 = \left(\frac{5}{3} \right)^{10 \times 3} = \left(\frac{5}{3} \right)^{\frac{30}{10}}$$

5.
$$(x^5)^7 = x^{5x7} = x^{35}$$

6.
$$(m^4)^4 = m^{4x^4} = m^{16}$$

Exercise 12:

1.
$$(5 \times 8)^2 = 5^2 \times 8^2$$

2.
$$\left[\left(\frac{3}{7} \right) \times \left(\frac{7}{9} \right) \right]^3 = \left(\frac{3}{7} \right)^3 \times \left(\frac{7}{9} \right)^3$$

3.
$$\left[\left(\frac{-2}{3} \right) \times \left(\frac{-5}{11} \right) \right]^4 = \left(\frac{-2}{3} \right)^4 \times \left(\frac{-5}{11} \right)^4$$

4.
$$(xy)^{10} = x^{10} \times y^{10}$$

5.
$$(pq)^4 = p^4 \times q^4$$

Exercise 13:

Solution 1:

- 1. $\left(\frac{4}{11}\right)^6 = \frac{4^6}{11^6}$
- $2. \left(\frac{-5}{17}\right)^3 = \frac{\left(-5\right)^3}{17^3}$
- $3. \left(\frac{1}{10}\right)^{20} = \frac{1}{10^{20}}$
- $4. \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$
- $5. \left(\frac{6}{7}\right)^3 = \frac{6^3}{7^3}$
- 6. $\left(\frac{5}{7}\right)^8 = \frac{5^8}{7^8}$
- 7. $\left(\frac{\times}{V}\right)^7 = \frac{\times^7}{V^7}$
- $8. \left(\frac{1}{5}\right)^3 = \frac{1^3}{5^3}$

Exercise 14:

- 1. $5^{-10} = \frac{1}{5^{10}}$
- $2. \left(\frac{1}{8}\right)^{-4} = \frac{1}{\left(\frac{1}{8}\right)^{\frac{4}{3}}}$
- 3. $(-4)^{-2} = \frac{1}{(-4)^2}$
- 4. $12^{-9} = \frac{1}{12^9}$

Exercise 15:

Solution 1:

1. Volume of the Earth = 11,00,00,00,000,000 cubic km (Approx.) 11,00,00,00,00,000 cubic km = $11\times1,00,00,00,00,000$

$$= 11 \times 10^{11}$$

$$= 1.1 \times 10^{1} \times 10^{11}$$

$$= 1.1 \times 10^{1+11}$$

$$= 1.1 \times 10^{12}$$

- .. Volume of the Earth = 1.1 x 10¹² cubic km
- 2. Distance between the Sun and the Earth = 15,00,00,000 km. $15,00,00,000 = 15 \times 10^7 = 1.5 \times 10^1 \times 10^7 = 1.5 \times 10^{1+7} = 1.5 \times 10^8$ Thus, the distance between the Sun and the Earth = 1.5×10^8 km.
- 3. Distance between the Earth and the Moon = 38, 40, 00, 000 m. $38, 40, 00, 000 = 384 \times 10^6 = 3.84 \times 10^2 \times 10^6 = 3.84 \times 10^{2+6} = 3.84 \times 10^8$ Thus, the distance between the Earth and the Moon = 3.84×10^8 m
- 4. Diameter of an atom of gold = 0.000000000003 cm. $0.00000000003 = \frac{3}{10000000000} = \frac{3}{10^{12}} = 3 \times 10^{-12}$ Thus, diameter of an atom of gold = 3×10^{-12} cm
- 5. Diameter of an oxygen atom = 0.0000000000000356 mm.

$$0.000000000000356 = \frac{356}{100000000000000} = 356 \times 10^{-16} = 3.65 \times 10^{2} \times 10^{-16}$$
$$3.65 \times 10^{2} \times 10^{-16} = 3.65 \times 10^{2+(-16)} = 3.65 \times 10^{-14}$$
Thus, diameter of an oxygen molecule = 3.65×10^{-14} mm.