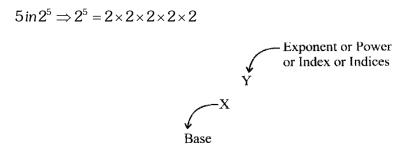
Exponents and Powers


NOTES

FUNDAMENTALS

Exponent:-

> The exponent of a number says how many times it should be used in a multiplication.

Example:- $3in 2^3 \Rightarrow 2^3 = 2 \times 2 \times 2;$

- > Exponent is also called power or index or indices
- > x^y can be read as y^{th} power of x (or) x raised to the power y.

$$\succ$$
 2×2×2×2×2=2⁵

Here $2 \times 2 \times 2 \times 2 \times 2$ is called the product form (or) expanded form and 2^5 is called the exponential form.

- ▶ Product Rule:- $a^m \times a^n = a^{m+n}$ (Where $a \neq 0$ be any rational number and m, n be rational numbers)
 Example:- $2^5 \times 2^6 = (2)^{5+6} = 2^{11}$
- > **Quotient Rule:** $\frac{a^m}{a^n} = a^{m-n}$ (Where $a \neq 0$ be any rational number)
- > **Example:** $5^6 \div 5^3 = 5^{6-3} = 5^3$
- > $(a^m)^n = a^{m \times n}$ (Where m, n are rational numbers, $a \neq 0$)

Example: $(3^5)^6 = 3^{5\times 6} = 3^{30}$

$$\succ \quad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}, \text{ (Where } a \neq 0, b \neq 0)$$

Note:-

- > The first power of a number is the number itself. i.e., $\mathbf{a}^1 = \mathbf{a}$
- > The second power is called square. E.g., square of '5' is 5^2
- > The third power is called cube. E.g., cube of y is y^3

Number in Standard form:-

A number written as $(x \times 10^{y})$ is said to be in standard form if x is a decimal number such that $1 \le x \le 10$ and y is either a positive or a negative integer.

Expressing large numbers in standard form
 E.g., Express 246784 in standard form

Solution:- $246784 = 2.46784 \times 100000$

$$=$$
 (2.4678×10^5)

Expressing very small numbers is standard form

E.g., Express 0.00003 in standard form.

$$\succ \quad \left(\frac{2}{3}\right)^2 = \frac{2}{3} \times \frac{2}{3} = \frac{2^2}{3^2}.$$

> $a^m \times b^m = (ab)^m$ ($ab \neq 0$ and m is positive integer)

e.g.,
$$2^3 \times 3^3 = (2 \times 3)^m = 6^3$$
.

$$\succ$$
 (a)⁰ = 1 (where a ≠ 0)

Rule for One

- > 1 raised to any integral power gives E.g., $(1)^{1000} = 1$
- > (-1) raised to any odd natural number gives '-1' E.g., $(1)^{3789} = -1$
- > (-1) raised to any even natural number gives '+1' or simply 1. E.g., $(-1)^{4628} = 1$