CHAPTER 10

VECTORS

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

- 1. What are the horizontal and vertical components of a vector \vec{a} of magnitude 5 making an angle of 150° with the direction of *x*-axis.
- 2. What is $a \in R$ such that $|a \overrightarrow{x}| = 1$, where $\overrightarrow{x} = \hat{i} 2\hat{j} + 2\hat{k}$?
- 3. When is $|\overrightarrow{x} + \overrightarrow{y}| = |\overrightarrow{x}| + |\overrightarrow{y}|$?
- 4. What is the area of a parallelogram whose sides are given by $2\hat{i} \hat{j}$ and $\hat{i} + 5\hat{k}$?
- 5. What is the angle between \overrightarrow{a} and \overrightarrow{b} , If $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 3\sqrt{3}$.
- 6. Write a unit vector which makes an angle of $\frac{\pi}{4}$ with *x*-axis and $\frac{\pi}{3}$ with *z*-axis and an acute angle with *y*-axis.
- 7. If A is the point (4, 5) and vector \overline{AB} has components 2 and 6 along x-axis and y-axis respectively then write point B.

- 8. What is the point of trisection of PQ nearer to P if positions of P and Q are $3\hat{i} + 3\hat{j} 4\hat{k}$ and $9\hat{i} + 8\hat{j} 10\hat{k}$ respectively?
- 9. Write the vector in the direction of $2\hat{i} + 3\hat{j} + 2\sqrt{3}\hat{k}$, whose magnitude is 10 units.
- 10. What are the direction cosines of a vector equiangular with co-ordinate axes?
- 11. What is the angle which the vector $3\hat{i} 6\hat{j} + 2\hat{k}$ makes with the x-axis?
- 12. Write a unit vector perpendicular to both the vectors $3\hat{i} 2\hat{j} + \hat{k}$ and $-2\hat{i} + \hat{j} 2\hat{k}$.
- 13. What is the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$?
- 14. If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 2\sqrt{3}$ and $|\overrightarrow{a}| \perp |\overrightarrow{b}|$, what is the value of $|\overrightarrow{a}| + |\overrightarrow{b}|$?
- 15. For what value of λ , $\overrightarrow{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ is perpendicular to $\overrightarrow{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$?
- 16. What is $|\overrightarrow{a}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} \overrightarrow{b}) = 3$ and $2|\overrightarrow{b}| = |\overrightarrow{a}|$?
- 17. What is the angle between \overrightarrow{a} and \overrightarrow{b} , if $|\overrightarrow{a} \overrightarrow{b}| = |\overrightarrow{a} + \overrightarrow{b}|$?
- 18. In a parallelogram *ABCD*, $\overrightarrow{AB} = 2\hat{i} \hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = \hat{i} + \hat{j} + 4\hat{k}$. What is the length of side *BC*?
- 19. What is the area of a parallelogram whose diagonals are given by vectors $2\hat{i} + \hat{j} 2\hat{k}$ and $-\hat{i} + 2\hat{k}$?
- 20. Find $|\overrightarrow{x}|$ if for a unit vector \hat{a} , $(\overrightarrow{x} \hat{a}) \cdot (\overrightarrow{x} + \hat{a}) = 12$.
- 21. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and $\overrightarrow{a} + \overrightarrow{b}$ is also a unit vector then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?
- 22. If \hat{i} , \hat{j} , \hat{k} are the usual three mutually perpendicular unit vectors then what is the value of \hat{i} . $(\hat{j} \times \hat{k}) + \hat{j}$. $(\hat{i} \times \hat{k}) + \vec{k}$. $(\hat{j} \times \hat{i})$?
- 23. What is the angle between \overrightarrow{x} and \overrightarrow{y} if \overrightarrow{x} . $\overrightarrow{y} = |\overrightarrow{x} \times \overrightarrow{y}|$?

- 24. Write a unit vector in xy-plane, making an angle of 30° with the +ve direction of x-axis.
- 25. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors with $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then what is the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$?
- 26. If \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $(\overrightarrow{a} + 2\overrightarrow{b})$ is perpendicular to $(5\overrightarrow{a} 4\overrightarrow{b})$, then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

27. If ABCDEF is a regular hexagon then using triangle law of addition prove that :

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3\overrightarrow{AD} = 6\overrightarrow{AO}$$
O being the centre of hexagon.

- 28. Points L, M, N divides the sides BC, CA, AB of a $\triangle ABC$ in the ratios 1:4,3:2,3:7 respectively. Prove that $\overrightarrow{AL} + \overrightarrow{BM} + \overrightarrow{CN}$ is a vector parallel to \overrightarrow{CK} where K divides AB in ratio 1:3.
- 29. The scalar product of vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ .
- 30. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three mutually perpendicular vectors of equal magnitude. Show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ makes equal angles with \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} with each angle as $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$.
- 31. If $\alpha = 3\hat{i} \hat{j}$ and $\beta = 2\hat{i} + \hat{j} + 3\hat{k}$ then express β in the form of $\beta = \beta_1 + \beta_2$, where β_1 is parallel to α and β_2 is perpendicular to α .
- 32. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

- 33. If $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$ and $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| = |\overrightarrow{0}|$, find the angle between $|\overrightarrow{a}|$ and $|\overrightarrow{b}|$.
- 34. Let $\overrightarrow{a} = \hat{i} \hat{j}$, $\overrightarrow{b} = 3\hat{j} \hat{k}$ and $\overrightarrow{c} = 7\hat{i} \hat{k}$, find a vector \overrightarrow{d} which is perpendicular to \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{c} \cdot \overrightarrow{d} = 1$.
- 35. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{c} = \hat{j} \hat{k}$ are the given vectors then find a vector \overrightarrow{b} satisfying the equation $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{a} \cdot \overrightarrow{b} = 3$.
- 36. Find a unit vector perpendicular to plane *ABC*, when position vectors of *A*, *B*, *C* are $3\hat{i} \hat{j} + 2\hat{k}$, $\hat{i} \hat{j} 3\hat{k}$ and $4\hat{i} 3\hat{j} + \hat{k}$ respectively.
- 37. For any two vector, show that $|\overrightarrow{a} + \overrightarrow{b}| \le |\overrightarrow{a}| + |\overrightarrow{b}|$.
- 38. Evaluate $(\overrightarrow{a} \times \hat{i})^2 + (\overrightarrow{a} \times \hat{j})^2 + (\overrightarrow{a} \times \hat{k})^2$.
- 39. If \hat{a} and \hat{b} are unit vector inclined at an angle θ than prove that :

(i)
$$\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|$$
. (ii) $\tan \frac{\theta}{2} = \left| \frac{\hat{a} - \hat{b}}{\hat{a} + \hat{b}} \right|$.

- 40. For any two vectors, show that $|\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{a^2b^2 (\overrightarrow{a} \cdot \overrightarrow{b})^2}$.
- 41. $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} \hat{j} + 2\hat{j}$ and $\overrightarrow{c} = x\hat{i} + (x 2)\hat{j} \hat{k}$. If \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} , then find the value of x.
- 42. Prove that angle between any two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$.
- 43. Let \hat{a} , \hat{b} and \hat{c} are unit vectors such that $\hat{a} \cdot \hat{b} = \hat{a} \cdot \hat{c} = 0$ and the angle between \hat{b} and \hat{c} is $\frac{\pi}{6}$, then prove that $\hat{a} = \pm 2(\hat{b} \times \hat{c})$.
- 44. Prove that the normal vector to the plane containing three points with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} lies in the direction of vector $\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}$.

- 45. If \overline{a} , \overline{b} , \overline{c} are position vectors of the vertices A, B, C of a triangle ABC then show that the area of $\triangle ABC$ is $\frac{1}{2} | \overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} |$.
- 46. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, then prove that $\overrightarrow{a} \overrightarrow{d}$ is parallel to $\overrightarrow{b} \overrightarrow{c}$ provided $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.
- 47. Dot product of a vector with vectors $\hat{i} + \hat{j} 3\hat{k}$, $\hat{i} + 3\hat{j} 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ is 0, 5 and 8 respectively. Find the vectors.
- 48. If $\vec{a} = 5\hat{i} \hat{j} + 7\hat{k}$, $\hat{b} = \hat{i} \hat{j} \lambda\hat{k}$, find λ such that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- 49. Let \overrightarrow{a} and \overrightarrow{b} be vectors such that $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}| = 1$, then find $|\overrightarrow{a} + \overrightarrow{b}|$.
- 50. If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{a}| \times |\overrightarrow{b}| = 2\hat{i} + \hat{j} 2\hat{k}$, find the value of $|\overrightarrow{a}| \cdot |\overrightarrow{b}|$.
- 51. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$. Prove that \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular to each other and $|\overrightarrow{b}| = 1$, $|\overrightarrow{c}| = |\overrightarrow{a}|$.
- 52. If $\overrightarrow{a} = 2\hat{i} 3\hat{j}$, $\overrightarrow{b} = \hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{c} = 3\hat{i} \hat{k}$ find $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$.
- 53. Find volume of parallelepiped whose coterminous edges are given by vectors $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} \hat{k}$, and $\overrightarrow{c} = 3\hat{i} \hat{j} + 2\hat{k}$.
- 54. Find the value of λ such that $\overrightarrow{a} = \hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = 2\hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{c} = \lambda \hat{i} \hat{j} + \lambda \hat{k}$ are coplanar.
- 55. Show that the four points (-1, 4, -3), (3, 2, -5) (-3, 8, -5) and (-3, 2, 1) are coplanar.
- 56. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , prove that

$$\left[\overrightarrow{a} + \overrightarrow{b} \qquad \overrightarrow{b} + \overrightarrow{c} \qquad \overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$$

57. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , prove that $\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ are coplanar.

ANSWERS

1.
$$-\frac{5\sqrt{3}}{2}$$
, $\frac{5}{2}$.

2.
$$a = \pm \frac{1}{3}$$

3. \overrightarrow{x} and \overrightarrow{y} are like parallel vectors.

4.
$$\sqrt{126}$$
 sq units.

5.
$$\frac{\pi}{3}$$

6.
$$\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$$

8.
$$\left(5, \frac{14}{3}, -6\right)$$

9.
$$4\hat{i} + 6\hat{j} + 4\sqrt{3}\hat{k}$$
.

10.
$$\pm \frac{1}{\sqrt{3}}$$
, $\pm \frac{1}{\sqrt{3}}$, $\pm \frac{1}{\sqrt{3}}$.

11.
$$\cos^{-1}\left(\frac{3}{7}\right)$$
.

12.
$$\frac{3\hat{i}+4\hat{j}-\hat{k}}{\sqrt{26}}$$
.

17.
$$\frac{\pi}{2}$$
.

18.
$$\sqrt{5}$$

19.
$$\frac{3}{2}$$
 sq. units.

20. √13

21. $\frac{2\pi}{3}$

22. –1

23. $\frac{\pi}{4}$

24. $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$

25. $-\frac{3}{2}$

- 26. $\frac{\pi}{3}$
- 29. λ = 1
- 31. $\overrightarrow{\beta} = \left(\frac{3}{2}\hat{i} \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} 3\hat{k}\right).$
- 33. 60°

34. $\frac{1}{4}\hat{i} + \frac{1}{4}\hat{j} + \frac{3}{4}\hat{k}$.

- 35. $\frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$.
- $36. \quad \frac{-1}{\sqrt{165}} \left(10\hat{i} + 7\hat{j} 4\hat{k} \right).$

38. $2\left|\overrightarrow{a}\right|^2$

41. x = -2

 $47. \quad \hat{i} + 2\hat{j} + \hat{k}$

48. $\pm \sqrt{73}$

49. √3

50. $\frac{91}{10}$

52. 4

53. 37

54. $\lambda = 1$