Exercise 2.1

Q. 1. Find the degree of each of the polynomials given below

(i) $x^{5} - x^{4} + 3$ (ii) $x^{2} + x - 5$ (iii) 5 (iv) $3x^{6} + 6y^{3} - 7$ (v) $4 - y^{2}$ (vi) 5t - $\sqrt{3}$

Answer : Degree of p(x) is the highest power of x in p(x).

- (i) The highest power of x in $x^5 x^4 + 3$ is 5.
- \therefore The degree of x⁵ x⁴ + 3 is 5.
- (ii) The highest power of x in $x^2 + x 5$ is 2.
- \therefore The degree of $x^2 + x 5$ is 2.
- (iii) The highest power of x in 5 is 0(:: there is no term of x).
- \therefore The degree of 5 is 0.
- (iv) The highest power of x in $3x^6 + 6y^3 7$ is 6.
- \therefore The degree of $3x^6 + 6y^3 7$ is 6.
- (v) The highest power of y in 4 y^2 is 2.
- \therefore The degree of 4 y² is 2.
- (vi) The highest power of t in $5t \sqrt{3}$ is 1.
- \therefore The degree of 5t $\sqrt{3}$ is 1.

Q. 2. Which of the following expressions are polynomials in one variable and which are not? Give reasons for your answer.

(i)
$$3x^{2} - 2x + 5$$

(ii) $x^{2} + \sqrt{2}$
(iii) $p^{2} - 3p + q$
(iv) $y + \frac{2}{y}$
(v) $5\sqrt{x} + x\sqrt{5}$
(vi) $x^{100} + y^{100}$

Answer : (i) $3x^2 - 2x + 5$ has only one variable that is x.

 \therefore yes, it is a polynomial in one variable.

(ii) $x^2 + \sqrt{2}$ has only one variable that is x.

 \therefore yes, it is a polynomial in one variable.

(iii) $p^2 - 3p + q$ has two variables that are p and q.

 \therefore no, it is not a polynomial in one variable.

(iv) $y + \frac{2}{y}$ has a negative exponent of y.

 \therefore no, it is not a polynomial.

(v) The exponent of x in $5\sqrt{x} + x\sqrt{5}$ is 1/2 which is not a non-negative integer

 \therefore no, it is not a polynomial.

(vi) $x^{100} + y^{100}$ has two variables that are x and y.

 \therefore no, it is not a polynomial in one variable.

Q. 3. Write the coefficient of x^3 in each of the following

(i)
$$x^{3} + x + 1$$
 (ii) $2 - x^{3} + x^{2}$
(iii) $\sqrt{2x^{3} + 5}$ (iv) $2x^{3} + 5$
(v) $\frac{\pi}{2}x^{3} + x$ (vi) $-\frac{2}{3}x^{3}$
(vii) $2x^{2} + 5$ (vi) 4

Answer : A coefficient is a multiplicative factor in some term of a polynomial. It is the constant written before the variable.

Therefore,

- (i) The constant written before x^3 in $x^3 + x + 1$ is 1.
- : The coefficient of x^3 in $x^3 + x + 1$ is 1.
- (ii) The constant written before x^3 in $2 x^3 + x^2$ is -1.
- : The coefficient of x^3 in $2 x^3 + x^2$ is -1.
- (iii) The constant written before x^3 in $\sqrt{2x^3} + 5$ is $\sqrt{2}$.
- : The coefficient of x^3 in $\sqrt{2x^3} + 5$ is $\sqrt{2}$.
- (iv) The constant written before x^3 in $2x^3 + 5$ is 2.
- : The coefficient of x^3 in $2x^3 + 5$ is 2.
- (v) The constant written before x^3 in $\frac{\pi}{2}x^3 + x$ is $\frac{\pi}{2}$.
- :. The coefficient of x^3 in $\frac{\pi}{2}x^3 + x$ is $\frac{\pi}{2}$.

(vi) The constant written before x^3 in $\frac{-2}{3}x^3 + x$ is $\frac{-2}{3}$.

:. The coefficient of x^3 in $\frac{-2}{3}x^3 + x$ is $\frac{-2}{3}$.

- (vii) The term x^3 does not exist in $2x^2 + 5$.
- : The coefficient of x^3 in $2x^2 + 5$ is 0.

(viii) The term x^3 does not exist in 4.

 \therefore The coefficient of x³ in 4 is 0.

Q. 4. Classify the following as linear, quadratic and cubic polynomials

(i) $5x^2 + x - 7$ (ii) $x - x^3$ (iii) $x^2 + x + 4$ (iv) x - 1(v) 3p (vi) πr^2

Answer : (i) A quadratic polynomial is a polynomial of degree 2

- \therefore the degree of 5x² + x 7 is 2
- \therefore 5x² + x 7 is a quadratic polynomial.
- (ii) A cubic polynomial is a polynomial of degree 3
- \therefore the degree of 5x² + x 7 is 3
- \therefore 5x² + x 7 is a cubic polynomial.
- (iii) A quadratic polynomial is a polynomial of degree 2
- : the degree of $x^2 + x + 4$ is 2
- $\therefore x^2 + x + 4$ is a quadratic polynomial.
- (iv) A linear polynomial is a polynomial of degree 1
- \therefore the degree of x 1 is 1
- $\therefore x 1$ is a linear polynomial.
- (v) A linear polynomial is a polynomial of degree 1
- \therefore the degree of 3p is 1
- \therefore 3p is a linear polynomial.
- (vi) A quadratic polynomial is a polynomial of degree 2
- \therefore the degree of πr^2 is 2
- $\therefore \pi r^2$ is a quadratic polynomial.

Q. 5. Write whether the following statements are True or False. Justify your answer

(i) A binomial can have at the most two terms (ii) Every polynomial is a binomial (iii) A binomial may have degree 3 (iv) Degree of zero polynomial is zero (v) The degree of $x^2 + 2xy + y^2$ is 2 (vi) πr^2 is monomial.

Answer : (i) A polynomial with two terms is called a binomial.

 \therefore The statement is true.

(ii) A polynomial can have more than two terms.

 \therefore The statement is false.

(iii) A binomial should have two terms, the degree of those terms can be any integer.

 \therefore The statement is true.

(iv) The constant polynomial whose coefficients are all equal to 0, is called a zero polynomial. Its degree can be any integer.

 \therefore The statement is false.

(v) The highest power in $x^2 + 2xy + y^2$ is 2, therefore its degree is 2.

 \therefore The statement is true.

(vi) A monomial is a polynomial which has only one term.

 $::\pi r^2$ has only one term

 \therefore The statement is true.

Q. 6. Give one example each of a monomial and trinomial of degree 10.

Answer : A monomial is a polynomial which has only one term, and the degree is the highest power of the variable. Therefore, an example of a monomial of degree 10 is $3x^{10}$.

A trinomial is a polynomial which has three terms, and the degree is the highest power of the variable. Therefore, example of a trinomial of degree 10 is $3x^{10} + 2x^2 + 5$.

Exercise 2.2

Q. 1. Find the value of the polynomial $4x^2 - 5x + 3$, when

(i)
$$x = 0$$
 (ii) $x = -1$
 $x = \frac{1}{2}$
Answer: (i) $p(x) = 4x^2 - 5x + 3$
 $\Rightarrow p(0) = 4(0)^2 - 5(0) + 3$
 $\Rightarrow p(0) = 0 - 0 + 3$
 $\Rightarrow p(0) = 0 - 0 + 3$
 $\Rightarrow p(0) = 3$
(ii) $p(x) = 4x^2 - 5x + 3$
 $\Rightarrow p(-1) = 4(-1)^2 - 5(-1) + 3$
 $\Rightarrow p(-1) = 4 + 5 + 3$
 $\Rightarrow p(-1) = 4 + 5 + 3$
 $\Rightarrow p(-1) = 12$
(iii) $p(x) = 4x^2 - 5x + 3$
 $\Rightarrow p(2) = 4(2)^2 - 5(2) + 3$
 $\Rightarrow p(2) = 4 + 4 - 10 + 3$
 $\Rightarrow p(2) = 16 - 10 + 3$
 $\Rightarrow p(2) = 9$
(iv) $p(x) = 4x^2 - 5x + 3$
 $\Rightarrow p(\frac{1}{2}) = 4 \times (\frac{1}{2})^2 - 5(\frac{1}{2}) + 3$

$$\Rightarrow p\left(\frac{1}{2}\right) = 4 \times \frac{1}{4} - \frac{5}{2} + 3$$
$$\Rightarrow p\left(\frac{1}{2}\right) = 1 - \frac{5}{2} + 3$$
$$\Rightarrow p\left(\frac{1}{2}\right) = \frac{2 - 5 + 6}{2}$$
$$\Rightarrow p\left(\frac{1}{2}\right) = \frac{3}{2}$$

Q. 2. A. Find p(0), p(1) and p(2) for each of the following polynomials.

$p(x) = x^{2} - x + 1$ Answer : $p(x) = x^{2} - x + 1$ $\Rightarrow p(0) = (0)^{2} - 0 + 1$ $\Rightarrow p(0) = 1$ And, $\Rightarrow p(1) = (1)^{2} - 1 + 1$ $\Rightarrow p(1) = 1 - 1 + 1$ $\Rightarrow p(1) = 1$ And, $\Rightarrow p(2) = (2)^{2} - 2 + 1$

$$\Rightarrow$$
 p(2) = 4– 2 + 1

 \Rightarrow p(2) = 3

Q. 2. B. Find p(0), p(1) and p(2) for each of the following polynomials.

 $p(y) = 2 + y + 2y^2 - y^3$

Answer : $p(y) = 2 + y + 2y^2 - y^3$

 $\Rightarrow p(0) = 2 + 0 + 2(0)^{2} - (0)^{3}$ $\Rightarrow p(0) = 2 + 0 + 0 - 0$ $\Rightarrow p(0) = 2$ And, $\Rightarrow p(1) = 2 + 1 + 2(1)^{2} - (1)^{3}$ $\Rightarrow p(1) = 2 + 1 + 2 - 1$ $\Rightarrow p(1) = 4$ And, $\Rightarrow p(2) = 2 + 2 + 2(2)^{2} - (2)^{3}$ $\Rightarrow p(2) = 2 + 2 + 8 - 8$ $\Rightarrow p(2) = 4$

Q. 2. C. Find p(0), p(1) and p(2) for each of the following polynomials.

 $\mathbf{p}(\mathbf{z}) = \mathbf{z}^3$

- **Answer :** $p(z) = z^3$
- $\Rightarrow p(0) = 0^3$
- $\Rightarrow p(0) = 0$

And,

 \Rightarrow p(1) = 1³

 \Rightarrow p(1) = 1

And,

 \Rightarrow p(2) = 2³

 \Rightarrow p(2) = 8

Q. 2. D. Find p(0), p(1) and p(2) for each of the following polynomials.

```
p(t) = (t - 1)(t + 1)
Answer : p(t) = (t - 1)(t + 1)
p(t) = t^2 + t - t - 1
\Rightarrow p(t) = t<sup>2</sup> - 1
\Rightarrow p(0) = (0)<sup>2</sup> - 1
\Rightarrow p(0) = 0-1
\Rightarrow p(0) = -1
And,
\Rightarrow p(1) = (1)<sup>2</sup> - 1
\Rightarrow p(1) = 1-1
\Rightarrow p(1) = 0
And,
\Rightarrow p(2) = (2)<sup>2</sup> - 1
\Rightarrow p(2) = 4– 1
\Rightarrow p(2) = 3
Q. 2. E. Find p(0), p(1) and p(2) for each of the following polynomials.
p(x) = x^2 - 3x + 2
Answer : p(t) = x^2 - 3x + 2
\Rightarrow p(0) = (0)^2 - 3(0) + 2
\Rightarrow p(0) = 0-0 + 2
```

 \Rightarrow p(0) = 2

And,

 $\Rightarrow p(1) = (1)^2 - 3(1) + 2$ $\Rightarrow p(1) = 1 - 3 + 2$ $\Rightarrow p(0) = 0$ And, $\Rightarrow p(2) = (2)^2 - 3(2) + 2$ $\Rightarrow p(2) = 4 - 6 + 2$ $\Rightarrow p(2) = 0$

Q. 3. A. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

$$p(x) = 2x + 1; x = -\frac{1}{2}$$

Answer : p(x) = 2x + 1

$$\Rightarrow$$
 p(-1/2) = 2(-1/2) + 1

$$\Rightarrow$$
 p(-1/2) = -1 + 1

$$\Rightarrow$$
 p(-1/2) = 0

: Yes x = -1/2 is the zero of polynomial 2x + 1.

Q. 3. B. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

$$p(x) = 5x - \pi; x = \frac{-3}{2}$$

Answer : $p(x) = 5x - \pi$

$$\Rightarrow p\left(-\frac{3}{2}\right) = 5\left(-\frac{3}{2}\right) - \pi$$
$$\Rightarrow p\left(-\frac{3}{2}\right) = -\frac{15}{2} - \pi$$

$$\Rightarrow p\left(-\frac{3}{2}\right) \neq 0$$

 \therefore No x = $-\frac{3}{2}$ is not the zero of polynomial 5x – π .

Q. 3. C. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

 $p(x) = x^{2} - 1; x = \pm 1$ Answer : p(x) = x² - 1 ⇒ p(-1) = (-1)² - 1 ⇒ p(-1) = 1 - 1 ⇒ p(-1) = 0 ∴ Yes x = -1 is the zero of polynomial x² - 1. And, ⇒ p(1) = (1)² - 1 ⇒ p(1) = 1 - 1

$$\Rightarrow$$
 p(1) = 0

: Yes x = 1 is the zero of polynomial $x^2 - 1$.

Q. 3. D. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

$$p(x) = (x - 1)(x + 2); x = -1, -2$$
Answer : $p(x) = (x - 1)(x + 2)$

$$\Rightarrow p(-1) = (-1 - 1)(-1 + 2);$$

$$\Rightarrow p(-1) = -2 \times 1$$

$$\Rightarrow p(-1) = -2$$

: No x = -1 is not the zero of polynomial (x - 1)(x + 2).

And,

⇒ p(-2) = (-2 - 1)(-2 + 2);⇒ $p(-2) = -3 \times 0$ ⇒ p(-2) = 0

: Yes x = -2 is not the zero of polynomial (x - 1)(x + 2).

Q. 3. E. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

```
p(y) = y<sup>2</sup>; y = 0

Answer : p(y) = y^2

⇒ p(0) = 0^2
```

- \Rightarrow p(0) = 0
- : Yes y = 0 is the zero of polynomial y^2 .

Q. 3. F. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

$$p(x) = ax + b; x = -\frac{b}{a}$$

Answer : p(x) = ax + b

 $\Rightarrow p\left(-\frac{b}{a}\right) = a\left(-\frac{b}{a}\right) + b$ $\Rightarrow p\left(-\frac{b}{a}\right) = -b + b$ $\Rightarrow p\left(-\frac{b}{a}\right) = 0$ $\therefore \text{ Yes } x = -\frac{b}{a} \text{ is the zero of polynomial } ax + b.$ Q. 3. G. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

$$f(x) = 3x^2 - 1; x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$$

Answer : $f(x) = 3x^2 - 1$

$$\Rightarrow f\left(-\frac{1}{\sqrt{3}}\right) = 3\left(-\frac{1}{\sqrt{3}}\right)^2 - 1$$

$$\Rightarrow f\left(-\frac{1}{\sqrt{3}}\right) = 3\left(\frac{1}{3}\right) - 1$$

$$\Rightarrow f\left(-\frac{1}{\sqrt{3}}\right) = 1 - 1$$

$$\Rightarrow f\left(-\frac{1}{\sqrt{3}}\right) = 0$$

$$\therefore \text{ Yes } x = -\frac{1}{\sqrt{3}} \text{ is the zero of polynomial } 3x^2 - 1.$$

$$\Rightarrow f\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1$$
$$\Rightarrow f\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{4}{3}\right) - 1$$
$$\Rightarrow f\left(\frac{2}{\sqrt{3}}\right) = 4 - 1$$
$$\Rightarrow f\left(\frac{2}{\sqrt{3}}\right) = 3$$

 \therefore No x = $\frac{2}{\sqrt{3}}$ is not the zero of polynomial 3x² - 1.

Q. 3. H. Verify whether the values of x given in each case are the zeroes of the polynomial or not?

$$f(x) = 2x - 1, x = \frac{1}{2}, \frac{-1}{2}$$

Answer : f(x) = 2x - 1

- $\Rightarrow f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) 1$ $\Rightarrow f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) - 1$ $\Rightarrow f\left(\frac{1}{2}\right) = 1 - 1$ $\Rightarrow f\left(\frac{1}{2}\right) = 0$ \therefore Yes x = $\frac{1}{2}$ is the zero of polynomial 2x - 1. $\Rightarrow f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right) - 1$ $\Rightarrow f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right) - 1$ $\Rightarrow f\left(-\frac{1}{2}\right) = -1 - 1$ $\Rightarrow f\left(-\frac{1}{2}\right) = -2$ \therefore No x = $-\frac{1}{2}$ is not the zero of polynomial 2x - 1.

Q. 4. A. Find the zero of the polynomial in each of the following cases.

f(x) = x + 2

Answer : f(x) = x + 2

- f(x) = 0 $\Rightarrow x + 2 = 0$ $\Rightarrow x = 0 - 2$ $\Rightarrow x = -2$
- \therefore x = -2 is the zero of the polynomial x + 2.

Q. 4. B. Find the zero of the polynomial in each of the following cases.

f(x) = x - 2Answer: f(x) = x - 2 f(x) = 0 $\Rightarrow x - 2 = 0$ $\Rightarrow x = 0 + 2$ $\Rightarrow x = 2$ $\therefore x = 2 \text{ is the zero of the polynomial } x - 2.$

Q. 4. C. Find the zero of the polynomial in each of the following cases.

f(x) = 2x + 3
Answer : $f(x) = 2x + 3$
f(x) = 0
$\Rightarrow 2x + 3 = 0$
$\Rightarrow 2x = 0 - 3$
$\Rightarrow 2x = -3$
$\Rightarrow x = -\frac{3}{2}$
$\therefore x = -\frac{3}{2}$ is the zero of the polynomial 2x + 3.

Q. 4. D. Find the zero of the polynomial in each of the following cases.

f(x) = 2x - 3Answer: f(x) = 2x - 3 f(x) = 0 $\Rightarrow 2x - 3 = 0$ $\Rightarrow 2x = 0 + 3$ $\Rightarrow 2x = 3$ $\Rightarrow x = \frac{3}{2}$ $\therefore x = \frac{3}{2}$ is the zero of the polynomial 2x - 3.

Q. 4. E. Find the zero of the polynomial in each of the following cases.

 $f(x) = x^2$

Answer : $f(x) = x^2$

f(x) = 0

 $\Rightarrow x^2 = 0$

 $\Rightarrow x = 0$

 \therefore x = 0 is the zero of the polynomial x².

Q. 4. F. Find the zero of the polynomial in each of the following cases.

 $f(x) = px, p \neq 0$ Answer : f(x) = px, p \neq 0 f(x) = 0 $\Rightarrow px = 0$ $\Rightarrow x = 0$ \therefore x = 0 is the zero of the polynomial px.

Q. 4. G. Find the zero of the polynomial in each of the following cases.

$f(x) = px + q, p \neq 0, p q are real numbers.$

Answer : f(x) = px + q, $p \neq 0$, p q are real numbers.

$$f(x) = 0$$

$$\Rightarrow px + q = 0$$

$$\Rightarrow px = -q$$

$$\Rightarrow x = \frac{-q}{p}$$

$$\therefore x = \frac{-q}{p}$$
 is the zero of the polynomial px + q.

Q. 5. If 2 is a zero of the polynomial $p(x) = 2x^2 - 3x + 7a$, find the value of a.

Answer : \therefore 2 is the zeroes of the polynomial $p(x) = 2x^2 - 3x + 7a$

7a

$$\therefore p(2) = 0$$
Now,

$$p(x) = 2x^{2} - 3x + 7a$$

$$\Rightarrow p(2) = 2(2)^{2} - 3(2) + 7a$$

$$\Rightarrow 2 \times 4 - 3 \times 2 + 7a = 0$$

$$\Rightarrow 8 - 6 + 7a = 0$$

$$\Rightarrow 2 + 7a = 0$$

$$\Rightarrow 7a = -2$$

$$\Rightarrow a = -\frac{2}{7}$$

Q. 6. If 0 and 1 are the zeroes of the polynomial $f(x) = 2x^3 - 3x^2 + ax + b$, find the values of a and b.

Answer : \therefore 0 and 1 are the zeroes of the polynomial $f(x) = 2x^3-3x^2 + ax + b$

$$f(0) = 0 \text{ and } f(1) = 1$$
Now,

$$f(x) = 2x^{3} - 3x^{2} + ax + b$$

$$f(0) = 2(0)^{3} - 3(0)^{2} + a(0) + 0$$

$$f(0) = 2(0)^{3} - 3(0)^{2} + a(0) + 0$$

$$f(0) = 2(0)^{3} - 3(0)^{2} + a(0) + 0$$

$$f(0) = 0 + 0 + b = 0$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{2} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^{3} - 3(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^{3} + a(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^{3} + a(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^{3} + a(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^{3} + a(1)^{3} + a(1) + 1$$

$$f(1) = 2(1)^$$

Exercise 2.3

Q. 1. A. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by the following Linear polynomials:

x + 1

Answer : Let $p(x) = x^3 + 3x^2 + 3x + 1$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

 \Rightarrow Remainder of p(x) when divided by x+1 is p(-1)

$$p(-1) = (-1)^3 + 3(-1)^2 + 3(-1) + 1$$

 $\Rightarrow p(-1) = -1 + 3 - 3 + 1 = 0$

: Remainder of $x^3 + 3x^2 + 3x + 1$ when divided by x+1 is 0

Q. 1. B. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by the following Linear polynomials:

$$x-\frac{1}{2}$$

Answer: Let $p(x) = x^3 + 3x^2 + 3x + 1$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

⇒ Remainder of p(x) when divided by $x - \frac{1}{2}$ is p(1/2)

$$p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + 1$$

$$\Rightarrow p\left(\frac{1}{2}\right) = \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1$$

$$\therefore \text{ Remainder of } x^3 + 3x^2 + 3x + 1 \text{ when divided by } x - \frac{1}{2} \text{ is } \frac{27}{8}$$

Q. 1. C. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by the following Linear polynomials:

Х

Answer: Let $p(x) = x^3 + 3x^2 + 3x + 1$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

 \Rightarrow Remainder of p(x) when divided by x is p(0)

$$\mathsf{P}(0) = (0)^3 + 3(0)^2 + 3(0) + 1$$

= 1

: Remainder of $x^3 + 3x^2 + 3x + 1$ when divided by x is 1

Q. 1. D. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by the following Linear polynomials:

x + π

Answer : Let $p(x) = x^3 + 3x^2 + 3x + 1$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

 \Rightarrow Remainder of p(x) when divided by x + π is p(- π)

 $p(-\pi) = (-\pi)^3 + 3(-\pi)^2 + 3(-\pi) + 1$

 $\Rightarrow p(-\pi) = -\pi^3 + 3\pi^2 - 3\pi + 1$

: Remainder of $x^3 + 3x^2 + 3x + 1$ when divided by $x + \pi$ is $-\pi^3 + 3\pi^2 - 3\pi + 1$

Q. 1. E. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by the following Linear polynomials:

5 + 2x

Answer : Let $p(x) = x^3 + 3x^2 + 3x + 1$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

⇒ Remainder of p(x) when divided by 5 + 2x is $p(-\frac{5}{2})$

$$p\left(\frac{-5}{2}\right) = \left(-\frac{5}{2}\right)^3 + 3\left(-\frac{5}{2}\right)^2 + 3\left(-\frac{5}{2}\right) + 1$$
$$\Rightarrow p\left(-\frac{5}{2}\right) = -\frac{125}{8} + \frac{75}{4} - \frac{15}{2} + 1$$

Q. 2. Find the remainder when $x^3 - px^2 + 6x - p$ is divided by x - p.

Answer : Let $q(x) = x^3 - px^2 + 6x - p$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

 \Rightarrow Remainder of q(x) when divided by x – p is q(p)

 $q(p) = (p)^3 - p(p)^2 + 6(p) - p$

 \Rightarrow q(p) = p³ - p³ + 6p - p

: Remainder of $x^3 - px^2 + 6x - p$ when divided by x - p is 5p

Q. 3. Find the remainder when $2x^2 - 3x + 5$ is divided by 2x - 3. Does it exactly divide the polynomial? State reason.

Answer : Let $p(x) = 2x^2 - 3x + 5$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

⇒ Remainder of p(x) when divided by 2x - 3 is $p(\frac{3}{2})$

$$p\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^2 - 3\left(\frac{5}{2}\right) + 5$$

$$\Rightarrow p\left(\frac{3}{2}\right) = \frac{9}{4} - \frac{15}{2} + 5 = -\frac{1}{4}$$

⇒ Remainder of $2x^2 - 3x + 5$ when divided by 2x - 3 is $-\frac{1}{4}$

As on dividing the given polynomial by 2x - 3, we get a non-zero remainder, therefore, 2x - 3 does not complete divide the polynomial.

 \therefore It is not a factor.

Q. 4. Find the remainder when $9x^3 - 3x^2 + x - 5$ is divided by $X - \frac{2}{3}$

Answer : Let $p(x) = 9x^3 - 3x^2 + x - 5$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

⇒ Remainder of p(x) when divided by $X - \frac{2}{3}$ is $p(\frac{2}{3})$

$$p\left(\frac{2}{3}\right) = 9\left(\frac{2}{3}\right)^3 - 3\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right) - 5$$

$$\Rightarrow p\left(\frac{3}{2}\right) = \frac{8}{3} - \frac{4}{3} + \frac{2}{3} - 5 = -3$$

Q. 5. If the polynomials $2x^3 + ax^2 + 3x - 5$ and $x^3 + x^2 - 4x + a$ leave the same remainder when divided by x - 2, find the value of a.

Answer: Let $p(x) = 2x^3 + ax^2 + 3x - 5$ and $q(x) = x^3 + x^2 - 4x + a$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

⇒ Remainder of p(x) when divided by x - 2 is p(2). Similarly, Remainder of q(x) when divided by x - 2 is q(2)

 $\Rightarrow p(2) = 2(2)^3 + a(2)^2 + 3(2) - 5$

 $\Rightarrow p(2) = 16 + 4a + 6 - 5$

⇒ p(2) = 17 + 4a

Similarly, $q(2) = (2)^3 + (2)^2 + -4(2) + a$

 \Rightarrow q(2) = 8 + 4 - 8 + a

$$\Rightarrow$$
 q(2) = 4 + a

Since they both leave the same remainder, so p(2) = q(2)

 $\Rightarrow 17 + 4a = 4 + a$ $\Rightarrow 13 = 3a$ $\Rightarrow a = -\frac{13}{3}$

 \therefore The value of a is -13/3

Q. 6. If the polynomials $x^3 + ax^2 + 5$ and $x^3 - 2x^2 + a$ are divided by (x + 2) leave the same remainder, find the value of a.

Answer : Let $p(x) = x^3 + ax^2 + 5$ and $q(x) = x^3 - 2x^2 + a$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

⇒ Remainder of p(x) when divided by x + 2 is p(-2). Similarly, Remainder of q(x) when divided by x + 2 is q(-2)

 $\Rightarrow p(-2) = (-2)^{3} + a(-2)^{2} + 5$ $\Rightarrow p(-2) = -8 + 4a + 5$ $\Rightarrow p(-2) = -3 + 4a$ Similarly, $q(-2) = (-2)^{3} - 2(-2)^{2} + a$ $\Rightarrow q(-2) = -8 - 8 + a$ $\Rightarrow q(-2) = -16 + a$ Since they both leave the same remainder, so p(-2) = q(-2) $\Rightarrow -3 + 4a = -16 + a$ $\Rightarrow -13 = 3a$

$$\Rightarrow a = -\frac{13}{3}$$

 \therefore The value of a is -13/3

Q. 7. Find the remainder when f (x) = $x^4 - 3x^2 + 4$ is divided by g(x)= x - 2 and verify the result by actual division.

Answer : As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

Therefore, remainder when f(x) is divided by g(x) is f(2)

$$f(2) = 2^4 - 3(2)^2 + 4$$

 \Rightarrow f(2) = 16 - 12 + 4 = 8

: The remainder when $x^4 - 3x^2 + 4$ is divided by x - 2 is 8

Q. 8. Find the remainder when $p(x) = x^3 - 6x^2 + 14x - 3$ is divided by g(x) = 1 - 2x and verify the result by long division.

Answer : Given: $p(x) = x^3 - 6x^2 + 14x - 3$ and g(x) = 1 - 2x

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

Therefore, remainder when p(x) is divided by g(x) is $p(\frac{1}{2})$

$$p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 - 6\left(\frac{1}{2}\right)^2 + 14\left(\frac{1}{2}\right) - 3$$
$$\Rightarrow p\left(\frac{1}{2}\right) = \frac{1}{8} - \frac{6}{4} + 7 - 3$$
$$\Rightarrow p\left(\frac{1}{2}\right) = \frac{21}{8}$$

: the remainder when $x^3 - 6x^2 + 14x - 3$ is divided by 1 - 2x is $\frac{21}{8}$

Q. 9. When a polynomial $2x^3 + 3x^2 + ax + b$ is divided by (x - 2) leaves remainder 2, and (x + 2) leaves remainder -2. Find a and b.

Answer : Let $p(x) = 2x^3 + 3x^2 + ax + b$

As we know by Remainder Theorem,

If a polynomial p(x) is divided by a linear polynomial (x - a) then, the remainder is p(a)

 \Rightarrow Remainder of p(x) when divided by x – 2 is p(2)

$$p(2) = 2(2)^3 + 3(2)^2 + a(2) + b$$

 \Rightarrow p(2) = 16 + 12 + 2a + b

Also, it is given that p(2) = 2, on substituting value above, wev get,

⇒ 2a + b = –26 ----- (A)

Similarly,

Remainder of p(x) when divided by x + 2 is p(-2)

$$p(-2) = 2(-2)^3 + 3(-2)^2 + a(-2) + b$$

 \Rightarrow p(-2) = -16 + 12 - 2a + b

Also, it is given that p(-2) = -2, on substituting value above, we get,

 \Rightarrow - 2a + b = 2 ----- (B)

On solving the above two equ. (A) and (b), we get,

a = -7 and b = -12

 \therefore Value of a and b is -7 and -12 respectively.

Exercise 2.4

Q. 1. A. Determine which of the following polynomials has (x + 1) as a factor.

 $x^3 - x^2 - x + 1$

Answer : Let $f(x) = x^3 - x^2 - x + 1$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then (x - a) is a factor of p(x), if p(a) = 0

For checking (x+1) to be a factor, we will find f(-1)

$$\Rightarrow f(-1) = (-1)^3 - (-1)^2 - (-1) + 1$$

 \Rightarrow f(-1) = -1 -1 +1 +1

$$\Rightarrow$$
 f(-1) = 0

As, f(-1) is equal to zero, therefore (x+1) is a factor $x^3 - x^2 - x + 1$

Q. 1. B. Determine which of the following polynomials has (x + 1) as a factor.

$x^4 - x^3 + x^2 - x + 1$

Answer : Let $f(x) = x^4 - x^3 + x^2 - x + 1$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then (x - a) is a factor of p(x), if p(a) = 0

For checking (x+1) to be a factor, we will find f(-1)

 $\Rightarrow f(-1) = (-1)^4 - (-1)^3 + (-1)^2 - (-1) + 1$

 $\Rightarrow f(-1) = 1 + 1 + 1 + 1 + 1$

$$\Rightarrow$$
 f(-1) = 5

As, f(-1) is not equal to zero, therefore (x+1) is not a factor $x^4 - x^3 + x^2 - x + 1$

Q. 1. C. Determine which of the following polynomials has (x + 1) as a factor.

$x^4 + 2x^3 + 2x^2 + x + 1$

Answer : Let $f(x) = x^4 + 2x^3 + 2x^2 + x + 1$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then (x - a) is a factor of p(x), if p(a) = 0

For checking (x+1) to be a factor, we will find f(-1)

$$\Rightarrow f(-1) = (-1)^4 + 2(-1)^3 + 2(-1)^2 + (-1) + 1$$

 $\Rightarrow f(-1) = 1 - 2 + 2 - 1 + 1$

$$\Rightarrow$$
 f(-1) = 1

As, f(-1) is not equal to zero, therefore (x+1) is not a factor $x^4 + 2x^3 + 2x^2 + x + 1$

Q. 1. D. Determine which of the following polynomials has (x + 1) as a factor. x³ - x² -(3 - $\sqrt{3}$) x + $\sqrt{3}$

Answer : Let $f(x) = x^3 - x^2 - (3 - \sqrt{3}) x + \sqrt{3}$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then (x - a) is a factor of p(x), if p(a) = 0

For checking (x+1) to be a factor, we will find f(-1)

$$\Rightarrow f(-1) = (-1)^3 - (-1)^2 - (3 - \sqrt{3})(-1) + \sqrt{3}$$
$$\Rightarrow f(-1) = -1 - 1 + 3 - \sqrt{3} + \sqrt{3}$$

 \Rightarrow f(-1) = 1

As, f(-1) is not equal to zero, therefore (x+1) is not a factor $x^3 - x^2 - (3 - \sqrt{3})x + \sqrt{3}$

Q. 2. A. Use the Factor Theorem to determine whether g(x) is factor of f(x) in the following cases:

 $f(x) = 5x^3 + x^2 - 5x - 1, g(x) = x + 1$

Answer : By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (x+1) to be a factor, we will find f(-1)

$$\Rightarrow f(-1) = 5 \ (-1)^3 + (-1)^2 - 5(-1) - 1$$

$$\Rightarrow$$
 f(-1) = -5 + 1 + 5 - 1

$$\Rightarrow$$
 f(-1) = 0

As, f(-1) is equal to zero, therefore, g(x) = (x+1) is a factor f(x)

Q. 2. B. Use the Factor Theorem to determine whether g(x) is factor of f(x) in the following cases:

 $f(x) = x^3 + 3x^2 + 3x + 1, g(x) = x + 1$

Answer : By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (x+1) to be a factor, we will find f(-1)

$$\Rightarrow f(-1) = (-1)^3 + 3(-1)^2 + 3(-1) + 1$$

$$\Rightarrow f(-1) = -1 + 3 - 3 + 1$$

$$\Rightarrow f(-1) = 0$$

As, f(-1) is equal to zero, therefore, g(x) = (x+1) is a factor f(x)

Q. 2. C. Use the Factor Theorem to determine whether g(x) is factor of f(x) in the following cases:

 $f(x) = x^3 - 4x^2 + x + 6, g(x) = x - 2$

Answer : By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (x - 2) to be a factor, we will find f(2)

$$\Rightarrow f(2) = (2)^3 - 4(2)^2 + (2) + 6$$

 \Rightarrow f(-1) = 8 - 16 + 2 + 6

$$\Rightarrow$$
 f(-1) = 0

As, f(-1) is equal to zero, therefore, g(x) = (x - 2) is a factor of f(x)

Q. 2. D. Use the Factor Theorem to determine whether g(x) is factor of f(x) in the following cases:

 $f(x) = 3x^3 + x^2 - 20x + 12, g(x) = 3x-2$

Answer : By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (3x - 2) to be a factor, we will find f(2/3)

$$f\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right)^3 + \left(\frac{2}{3}\right)^2 - 20\left(\frac{2}{3}\right) + 12$$

$$\Rightarrow f\left(\frac{2}{3}\right) = \frac{8}{9} + \frac{4}{9} - \frac{40}{3} + 12$$
$$\Rightarrow f\left(\frac{2}{3}\right) = 0$$

As, f(-1) is equal to zero, therefore, g(x) = (3x - 2) is a factor of f(x)

Q. 2. E. Use the Factor Theorem to determine whether g(x) is factor of f(x) in the following cases:

 $f(x) = 4x^3 + 20x^2 + 33x + 18$, g(x) = 2x + 3

Answer : By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (2x + 3) to be a factor, we will find f(-3/2)

$$f\left(-\frac{3}{2}\right) = 4\left(-\frac{3}{2}\right)^3 + 20\left(-\frac{3}{2}\right)^2 + 33\left(-\frac{3}{2}\right) + 18$$

$$\Rightarrow f\left(-\frac{3}{2}\right) = -\frac{27}{2} + 45 - \frac{99}{2} + 18$$

$$\Rightarrow f\left(-\frac{3}{2}\right) = 0$$

As, f(-3/2) is equal to zero, therefore, g(x) = (3x - 2) is a factor of f(x)

Q. 3. Show that (x - 2), (x + 3) and (x - 4) are factors of $x^3 - 3x^2 - 10x + 24$.

Answer : Let $f(x) = x^3 - 3x^2 - 10x + 24$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (x - 2) to be a factor, we will find f(2)

 $\Rightarrow f(2) = (2)^3 - 3(2)^2 - 10(2) + 24$

$$\Rightarrow f(2) = 8 - 12 - 20 + 24$$

$$\Rightarrow f(2) = 0$$

So, (x-2) is a factor.

For checking (x + 3) to be a factor, we will find f(-3)

$$\Rightarrow f(-3) = (-3)^3 - 3(-3)^2 - 10(-3) + 24$$

$$\Rightarrow f(-3) = -27 - 27 + 30 + 24$$

$$\Rightarrow f(-3) = 0$$

So, (x+3) is a factor.
For checking (x - 4) to be a factor, we will find f(4)

$$\Rightarrow f(4) = (4)^3 - 3(4)^2 - 10(4) + 24$$

$$\Rightarrow$$
 f(4) = 64 - 48 - 40 + 24

$$\Rightarrow f(4) = 0$$

 \therefore (x - 2), (x + 3) and (x - 4) are factors of $x^3 - 3x^2 - 10x + 24$

Q. 4. Show that (x + 4), (x - 3) and (x - 7) are factors of $x^3 - 6x^2 - 19x + 84$.

Answer : Let $f(x) = x^3 - 6x^2 - 19x + 84$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0

For checking (x + 4) to be a factor, we will find f(-4)

$$\Rightarrow f(-4) = (-4)^3 - 6(-4)^2 - 19(-4) + 84$$
$$\Rightarrow f(-4) = -64 - 96 + 76 + 84$$
$$\Rightarrow f(-4) = 0$$

So, (x+4) is a factor.

For checking (x - 3) to be a factor, we will find f(3)

⇒
$$f(3) = (3)^3 - 6(3)^2 - 19(3) + 84$$

⇒ $f(3) = 27 - 54 - 57 + 84$
⇒ $f(3) = 0$
So, (x-3) is a factor.

For checking (x - 7) to be a factor, we will find f(7)

$$\Rightarrow f(7) = (7)^{3} - 6(7)^{2} - 19(7) + 84$$

$$\Rightarrow f(7) = 343 - 294 - 133 + 84$$

$$\Rightarrow f(7) = 0$$

So, (x-7) is a factor.

: (x + 4), (x - 3) and (x - 7) are factors of $x^3 - 3x^2 - 10x + 24$

Q. 5. If both (x – 2) and $\left(x - \frac{1}{2}\right)$ are factors of px² + 5x + r, show that p = r.

Answer : Let $f(x) = px^2 + 5x + r$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0 and vice versa.

```
So, if (x - 2) is a factor of f(x)

\Rightarrow f(2) = 0

\Rightarrow p(2)^2 + 5(2) + r = 0

\Rightarrow 4p + r = -10 ------ (A)

Also as \left(x - \frac{1}{2}\right)_{is also a factor,}
```

$$\Rightarrow f\left(\frac{1}{2}\right) = 0$$

$$\Rightarrow p\left(\frac{1}{2}\right)^{2} + 5\left(\frac{1}{2}\right) + r = 0$$

$$\Rightarrow \frac{p}{4} + \frac{5}{2} + r = 0$$

$$\Rightarrow p + 4r = -10 - (B)$$

Subtract B from A to get,

4p + r - (p + 4r) = -10 - (-10) 4p + r - p - 4r = -10 + 103p - 3r = 03p = 3rp = r

Q. 6. If $(x^2 - 1)$ is a factor of $ax^4 + bx^3 + cx^2 + dx + e$, show that a + c + e = b + d = 0

Answer : Let $f(x) = ax^4 + bx^3 + cx^2 + dx + e$

By Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0 and vice versa.

Also we can write, $(x^2 - 1) = (x + 1)(x - 1)$

Since $(x^2 - 1)$ is a factor of f(x), this means (x + 1) and (x - 1) both are factors of f(x).

So, if (x - 1) is a factor of f(x)

 $\Rightarrow f(1) = 0$

 $\Rightarrow a(1)^4 + b(1)^3 + c(1)^2 + d(1) + e = 0$

 \Rightarrow a + b + c + d + e = 0 ----- (A)

Also as (x + 1) is also a factor,

$$\Rightarrow f(-1) = 0$$

$$\Rightarrow a(-1)^4 + b(-1)^3 + c(-1)^2 + d(-1) + e = 0$$

$$\Rightarrow a - b + c - d + e = 0$$

 \Rightarrow a + c + e = b + d ---- (B)

On solving equations (A) and (B), we get,

a + c + e = b + d = 0

Q. 7. A. Factorize

$x^3 - 2x^2 - x + 2$

Answer : Let $p(x) = x^3 - 2x^2 - x + 2$

By trial, we find that p(1) = 0, so by Factor theorem,

(x - 1) is the factor of p(x)

When we divide p(x) by (x - 1), we get $x^2 - x - 2$.

Now, $(x^2 - x - 2)$ is a quadratic and can be solved by splitting the middle terms.

We have
$$x^2 - x - 2 = x^2 - 2x + x - 2$$

$$\Rightarrow x (x-2) + 1 (x-2)$$

 \Rightarrow (x + 1)(x - 2)

So,
$$x^3 - 2x^2 - x + 2 = (x - 1)(x + 1)(x - 2)$$

Q. 7. B. Factorize

 $x^3 - 3x^2 - 9x - 5$

Answer : Let $p(x) = x^3 - 3x^2 - 9x - 5$

By trial, we find that p(-1) = 0, so by Factor theorem,

(x + 1) is the factor of p(x)

When we divide p(x) by (x + 1), we get $x^2 - 4x - 5$.

Now, $(x^2 - 4x - 5)$ is a quadratic and can be solved by splitting the middle terms.

We have $x^2 - 4x - 5 = x^2 - 5x + x - 5$

 \Rightarrow x (x - 5) + 1 (x - 5)

 $\Rightarrow (x + 1)(x - 5)$ So, $x^3 - 3x^2 - 9x - 5 = (x + 1)(x + 1)(x - 5)$

Q. 7. C. Factorize

 $x^3 + 13x^2 + 32x + 20$

Answer : Let $p(x) = x^3 + 13x^2 + 32x + 20$

By trial, we find that p(-1) = 0, so by Factor theorem,

(x + 1) is the factor of p(x)

When we divide p(x) by (x + 1), we get $x^2 + 12x + 20$.

Now, $(x^2 + 12x + 20)$ is a quadratic and can be solved by splitting the middle terms.

We have
$$x^2 + 12x + 20 = x^2 + 10x + 2x + 20$$

$$\Rightarrow x (x + 10) + 2 (x + 10)$$

$$\Rightarrow$$
 (x + 2)(x + 10)

So, $x^3 + 13x^2 + 32x + 20 = (x + 1)(x + 2)(x + 10)$

Q. 7. D. Factorize

 $y^3 + y^2 - y - 1$

Answer : Let $p(y) = y^3 + y^2 - y - 1$

On taking y² common from first two terms in p(y), we get,

 $p(y) = y^2(y + 1) - 1(y + 1)$

Now, taking (y + 1) common, we get,

$$\Rightarrow p(y) = (y^2 - 1)(y + 1)$$

As we know the identity, $(y^2 - 1) = (y + 1)(y - 1)$

$$\Rightarrow p(y) = (y - 1)(y + 1)(y + 1)$$

Q. 8. If $ax^2 + bx + c$ and $bx^2 + ax + c$ have a common factor x + 1 then show that c = 0 and a = b.

Answer: Let $f(x) = ax^2 + bx + c$ and $p(x) = bx^2 + ax + c$

As (x + 1) is the common factor of f(x) and p(x) both, and as by Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0 and vice versa.

 $\Rightarrow f(-1) = p(-1) = 0$ $\Rightarrow a(-1)^{2} + b(-1) + c = b(-1)^{2} + a(-1) + c$ $\Rightarrow a - b + c = b - a + c$ $\Rightarrow 2a = 2b$ $\Rightarrow a = b ----- (A)$ Also, we discussed that, f(-1) = 0 $\Rightarrow a(-1)^{2} + b(-1) + c = 0$ $\Rightarrow a - b + c = 0$

From equation (A), we see that a = b,

 \therefore Equations (A) and (B) show us the required result.

Q. 9. If $x^2 - x - 6$ and $x^2 + 3x - 18$ have a common factor (x - a) then find the value of a.

Answer : Let $f(x) = x^2 - x - 6$ and $p(x) = x^2 + 3x - 18$

As (x - a) is the common factor of f(x) and p(x) both, and as by Factor Theorem, we know that,

If p(x) is a polynomial and a is any real number, then g(x) = (x - a) is a factor of p(x), if p(a) = 0 and vice versa.

 \Rightarrow f(a) = p (a)

 \Rightarrow (a)² - (a) - 6 = (a)² + 3(a) - 18

⇒ 4a = 12

⇒ a = 3

 \therefore The value of a is 3.

Q. 10. If (y - 3) is a factor of $y^3 - 2y^2 - 9y + 18$ then find the other two factors.

Answer : Let $f(x) = y^3 - 2y^2 - 9y + 18$

Taking y^2 common from the first two terms of f(x) and 9 from the last two terms of f(x), we get,

 $\Rightarrow f(x) = y^2(y-2) - 9(y-2)$

Now, taking (y - 2) common from above,

 $\Rightarrow f(x) = (y^2 - 9)(y - 2) - (A)$

We know the identity as,

$$a^2 - b^2 = (a - b)(a + b)$$

So, using above identity on equation (A), we get,

$$\Rightarrow f(x) = (y+3)(y-3)(y-2)$$

: the other two factors of $y^3 - 2y^2 - 9y + 18$ besides (y - 3) are (y + 3) and (y - 2).

Exercise 2.5

Q. 1. A. Use suitable identities to find the following products

(x + 5) (x + 2)

Answer : Using the identity $(x + a) \times (x + b) = x^2 + (a + b)x + ab$

Here a = 5 and b = 2

 \Rightarrow (x + 5) (x + 2) = x² + (5 + 2)x + 5 × 2

Therefore $(x + 5) (x + 2) = x^2 + 7x + 10$

Q. 1. B. Use suitable identities to find the following products

Answer : $(x - 5) (x - 5) = (x - 5)^2$ Using identity $(a - b)^2 = a^2 - 2ab + b^2$ Here a = x and b = 5 $\Rightarrow (x - 5) (x - 5) = x^2 - 2 \times x \times 5 + 5^2$ $\Rightarrow (x - 5) (x - 5) = x^2 - 10x + 25$ Therefore $(x - 5) (x - 5) = x^2 - 10x + 25$

Q. 1. C. Use suitable identities to find the following products

(3x + 2)(3x - 2)

Answer : Using the identity $(a + b) \times (a - b) = a^2 - b^2$

Here a = 3x and b = 2

$$\Rightarrow (3x + 2)(3x - 2) = (3x)^2 - 2^2$$

Therefore $(3x + 2)(3x - 2) = 9x^2 - 4$

Q. 1. D. Use suitable identities to find the following products

$$\left(x^2 + \frac{1}{x^2}\right) \left(x^2 - \frac{1}{x^2}\right)$$

Answer : Using the identity $(a + b) \times (a - b) = a^2 - b^2$

Here $a = x^2$ and $b = \frac{1}{x^2}$

$$\Rightarrow \left(x^{2} + \frac{1}{x^{2}}\right) \left(x^{2} - \frac{1}{x^{2}}\right) = (x^{2})^{2} - \left(\frac{1}{x^{2}}\right)^{2}$$

Therefore
$$\left(x^2 + \frac{1}{x^2}\right)\left(x^2 - \frac{1}{x^2}\right) = x^4 - \frac{1}{x^4}$$

Q. 1. E. Use suitable identities to find the following products

(1 + x) (1 + x)

Answer : $(1 + x) (1 + x) = (1 + x)^2$

Using identity $(a + b)^2 = a^2 + 2ab + b^2$

Here a = 1 and b = x

 \Rightarrow (1 + x) (1 + x) = 1² + 2(1)(x) + x²

Therefore $(1 + x) (1 + x) = 1 + 2x + x^2$

Q. 2. A. Evaluate the following products without actual multiplication.

101 × 99

Answer: 101 can be written as (100 + 1) and

99 can be written as (100 - 1)

 \Rightarrow 101 × 99 = (100 + 1) × (100 - 1)

Using the identity $(a + b) \times (a - b) = a^2 - b^2$

Here a = 100 and b = 1

$$\Rightarrow 101 \times 99 = 100^2 - 1^2$$

$$\Rightarrow 101 \times 99 = 10000 - 1$$

 \Rightarrow 101 x 99 = 9999

Q. 2. B. Evaluate the following products without actual multiplication.

999 × 999

```
Answer : 999 can be written as (1000 - 1)

\Rightarrow 999 × 999 = (1000 - 1) \times (1000 - 1)

\Rightarrow 999 × 999 = (1000 - 1)^2

Using identity (a - b)^2 = a^2 - 2ab + b^2

Here a = 1000 and b = 1

\Rightarrow 999 × 999 = 1000^2 - 2(1000)(1) + 1^2

\Rightarrow 999 × 999 = 100000 - 2000 + 1

\Rightarrow 999 × 999 = 998000 + 1

\Rightarrow 999 × 999 = 998001
```

$$50\frac{1}{2} \times 49\frac{1}{2}$$

Answer :

$$\Rightarrow 50\frac{1}{2} = \frac{50 \times 2 + 1}{2} \text{ and } 49\frac{1}{2} = \frac{49 \times 2 + 1}{2}$$
$$\Rightarrow 50\frac{1}{2} = \frac{100 + 1}{2} \text{ and } 49\frac{1}{2} = \frac{98 + 1}{2}$$
$$\Rightarrow 50\frac{1}{2} = \frac{101}{2} \text{ and } 49\frac{1}{2} = \frac{99}{2}$$
$$\Rightarrow 50\frac{1}{2} \times 49\frac{1}{2} = \frac{101}{2} \times \frac{99}{2}$$

$$\Rightarrow 50\frac{1}{2} \times 49\frac{1}{2} = \frac{101 \times 99}{4}$$

Consider 101 × 99

101 can be written as (100 + 1) and

99 can be written as (100 - 1)

 \Rightarrow 101 × 99 = (100 + 1) × (100 - 1)

Using the identity $(a + b) \times (a - b) = a^2 - b^2$

Here a = 100 and b = 1

 $\Rightarrow 101 \times 99 = 100^2 - 1^2$

Q. 2. D. Evaluate the following products without actual multiplication.

501 × 501

Answer : 501 can be written as (500 + 1)

Q. 2. E. Evaluate the following products without actual multiplication.

Answer :

$$30.5 = \frac{61}{2} \text{ and } 29.5 = \frac{59}{2}$$

$$\Rightarrow 30.5 \times 29.5 = \frac{61}{2} \times \frac{59}{2}$$

$$\Rightarrow 30.5 \times 29.5 = \frac{61}{2} \times \frac{59}{2}$$

$$\Rightarrow 30.5 \times 29.5 = \frac{61 \times 59}{2} \dots (i)$$
Consider 61 × 59

$$61 = (60 + 1)$$

$$59 = (60 - 1)$$

$$\Rightarrow 61 \times 59 = (60 + 1)(60 - 1)$$

30.5 × 29.5

Using the identity $(a + b) \times (a - b) = a^2 - b^2$ Here a = 60 and b = 1 $\Rightarrow 61 \times 59 = 60^2 - 1^2$ $\Rightarrow 61 \times 59 = 3600 - 1$ $\Rightarrow 61 \times 59 = 3599$ From (i) $\Rightarrow 30.5 \times 29.5 = \frac{3599}{4}$

Therefore 30.5 × 29.5 = 899.75

Q. 3. A. Factorise the following using appropriate identities.

 $16x^2 + 24xy + 9y^2$

Answer : $16x^2$ can be written as $(4x)^2$

24xy can be written as 2(4x)(3y)

 $9y^2$ can be written as $(3y)^2$

 $\Rightarrow 16x^2 + 24xy + 9y^2 = (4x)^2 + 2(4x)(3y) + (3y)^2$

Using identity $(a + b)^2 = a^2 + 2ab + b^2$

Here a = 4x and b = 3y

 $\Rightarrow 16x^2 + 24xy + 9y^2 = (4x + 3y)^2$

Therefore $16x^2 + 24xy + 9y^2 = (4x + 3y)(4x + 3y)$

Q. 3. B. Factorise the following using appropriate identities.

$4y^2 - 4y + 1$

Answer : $4y^2$ can be written as $(2y)^2$

4y can be written as 2(1)(2y)

1 can be written as 1²

 $\Rightarrow 4y^{2} - 4y + 1 = (2y)^{2} - 2(1)(2y) + 1^{2}$ Using identity $(a - b)^{2} = a^{2} - 2ab + b^{2}$ Here a = 2y and b = 1 $\Rightarrow 4y^{2} - 4y + 1 = (2y - 1)^{2}$ Therefore $4y^{2} - 4y + 1 = (2y - 1)(2y - 1)$

Q. 3. C. Factorise the following using appropriate identities.

$$4x^2 - \frac{y^2}{25}$$

Answer : $4x^2$ can be written as $(2x)^2$

$$\frac{y^2}{25}$$
 can be written as $\left(\frac{y}{5}\right)^2$

$$\Rightarrow 4x^2 - \frac{y^2}{25} = (2x)^2 - \left(\frac{y}{5}\right)^2$$

using the identity $(a + b) \times (a - b) = a^2 - b^2$

here a = 2x and b = $\frac{y}{5}$

Therefore
$$4x^2 - \frac{y^2}{25} = (2x + \frac{y}{5})(2x - \frac{y}{5})$$

Q. 3. D. Factorise the following using appropriate identities.

18a² – 50

Answer : Take out common factor 2

$$\Rightarrow 18a^2 - 50 = 2 (9a^2 - 25)$$

Now

 $9a^2$ can be written as $(3a)^2$

25 can be written as 5²

 $\Rightarrow 18a^2 - 50 = 2((3a)^2 - 5^2)$

Using the identity $(a + b) \times (a - b) = a^2 - b^2$

Here a = 3a and b = 5

Therefore $18a^2 - 50 = 2(3a + 5)(3a - 5)$

Q. 3. E. Factorise the following using appropriate identities.

$x^2 + 5x + 6$

Answer : Given is quadratic equation which can be factorised by splitting the middle term as shown

 $\Rightarrow x^{2} + 5x + 6 = x^{2} + 3x + 2x + 6$ = x (x + 3) + 2 (x + 3)= (x + 3) (x + 2)

Therefore $x^2 + 5x + 6 = (x + 3) (x + 2)$

Q. 3. F. Factorise the following using appropriate identities.

 $3p^2 - 24p + 36$

Answer : Take out common factor 3

$$\Rightarrow$$
 3p² - 24p + 36 = 3 (p² - 8p + 12)

Now splitting the middle term of quadratic $p^2 - 8p + 12$ to factorise it

$$\Rightarrow 3p^{2} - 24p + 36 = 3 (p^{2} - 6p - 2p + 12)$$
$$= 3 [p (p - 6) - 2 (p - 6)]$$
$$= 3 (p - 2) (p - 6)$$

Q. 4. A. Expand each of the following, using suitable identities

$(x + 2y + 4z)^2$

Answer : Using $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$

Here a = x, b = 2y and c = 4z

$$\Rightarrow (x + 2y + 4z)^2 = x^2 + (2y)^2 + (4z)^2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)$$

Therefore

 $(x + 2y + 4z)^2 = x^2 + 4y^2 + 16z^2 + 4xy + 16yz + 8xz$

Q. 4. B. Expand each of the following, using suitable identities

(2a - 3b)³

Answer : Using identity $(x - y)^3 = x^3 - y^3 - 3x^2y + 3xy^2$

Here x = 2a and y = 3b

$$\Rightarrow (2a - 3b)^3 = (2a)^3 - (3b)^3 - 3(2a)^2(3b) + 3(2a)(3b)^2$$

$$= 8a^3 - 27b^3 - 18a^2b + 18ab^2$$

Therefore $(2a - 3b)^3 = 8a^3 - 27b^3 - 18a^2b + 18ab^2$

Q. 4. C. Expand each of the following, using suitable identities

$$(-2a + 5b - 3c)^{2}$$
Answer: $(-2a + 5b - 3c)^{2} = [(-2a) + (5b) + (-3c)]^{2}$
Using $(x + y + z)^{2} = x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2zx$
Here $x = -2a$, $y = 5b$ and $z = -3c$

$$\Rightarrow (-2a + 5b - 3c)^{2} = (-2a)^{2} + (5b)^{2} + (-3c)^{2} + 2(-2a)(5b) + 2(5b)(-3c) + 2(-3c)(-2a)$$

$$\Rightarrow (-2a + 5b - 3c)^{2} = 4a^{2} + 25b^{2} + 9c^{2} + (-20ab) + (-30bc) + 12ac$$

$$\Rightarrow (-2a + 5b - 3c)^{2} = 4a^{2} + 25b^{2} + 9c^{2} - 20ab - 30bc + 12ac$$
Therefore

 $(-2a + 5b - 3c)^2 = 4a^2 + 25b^2 + 9c^2 - 20ab - 30bc + 12ac$

Q. 4. D. Expand each of the following, using suitable identities

$$\left(\frac{a}{4} - \frac{b}{2} + 1\right)^2$$

Answer :

$$\left(\frac{a}{4} - \frac{b}{2} + 1\right)^2 = \left[\frac{a}{4} + \left(-\frac{b}{2}\right) + 1\right]^2$$

Using
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here
$$x = \frac{a}{4}$$
, $y = -\frac{b}{2}$ and $z = 1$

$$\Rightarrow \left(\frac{a}{4} - \frac{b}{2} + 1\right)^2 = \left(\frac{a}{4}\right)^2 + \left(-\frac{b}{2}\right)^2 + 1^2 + 2\left(\frac{a}{4}\right)\left(-\frac{b}{2}\right) + 2\left(-\frac{b}{2}\right)(1) + 2(1)\left(\frac{a}{4}\right)(1) + 2(1)\left(\frac{a}{4}\right)($$

$$\Rightarrow \left(\frac{a}{4} - \frac{b}{2} + 1\right)^2 = \frac{a^2}{16} + \frac{b^2}{4} + 1 + \left(-\frac{ab}{4}\right) + (-b) + \frac{a}{2}$$

$$\Rightarrow \left(\frac{a}{4} - \frac{b}{2} + 1\right)^2 = \frac{a^2}{16} + \frac{b^2}{4} + 1 - \frac{ab}{4} - b + \frac{a}{2}$$

Therefore
$$\left(\frac{a}{4} - \frac{b}{2} + 1\right)^2 = \frac{a^2}{16} + \frac{b^2}{4} + 1 - \frac{ab}{4} - b + \frac{a}{2}$$

Q. 4. E. Expand each of the following, using suitable identities

(p + 1)³

Answer : Using identity $(x + y)^3 = x^3 + y^3 + 3x^2y + 3xy^2$

Here
$$x = p$$
 and $y = 1$

$$\Rightarrow (p + 1)^3 = p^3 + 1^3 + 3(p)^2(1) + 3(p)(1)^2$$

$$= p^3 + 1^3 + 3p^2 + 3p$$

Therefore $(p + 1)^3 = p^3 + 1^3 + 3p^2 + 3p$

Q. 4. F. Expand each of the following, using suitable identities

$$\left(x-\frac{2}{3}y\right)^3$$

Answer : Using identity $(a - b)^3 = a^3 - b^3 - 3a^2b + 3ab^2$

Here a = x and b = $\frac{2}{3}$ y

$$\Rightarrow \left(x - \frac{2}{3}y\right)^3 = x^3 - \left(\frac{2}{3}y\right)^3 - 3(x)^2\left(\frac{2}{3}y\right) + 3(x)\left(\frac{2}{3}y\right)^2$$

$$\Rightarrow \left(x - \frac{2}{3}y\right)^3 = x^3 - \frac{8}{27}y^3 - 2x^2y + \frac{4}{3}xy^2$$

Therefore
$$\left(x - \frac{2}{3}y\right)^3 = x^3 - \frac{8}{27}y^3 - 2x^2y + \frac{4}{3}xy^2$$

Q. 5. A. Factorise

 $25x^2 + 16y^2 + 4z^2 - 40xy + 16yz - 20xz$

Answer : $25x^2 + 16y^2 + 4z^2 - 40xy + 16yz - 20xz$

$$25x^{2} + 16y^{2} + 4z^{2} - 40xy + 16yz - 20xz = 25x^{2} + 16y^{2} + 4z^{2} + (-40xy) + 16yz + (-20xz)$$

 $25x^2$ can be written as $(-5x)^2$

 $16y^2$ can be written as $(4y)^2$

 $4z^2$ can be written as $(2z)^2$

-40xy can be written as 2(-5x)(4y)

16yz can be written as 2(4y)(2z)

-20xz can be written as 2(-5x)(2z)

 $\Rightarrow 25x^2 + 16y^2 + 4z^2 - 40xy + 16yz - 20xz = (-5x)^2 + (4y)^2 +$

 $(2z)^{2} + 2(-5x)(4y) + 2(4y)(2z) + 2(-5x)(2z) \dots (i)$

Using $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$

Comparing $(-5x)^2 + (4y)^2 + (2z)^2 + 2(-5x)(4y) + 2(4y)(2z) + 2(-5x)(2z)$ with $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ we get

a = -5x, b = 4y and c = 2z

Therefore

$$(-5x)^{2} + (4y)^{2} + (2z)^{2} + 2(-5x)(4y) + 2(4y)(2z) + 2(-5x)(2z) = (-5x + 4y + 2z)^{2}$$

From (i)

 $25x^{2} + 16y^{2} + 4z^{2} - 40xy + 16yz - 20xz = (-5x + 4y + 2z)^{2}$

Q. 5. B. Factorise

9a² + 4b² + 16c² + 12ab - 16bc - 24ca

Answer: 9a² + 4b² + 16c² + 12ab - 16bc - 24ca

$$9a^{2} + 4b^{2} + 16c^{2} + 12ab - 16bc - 24ca = 9a^{2} + 4b^{2} + 16c^{2} + 12ab + (-16bc) + (-24ca)$$

 $9a^2$ can be written as $(3a)^2$

4b² can be written as (2b)²

16c² can be written as (-4c)² 12ab can be written as 2(3a)(2b) -16bc can be written as 2(2b)(-4c) -24ca can be written as 2(-4c)(3a) ⇒ 9a² + 4b² + 16c² + 12ab - 16bc - 24ca = (3a)² + (2b)² + (-4c)² + 2(3a)(2b) + 2(2b)(-4c) + 2(-4c)(3a) ...(i) Using (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx Comparing (3a)² + (2b)² + (-4c)² + 2(3a)(2b) + 2(2b)(-4c) + 2(-4c)(3a) with x² + y² + z² + 2xy + 2yz + 2zx we get x = 3a, y = 2b and z = -4c Therefore (3a)² + (2b)² + (-4c)² + 2(3a)(2b) + 2(2b)(-4c) + 2(-4c)(3a) = (3a + 2b + (-4c))²

From (i)

 $9a^{2} + 4b^{2} + 16c^{2} + 12ab - 16bc - 24ca = (3a + 2b - 4c)^{2}$