Circle

PRACTICE SET 42 [PAGE 77]

Practice Set 42 | Q 1.1 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
7 cm		

Solution: Radius, r = 7 cm

Diameter, $d = 2r = 2 \times 7 = 14$ cm

 \therefore Circumference, $c = \pi d$

 $= 22/7 \times 14$

 $= 22 \times 2$

= 44 cm

Radius (r)	Diameter (d)	Circumference (c)
7 cm	14 cm	44 cm

Practice Set 42 | Q 1.2 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
	28 cm	

Solution: Diameter, d = 28 cm

Radius, r =
$$\frac{d}{2} = \frac{28}{2}$$
 = 14 cm

∴ Circumference, c = $2\pi r$

=
$$2 imes \frac{22}{7} imes 14$$

= 88 cm

Radius	Diameter	Circumference
(r)	(d)	(c)
14 cm	28 cm	88 cm

Practice Set 42 | Q 1.3 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
		616 cm

Solution: Circumference, c = 616 cm

Now, $c = 2\pi r$ (where 'r' is the radius)

$$\Rightarrow 616 = 2 \times \frac{22}{7} \times r$$
$$\Rightarrow r = 616 \times \frac{1}{2} \times \frac{7}{22}$$

So, radius = 98 cm

Diameter, $d = 2r = 2 \times 98 = 196 \text{ cm}$

Radius (r)	Diameter (d)	Circumference (c)
98 cm	196 cm	616 cm

Practice Set 42 | Q 1.4 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
		72.6 cm

Solution: Circumference, c = 72.6 cm

Now, $c = 2\pi r$ (where 'r' is the radius)

$$\Rightarrow 72.6 = 2 \times \frac{22}{7} \times r$$

$$\Rightarrow r = 72.6 \times \frac{1}{2} \times \frac{7}{22}$$

So, radius = 11.55 cm Diameter, d = $2r = 2 \times 11.55 = 23.1$ cm

Radius (r)	Diameter (d)	Circumference (c)
11.55 cm	23.1 cm	616 cm

Practice Set 42 | Q 2 | Page 77

If the circumference of a circle is 176 cm, find its radius.

Solution: Circumference, c = 176 cm

Now, $c = 2\pi r$ (where 'r' is the radius of circle)

$$\Rightarrow 176 = 2 \times \frac{22}{7} \times \mathbf{r}$$
$$\Rightarrow \mathbf{r} = 176 \times \frac{1}{2} \times \frac{7}{22}$$

$$\Rightarrow$$
 r = 28

∴ Radius of the circle = 28 cm

Practice Set 42 | Q 3 | Page 77

The radius of a circular garden is 56 m. What would it cost to put a 4-round fence around this garden at a rate of 40 rupees per metre?

Solution: Radius of the circular garden, r = 56 m

Circumference of the circular garden, $c = 2\pi r$

- $= 2 \times 22/7 \times 56$
- = 352 m
- \therefore Length of the wire needed for one round of fencing = c = 352 m

Cost of one round of fencing = length of wire × cost per metre

- $= 352 \times 40$
- = 14080 rupees

Cost of four round of fencing = $4 \times 14080 = 56320$ rupees

Practice Set 42 | Q 4 | Page 77

The wheel of a bullock cart has a diameter of 1.4 m. How many rotations will the wheel complete as the cart travels 1.1 km?

Solution: Diameter of the wheel, d = 1.4 m

Circumference, $c = \pi d$

$$= 22/7 \times 1.4$$

$$= 4.4 \text{ m}$$

When the wheel completes 1 rotation, it covers a distance that is equal to its circumference.

So, the number of rotations taken by the wheel to cover 4.4 m = 1

Now, the wheel covered a total distance of 1.1 km.

We know that, 1 km = 1000 m

$$\therefore$$
 1.1 km = 1.1 × 1000 m = 1100 m

 \therefore Total number of rotations taken by wheel = $\frac{\text{total distance}}{\text{circumference}}$

$$= \frac{1100}{4.4}$$
$$= \frac{11000}{44}$$

Hence, the wheel completes 250 rotations to cover a distance of 1.1 km.

PRACTICE SET 43 [PAGE 79]

Practice Set 43 | Q 1 | Page 79

Choose the correct option.

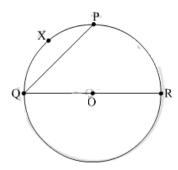
If arc AXB and arc AYB are corresponding arcs and m(arc AXB) = 120° then m(arc AYB) = _____

- 1. 140°
- 2. 60°
- 3. 240°
- 4. 160°

Solution: 240°

Explanation:

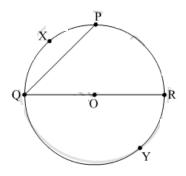
Consider that arc AXB is the minor arc and arc AYB is the corresponding major arc. It is known that, the measure of major arc = 360° – the measure of the corresponding minor arc.


We have, $m(arc AXB) = 120^{\circ}$.

So, m(arc AYB) = 360° - m(arc AXB) = 360° - 120° = 240°

Hence, the correct answer is option 240°.

Practice Set 43 | Q 2 | Page 79


Some arcs are shown in the circle with centre 'O'. Write the names of the minor arcs, major arcs, and semicircular arcs from among them.

Solution: Minor arc: An arc of a circle having a measure of less than 180°.

Major arc: An arc of a circle having a measure greater than 180°.

Semicircular arc: An arc of a circle having a measure equal to 180°.

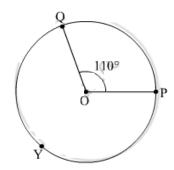
Names of minor arcs:

- (i) arc PXQ
- (ii) arc PR
- (iii) arc RY
- (iv) arc XP
- (v) arc XQ
- (vi) arc QY

Names of major arcs:

- (i) arc PYQ
- (ii) arc PQR

- (iii) arc RQY
- (iv) arc XQP
- (v) arc QRX


Names of semicircular arcs:

- (i) arc QPR
- (ii) arc QYR

Practice Set 43 | Q 3 | Page 79

In a circle with centre O, the measure of a minor arc is 110°. What is the measure of the major arc PYQ?

Solution:

Suppose PQ is the minor arc and then $m(arc PQ) = 110^{\circ}$.

We know that, measure of major arc = 360° – measure of corresponding minor arc.

- \therefore m(arc PYQ) = 360° m(arc PQ)
- $= 360^{\circ} 110^{\circ}$
- = 250°

Hence, the measure of major arc PYQ is 250°.