Exponents and Powers

Skill Based Questions

Multiple choice questions: Q.1.

Directions: Read the following questions and choose the answer that best answers the questions.

- $5^{\sqrt{x}} + 12^{\sqrt{x}} = 13^{\sqrt{x}}$. Value of x in expression is 1.
 - (a) 4
- (b) 3
- (c) 2
- (d) 1

- The fourth root of $28+16\sqrt{3}$ is 2.
 - (a) $4 + 2\sqrt{3}$
- (b) $2\sqrt{2} + \sqrt{3}$ (c) $\sqrt{3} + 1$
- (d) $\sqrt{3} \sqrt{2}$

- In which of the following is p > q? 3.

- I. $(0.9)^p > (0.9)^q$ II. $(1.8)^p < (1.8)^q$ III. $(8.5)^p > (8.5)^q$ IV. $\left(\frac{1}{2}\right)^p < \left(\frac{1}{2}\right)^q$
- (a) I and IV
- (b) II and III
- (c) III and IV
- (d) II and IV
- 4. In a cricket match, the number of runs scored by any team is equal to power of the number of batsmen playing in the team. Six batsmen played in team A and eleven batsmen played in team B. If team A won by 95 runs, then the runs scored by team A.
 - (a) 216
- (b) 220
- (c) 210
- (d) 230
- The values of *x* and *y* that satisfy both the equations $2^{0.7x} \cdot 3^{-1.25y} = 8 \frac{\sqrt{6}}{27}$ and $4^{0.3x} \cdot 9^{0.2y} = 8 \cdot (81)^{1/5}$ are **5**.
 - (a) x = 2, y = 5
- (b) x = 2.5, y = 6 (c) x = 3, y = 5 (d) x = 5, y = 2

6.	If x , y , z , are positive real number and a , b , c are rational numbers, then the value of				
	$\frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{b-c}+x^{a-c}}$				
	(a) – 1	(b) 1	(c) 0	(d) none of these	
7.	$3\times10^3 + 2\times10^1 + 4\times10^x + 5\times10^y = 3024.05$, where x and y are integers. The value of x and y are				
	(a) $x = 0, y = 0$	(b) <i>x</i> =	=-2, y=-2 (c) x	=-2, y=0 (d) $x=0,$	y = -2
8.	Simplest form of	$\left(\frac{q^{3-7q} \times q^{6-2q}}{q^{2q} \times q^{9-2q}}\right)^{1/9}$ is			
	(a) $\frac{1}{q^q}$	(b) $\frac{1}{q}$	(c) q	(d) None	
Q.2.	Subjective questi	ons:			
1.	If x is a rational number and a , b , c are all different integers, then prove that				
	$(i) x^{a-b} \times x^{b-a} = 1$	(ii) <i>x</i> ^{<i>a</i>-}	$x^{b-c} \times x^{b-c} \times x^{c-a} = 1$	(iii) $\frac{x^a}{x^b} \times \frac{x^b}{x^c} \times \frac{x^c}{x^a} = 1$	
Ans.					
2. Ans.	Is p^{2n+5} the simplest form of $p^{n+1} \times p^{2n+1} \times p^{3-n}$.				
Alis.					
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •

(i) If $5^{n+2} = 625$, then find $[(n+3)]^{1/3}$.

(ii) If $\left(\frac{32}{243}\right)^n = \frac{8}{27}$, then find $\left(\frac{n+0.4}{1024}\right)^{-n}$.

3.

Ans.

4.	If $21168 = x^4 \times x^3 \times z^2$, find $(x + y + z)^{\left(\frac{y+z}{x+y}\right)}$, where x, y and z are positive integers.			
Ans.				
5 .	If $5^x = 3^y = 45^z$, then prove that $\frac{1}{z} = \frac{1}{z} + \frac{2}{z}$.			
Ans.	z x y			
6.	Prove that $\frac{1}{1+p+q^{-1}} + \frac{1}{1+p+r^{-1}} + \frac{1}{1+r+p^{-1}} = 1$, if $pqr = 1$			
Ans.				
7.	Find the value of $\left[\left(\frac{a}{b}\right)^{\sqrt{p}+\sqrt{q}}\right]^{\sqrt{p}-\sqrt{q}} \times \left[\left(\frac{a}{b}\right)^{\sqrt{q}+\sqrt{r}}\right]^{\sqrt{q}-\sqrt{r}} \times \left[\left(\frac{a}{b}\right)^{\sqrt{r}+\sqrt{p}}\right]^{\sqrt{r}-\sqrt{p}}$			
	[b] $[b]$ $[b]$			
Ans.				
8.	Prove that $\left(\frac{x^{-1}+y^{-1}}{x^{-1}}\right)^{-1} + \left(\frac{x^{-1}-y^{-1}}{x^{-1}}\right)^{-1} = \frac{2y^2}{y^2-x^2}$.			
Ans.				

9.	Find the value of $\left[\left(\sqrt[6]{7} \right)^2 + \left(\sqrt[6]{7} \right)^{-2} \right] \left[\left(\sqrt[6]{7} \right)^4 - 1 + \left(\sqrt[6]{7} \right)^{-4} \right]$.
Ans.	