Chapter - Polymers

Topic-1: Classification of Polymers

10 Subjective Problems

- 1. Write the matched set (of three) for each entry in column A: [Multiple Concepts, $1984 - 1 \times 5 = Mark$]
- oidodgo Avd stom zi Bos onime sazi shi C
- (i) Asbestos (a) molecular sieve (1) air pollutant (ii) Fluorocarbons
 - (b) paramagnetic (2) carcinogen
- (iii) Lithium metal
- (c) refrigeration
- (3) fluorescent paint

- (iv) Nitric oxide
- (d) reducing agent (4) electron donor
- (v) Zeolites
- (e) semi-conductor (5) ion exchanger
- (vi) Zinc oxide
- (f) silicates of (6) propellant (7) A 2600A 218 500A 28 500A

(Ca + Mg)

Topic-2: Preparation, Properties and Uses of Polymers

MCQs with One Correct Answer

- On complete hydrogenation, natural rubber produces
 - (a) ethylene-propylene copolymer
- [Adv. 2016]

- (b) vulcanised rubber
- (c) polypropylene
- (d) polybutylene
- Among cellulose, poly (vinyl chloride), nylon and natural rubber, the polymer in which the intermolecular force of [2009S] attraction is weakest is
 - Nylon
- (b) Poly (vinyl chloride)
- Cellulose
- (d) Natural rubber

Integer Value Answer

The total number of lone-pairs of electrons in melamine is [2013]

Fill in the Blanks

Sulphur acts as agent in vulcanization of rubber.

[1989 - 1 Mark]

MCQs with One or More than One Correct Answer

- Among the following, the correct statement(s) about polymers is(are) [Adv. 2022]
 - (a) The polymerization of chloroprene gives natural rubber.
 - (b) Teflon is prepared from tetrafluoroethene by heating it with persulphate catalyst at high pressures.
 - (c) PVC are thermoplastic polymers.
 - (d) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the presence of a peroxide initiator yields high density polythene.
- Choose the correct option(s) from the following.
 - Nylon-6 has amide linkages
 - (b) Cellulose has only α-D-glucose units that are joined by glycosidic linkages
 - (c) Teflon is prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure
 - (d) Natural rubber is polyisoprene containing trans alkene units

The correct functional group X and the reagent/reaction conditions Y in the following scheme are

 $X - (CH_2)_4 - X \frac{\text{(i) Y}}{\text{HOOC-(CH}_2)_4\text{-COOH, heat}}$ → Condensation polymer

- (a) $X = COOCH_3$, $Y = H_2/Ni/heat$
- (b) $X = CONH_2$, $Y = H_2/Ni/heat$ (c) $X = CONH_2$, $Y = Br_2/NaOH$
- (d) X = CN, $Y = H_2/Ni/heat$

Match the chemical substances in Column I with type of polymers/type of bonds in Column II. [2007]

Column I

- Column II
- (A) Cellulose
- (B) Nylon-6, 6
- (C) Protein (D) Sucrose
- (p) (q)
- Natural polymer Synthetic polymer
- Amide linkage (r)
- (s) Glycoside linkage

10 Subjective Problems

9. Give the structures of the products in each of the following reactions. [2000 - 2 Marks]

NOH
$$\xrightarrow{\text{H}^+} C \xrightarrow{\text{Polymerisation}} [-D-]_n$$

Answer Key

Topic-2: Preparation, Properties and Uses of Polymers

- 1. 8. (A): (p) and (s); (B): (q) and (r); (C): (p) and (r); (D): (s)
- 3. (6)
- 4. cross-linking;
- 5. (b, c)
- **6.** (a, c)
- 7. (a,b,c,d)

Hints & Solutions

Topic-1: Classification of Polymers

- **1.** (*i*)-(f)-6; (*ii*)-(c)-2; (*iii*)-(d)-4; (*iv*)-(b)-1; (*v*)-(a)-5; (*vi*)-(e)-3.
 - Asbestos was used as an insulator I solid propellant rocket motors.
 - (ii) Fluorocarbons were used as refrigerant which are carcinogens.
 - (iii) Lithium metal an easily donate electron and therefore, can be used as a reducing agent.
 - (iv) Nitric oxide is paramagnetic and an air pollutant.
 - (v) Zeolites have high porosity due to the presence of cavities of molecular dimensions. They are used as ion exchange for softening of water.
 - (vi) Zinc oxide is used as a semi-conductor. They have property of fluorescence.

Topic-2: Preparation, Properties and Uses of Polymers

1. (a)
$$CH_2 = C - CH = CH_2 \xrightarrow{Polymerisation}$$

$$\begin{array}{c|c} CH_3 & H_2(excess) \\ -CH_2 - C = CH - CH_2 \end{array}$$
Natural rubber

$$CH_2 = CH_2 + CH_2 = CH$$
Ethylene Propylene

2. (d) Nylon and cellulose, both have intermolecular hydrogen bonding, polyvinyl chloride has dipole-dipole interaction, while natural rubber has van der Waal forces which are weakest.

3. (6) Structure of melamine is as follows:

$$H_2N$$
 N
 N
 N
 N
 N
 N
 N
 N

Total no. of lone pairs of electron is '6'.

4. cross-linking;

- $5. \quad (b,c)$
 - (a) The polymerization of neoprene gives natural rubber.
 - (d) Ethene in these conditions yield low density polythene.
- 6. (a, c)
 - (a) Nylon-6. It is obtained by heating caprolactam with water at high temperature and have amide linkage.

$$\begin{array}{c} H \\ H_2C \nearrow N \searrow C = O \\ H_2C \searrow CH_2 \\ H_2C \longrightarrow CH_2 \\ Caprolactum \\ \end{array} \xrightarrow{533-543 \text{ K}} \begin{array}{c} O \\ \parallel \\ -C - (CH_2)_5 - N \end{array} \xrightarrow{n}$$

- (b) Cellulose has only β -D-glucose units that are joined by glycosidic linkages between C-1 of one glucose unit and C-4 of the next glucose unit.
- (c) Teflon is prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure.

$$\begin{array}{ccc} \text{CF}_2 & \xrightarrow{\text{Catalyst}} & \text{\{CF}_2 - \text{CF}_2\}_n \\ \text{Tetrafluoroethene} & & \text{Teflon} \end{array}$$

(d) Natural rubber is a linear polymer of isoprene (2-methyl-1, 3-butadiene) containing *cis* alkene units. It is also called *cis*-1, 4-polyisoprene.

7. (a,b,c,d)

Condensation polymers are formed by condensation of a diol or diamine with a dicarboxylic acid.

O O
$$\parallel$$
 Hence, X may be $-C-OR$ or $-C-NH_2$ or $-C \equiv N$

$$\begin{array}{c} O & O \\ \parallel & \parallel \\ \text{H}_3\text{CO} - \text{C} - (\text{CH}_2)_4 - \text{C} - \text{OCH}_3 \xrightarrow{\text{H}_2/\text{Ni}(y)} \\ \text{OHH}_2\text{C} - (\text{CH}_2)_4 - \text{CH}_2\text{OH} \\ & & \parallel \\ \text{OO} & & \parallel \\ \text{HO} - \text{C} - (\text{CH}_2)_4 - \text{C} - \text{OH} \\ \text{DO} & & \parallel \\ \text{OO} & & \parallel \\ \text{CO} - (\text{CH}_2)_4 - \text{C} - \text{OH} \\ \text{OO} & & \parallel \\ \text{H}_2\text{NCH}_2 - (\text{CH}_2)_4 - \text{CH}_2\text{NH}_2 \\ & & \parallel \\ \text{HO} - \text{C} - (\text{CH}_2)_4 - \text{C} - \text{OH} \\ \text{Polyamide} \\ \text{Br}_2/\text{OH}, \Delta (y) \\ \text{Hofmann bromamide reaction} \\ \\ \text{(c)} & \text{H}_2\text{N} - (\text{CH}_2)_4 - \text{NH}_2 \\ & & \text{OO} & \text{O} \\ & & \parallel & \parallel \\ \text{HO} - \text{C} - (\text{CH}_2)_4 - \text{C} - \text{OH} \\ \text{Polyamide} \\ \text{(d)} & \text{N} \equiv \text{C} - (\text{CH}_2)_4 - \text{C} \equiv \text{N} \xrightarrow{\text{H}_2/\text{Ni}/\Delta(y)} \\ & & \text{H}_2/\text{Ni}/\Delta(y) \\ & & \text{H}_2/\text{Ni}/\Delta(y) \\ \text{H}_2/\text{NCH}_2 - (\text{CH}_2)_4 - \text{CH}_2/\text{NH}_2 \\ \end{array}$$

8. (A): (p) and (s) Cellulose is a natural polymer and has a
$$C_1 - C_4 \beta$$
-glycosidic linkage.

(D): (s) Sucrose is a disaccharide of
$$\alpha$$
-D glucose and β -D-fructose and has an α , β -glycosidic linkage.

9.
$$\stackrel{\text{NOH}}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{\text{NH}}{\longrightarrow} \stackrel{NH}{\longrightarrow} C$$
 (Caprolactum)

$$\longrightarrow [-CO - NH - \{CH_2\}_5]_n$$
Nylon