Vector Algebra

True/False

- 1) Scalar product of two perpendicular vectors is zero.
- 2) Vector product of two collinear vectors is zero.
- 3) Scalar triple product of three coplanar vectors is 10.
- 4) $|\vec{a}.\vec{b}| \le |\vec{a}||\vec{b}|$ is triangle inequality.
- 5) $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ is Cauchy-Schwartz inequality.
- 6) $\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = \vec{0}.$
- 7) $\hat{\iota}.\hat{\iota} = \hat{J}.\hat{J} = \hat{k}.\hat{k} = 0$
- 8) $\vec{a} \times \vec{b}$ is parallel to both the vectors \vec{a} and \vec{b} .
- 9) Vectors $3\hat{\imath} + 2\hat{j} \hat{k}$ is parallel to the vector $\hat{\imath} + 6\hat{j} 3\hat{k}$.
- 10) Area of a parallelogram can be calculated by using vector product two vectors.

Multiple Choice Questions

1	If $\vec{a}.\vec{b}= \vec{a} imes\vec{b} $ then angle between vector \vec{a} and vector \vec{b} is :									
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$						
2	Magnitude of the vector $\frac{1}{\sqrt{3}} \dot{i} + \frac{1}{\sqrt{3}} \dot{j} + \frac{1}{\sqrt{3}} \dot{k}$ is :									
	(a)—1	(b)1	(c)0	$(d)\frac{1}{3}$						
3	If $\sqrt{3} \vec{a} \cdot \vec{b} = \vec{a} $	$ec{m{u}} imes ec{m{b}}ert$ then angle betweer	n vector $ec{a}$ and vector $ec{b}$ is :	-						
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$						
4	If $\vec{a}.\vec{b}=\sqrt{3} \vec{a} $	$ec{u} imes ec{b} ert$ then angle between	n vector $ec{a}$ and vector $ec{b}$ is :							
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$						
5	If $\vec{\vec{a}}.\vec{\vec{b}}=0$ then angle between vector $\vec{\vec{a}}$ and vector $\vec{\vec{b}}$ is :									
	(a) $\frac{\pi}{2}$	(b) π / ₆	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$						
6	Name of the in	equality $\left ec{a}_{\cdot}ec{b} ight \leq ec{a} ec{b} $ is	5 :							
	(a)Cauchy-Schv (c)Rolle's Theor	vartz Inequality rem $\land \land \land$	(b)Triangle Inequality (d)Lagrange's Mean Value T	heorem						
7	Magnitude of	vector $\vec{a} = 3i + j + k$ is	:							
	(a) 3	(b) $\sqrt{10}$	(c) $\sqrt{11}$	(d) $\sqrt{12}$						
8	Projection of \vec{a}	$=3i+j+k$ on $\vec{b}=i$	-2j - k is:							
	(a) $\frac{2}{\sqrt{6}}$	(b)0	(c) $\frac{1}{\sqrt{6}}$	(d) $\sqrt{6}$						
9	If \vec{a} is a non-ze	ero vector then $ \vec{a} \times \vec{a} $ is	equal to							
	(a) <i>a</i>	(b) <i>a</i> ²	(c)1	(d)U						

10 If $\vec{a} = \hat{i} + 2\hat{j} - \overset{\wedge}{3k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} - \hat{k}$ then $\vec{a} \cdot \vec{b}$ is equal to (a)1 (b)0 (c)-1 (d)3

2 & 4 Marks Questions

1. Find the volume of a rectangular parallelepiped whose edges are given by the vectors

 $\vec{a} = 2\hat{\imath} - 4\hat{\jmath} + \hat{k}$, $\vec{b} = 3\hat{\imath} - \hat{\jmath} - 5\hat{k}$, $\vec{c} = -9\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$.

- 2. Find the scalar triple product of the vectors $\vec{a} = 3\hat{\iota} + 4\hat{j} 5\hat{k}$, $\vec{b} = \hat{\iota} 2\hat{j} + 5\hat{k}$, $\vec{c} = 7\hat{\iota} \hat{j} + 4\hat{k}$
- 3. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|$. Also write the name of inequality.
- 4. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$. Also write the name of inequality.
- 5. Adjacent sides of a parallelogram are given by $\hat{i} + 2\hat{j} \hat{k}$ and $3\hat{i} \hat{j} + 5\hat{k}$. Find a unit vector along a diagonal of the parallelogram.
- 6. Adjacent sides of a parallelogram are given by $6\hat{i} \hat{j} + 5\hat{k}$ and $\hat{i} + 5\hat{j} 2\hat{k}$. Find the area of parallelogram.
- 7. Find the area of triangle whose diagonals are given by the vectors $\hat{i} 2\hat{j} + \hat{k}$ and $4\hat{i} + \hat{j} 7\hat{k}$.
- 8. Find the value of p if the vectors $p\hat{i} + 2\hat{j} 3\hat{k}$, $\hat{i} + \hat{j} + 4\hat{k}$ and $2\hat{i} \hat{j} + 3\hat{k}$ are coplanar.
- 9. Find a vector of magnitude 8units along $\vec{a} = 2\hat{\iota} 4\hat{j} + \hat{k}$
- 10. Find a unit vector along $\vec{a} = 5\hat{i} + 3\hat{j} 4\hat{k}$
- 11. If $\vec{a} = 2\hat{\imath} 4\hat{\jmath} + \hat{k}$, $\vec{b} = 3\hat{\imath} \hat{\jmath} 5\hat{k}$ then find $|\vec{a} \times \vec{b}|$.
- 12. Find the projection of $\vec{a} = 2\hat{i} 4\hat{j} + \hat{k}$ on $\vec{b} = 3\hat{i} \hat{j} 5\hat{k}$.
- 13. Find the area of parallelogram whose diagonals are given by vectors:

(i) $\vec{a} = 2\vec{i} + \vec{j} + \vec{k} & \vec{b} = \vec{i} - \vec{k}$ (ii) $\vec{a} = \vec{i} + \vec{j} - 4\vec{k} & \vec{b} = \vec{i} + 8\vec{j} + 2\vec{k}$ 14. Find the area of triangle whose vertices are :

- (i) A(2,3,5), B(3,5,8), C(2,7,8)
- (ii) A(1, 2, 4), B(3, 1, -2), C(4, 3, 1)
- (iii) P(1, 1, 1), Q(1, 2, 3), R(2, 3, 1)

15. Show that the following vectors are co-planar : $\land \land \land \land \land \land \land \land$

(i)
$$-2i - 2j + 4k$$
, $-2i + 4j - 2k$, $4i - 2j - 2k$

- $\land \land \land \land \land \land \land \land \land \land \land$
- (ii) i+2j+k, 3i+2j-7k, 5i+6j-5k

16. For what value of λ are the following vectors coplanar :

	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
(i)	i +	2 <i>j</i> +	3k ,	3 <i>i</i> -	- j +	-2k,	-2i +	λ <i>j</i> -	⊦ k &	6 i –	4 j +	2k

(ii) $\bigwedge \bigwedge \bigwedge$ i + 2j + 3k, $3i - \lambda j + 2k$, $-2i + 3j + k \otimes 6i - 4j + 2k$

17. Find x such that the four points A(3, 2, 1), B(4, x, 5), C(4, 2, -2), D(6, 5, -1) are coplanar. 18. Find the volume of the parallelepiped whose sides are given by the vectors :

(i) $\begin{array}{ccc} & \wedge & \wedge & \wedge & \wedge \\ & 3i+4j & 2i+3j+4k & 5k \end{array}$

(ii) $\bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge$ i+2j+3k, 2i+3j+4k, -i+2j-3k

- 19. Find the unit vector perpendicular to the diagonal of parallelogram whose adjacent sides are given by vectors :
 - (i) $\vec{a} = 2i 3j + k \otimes \vec{b} = i + 7j k$

(ii)
$$\vec{a} = 5i + j - k \& \vec{b} = i + j + k$$

20. Find the angle between vectors $\vec{a} \otimes \vec{b}$ such that :

- (i) $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2 \& \vec{a} \cdot \vec{b} = 3$
- (ii) $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ & $\vec{a} \cdot \vec{b} = \sqrt{6}$
- (iii) $|\vec{a}| = 5$, $|\vec{b}| = 2$ & $\vec{a} \cdot \vec{b} = 5$

Prepared By : Vaibhav (Lecturer Maths), Govt. Multipurpose Sec. School, Patiala