

DPP No. 57

Total Marks : 58

Max. Time : 63 min.

Topics :	Parabola,	Ellipse,	Hyperbola
----------	-----------	----------	-----------

Type of Questions			, Min.
Single choice Objective (no negative marking) Q.1 to 6	(3 marks, 3 min.)	[18,	18]
Multiple choice objective (no negative marking) Q.7, 8	(5 marks, 4 min.)	[10,	8]
True or False (no negative marking) Q.9	(2 marks, 2 min.)	[2,	2]
Subjective Questions (no negative marking) Q.10 to Q.14	(4 marks, 5 min.)	[20,	25]
Match the Following (no negative marking) Q.15	(8 marks, 8 min.)	[8,	8]

1. The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with directrix

(A)
$$x = -a$$
 (B) $x = \frac{a}{2}$ (C) $x = -\frac{a}{2}$ (D) $x = 0$

2. A tangent at any point on the ellipse $4x^2 + 9y^2 = 36$ is cut by the tangent at the extremities of the major axis at T and T'. The circle on TT' as diameter passes through the point

(A) $(0, \sqrt{5})$ (B) $(\sqrt{5}, 0)$ (C) (2, 1) (D) $(0, -\sqrt{5})$

- 3. Area of the triangle formed by the tangents at the points (4, 6), (10, 8) and (2, 4) on the parabola $y^2 2x = 8y 20$, is (in sq. units) (A) 4 (B) 2 (C) 1 (D) 8
- 4. Tangents are drawn from the points on the line x y 5 = 0 to $x^2 + 4y^2 = 4$, then all the chords of contact pass through a fixed point, whose co-ordinates are

(A)
$$\left(\frac{1}{5}, \frac{4}{5}\right)$$
 (B) $\left(\frac{4}{5}, -\frac{1}{5}\right)$ (C) $\left(\frac{2}{5}, \frac{2}{5}\right)$ (D) (5, 0)

5. The point of intersection of tangents drawn to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the points where it is intersected by the line $\ell x + my + n = 0$, is

$$(A)\left(\frac{-a^{2}\ell}{n},\frac{b^{2}m}{n}\right) \qquad (B)\left(\frac{-a^{2}\ell}{m},\frac{b^{2}n}{m}\right) \qquad (C)\left(\frac{a^{2}\ell}{m},\frac{-b^{2}n}{m}\right) \qquad (D)\left(\frac{a^{2}\ell}{m},\frac{b^{2}n}{m}\right)$$

6. Let C be the centre, BCB' the minor axis and S the focus (ae, 0) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. B'S is produced to meet the ellipse again in the point P. If CP makes an angle ϕ with the positive direction of x-axis then tan ϕ is equal to

(A)
$$\frac{(1-e^2)^{3/2}}{e}$$
 (B) $\frac{(1-e^2)^{3/2}}{2e}$ (C) $\frac{(1-e^2)^{1/2}}{2}$ (D) $\frac{(1-e^2)^{-1/2}}{e}$

7. The point P on the ellipse $4x^2 + 9y^2 = 36$ is such that the area of the $\triangle PF_1F_2 = \sqrt{10}$ where F_1 , F_2 are foci. Then P has the coordinates

$$(A)\left(\frac{3}{\sqrt{2}},\sqrt{2}\right) \qquad (B)\left(\frac{3}{2},2\right) \qquad (C)\left(-\frac{3}{2},-2\right) \qquad (D)\left(-\frac{3}{\sqrt{2}},-\sqrt{2}\right)$$

8. For the hyperbola, xy - 4x - 2y = 0, which of the following is/are true?
(A) Asymptotes are x = 2 and y = 4.
(B) equation of transverse axis and conjugate axis are x + y - 6 = 0 and x - y + 2 = 0 respectively.
(C) length of transverse axis = length of conjugate axis = 8
(D) eccentricity of its conjugate hyperbola is 3/2

9. Consider the following statements :

 S_1 :If x + y = k is a normal to $y^2 = 12x$, then k = 9 S_2 :The centre of ellipse $4x^2 + 9y^2 - 16x - 54y + 61 = 0$ is (2, 3) S_3 :Co-normal points of ellipse lies on a circle.State, in order, whether S_1, S_2, S_3 are true or false(A) TTF(B) TFT(C) FTT(D) TTT

- **10.** Tangents are drawn from any point on the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ to the circle $x^2 + y^2 = 9$. Find the locus of mid-point of the chord of contact.
- **11.** Two tangents to the parabola $y^2 = 8x$ meet the tangent at its vertex in the points P and Q. If PQ = 4 units, find the locus of the point of intersection of the two tangents.
- **12.** Find the locus of the middle points of the chords of contact of tangents to the hyperbola $x^2 y^2 = a^2$ from the points on its auxiliary circle.
- **13.** Find the equation of common tangents to the hyperbolas $x^2 y^2 = 18$ and xy = 12.
- **14.** The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Find the equation of the

hyperbola if its eccentricity is 2.

15. Match the column

Column - I

(A)Tangents are drawn to the parabola $y^2 = 4x$ from (4, 4). If the normals(p)3drawn at the point of contact passes through (14, - k), then k is

Column - II

- (B) If tangents from (λ ,3) to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ are at right angles then λ is (q) 2
- (C) Number of solutions of $\cos x + 2 \sin x = 1$ in $[0, 2\pi]$ is (r) 16
- (D) If normals at P and Q on the parabola $y^2 = x$ meet at (16, 4) on the (s) -2

parabola then $\frac{PQ^2}{119}$ is

Answers Key

1. D 2. B 3. B 4. B 5. A 6. B 7. AD 8. AC 9. A 10. $\frac{x^2}{9} - \frac{y^2}{4} = \left(\frac{x^2 + y^2}{9}\right)^2$ 11. $y^2 = 8(x + 2)$] 12. $a^2 (x^2 + y^2) = (x^2 - y^2)^2$ 13. $3x + y \pm 12 = 0$ 14. $3x^2 - y^2 - 12 = 0$ 15. (A) \rightarrow r, (B) \rightarrow q, s, (C) \rightarrow p (D) \rightarrow q