Mathematical Logic

EXERCISE 1.1 [PAGES 2 - 3]

Exercise 1.1 | Q 1 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

A triangle has 'n' sides

Solution: It is an open sentence. Hence, it is not a statement.

[**Note:** Answer given in the textbook is 'it is a statement'. However, we found that 'It is not a statement'.]

Exercise 1.1 | Q 2 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The sum of interior angles of a triangle is 180°

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 3 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

You are amazing!

Solution: It is an exclamatory sentence. Hence, it is not a statement.

Exercise 1.1 | Q 4 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Please grant me a loan.

Solution: It is a request. Hence, it is not a statement.

Exercise 1.1 | Q 5 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

 $\sqrt{-4}$ is an irrational number.

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 6 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

$$x^2 - 6x + 8 = 0$$
 implies $x = -4$ or $x = -2$.

Solution: It is a statement which is false. Hence, it's truth value if F.

Exercise 1.1 | Q 7 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

He is an actor.

Solution: It is an open sentence. Hence, it is not a statement.

Exercise 1.1 | Q 8 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Did you eat lunch yet?

Solution: It is an interrogative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 9 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Have a cup of cappuccino.

Solution: It is an interrogative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 10 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

$$(x + y)^2 = x^2 + 2xy + y^2$$
 for all $x, y \in R$.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 11 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Every real number is a complex number.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 12 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

1 is a prime number.

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 13 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

With the sunset the day ends.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 14 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

1! = 0

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 15 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

3 + 5 > 11

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 16 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The number π is an irrational number.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 17 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

 $x^2 - y^2 = (x + y)(x - y)$ for all $x, y \in R$.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 18 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The number 2 is the only even prime number.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 19 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Two co-planar lines are either parallel or intersecting.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 20 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The number of arrangements of 7 girls in a row for a photograph is 7!.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 21 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Give me a compass box.

Solution: It is an imperative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 22 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Bring the motor car here.

Solution: It is an imperative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 23 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

It may rain today.

Solution: It is an open sentence. Hence, it is not a statement.

Exercise 1.1 | Q 24 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

If a + b < 7, where $a \ge 0$ and $b \ge 0$ then a < 7 and b < 7.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 25 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Can you speak in English?

Solution: It is an interrogative sentence. Hence, it is not a statement.

EXERCISE 1.2 [PAGE 6]

Exercise 1.2 | Q 1.1 | Page 6

Express the following statement in symbolic form.

e is a vowel or 2 + 3 = 5

Solution: Let p : e is a vowel.

q:2+3=5

The symbolic form is $p \vee q$.

Exercise 1.2 | Q 1.2 | Page 6

Express the following statement in symbolic form.

Mango is a fruit but potato is a vegetable.

Solution: Let p : Mango is a fruit.

q: Potato is a vegetable.

The symbolic form is $p \wedge q$.

Exercise 1.2 | Q 1.3 | Page 6

Express the following statement in symbolic form.

Milk is white or grass is green.

Solution: Let p : Milk is white.

q : Grass is green.

The symbolic form is $p \lor q$.

Exercise 1.2 | Q 1.4 | Page 6

Express the following statement in symbolic form.

I like playing but not singing.

Solution: Let p : I like playing.

q: I do not like singing.

The symbolic form is $p \wedge q$.

Exercise 1.2 | Q 1.5 | Page 6

Express the following statement in symbolic form.

Even though it is cloudy, it is still raining.

Solution: Let p: It is cloudy.

q: It is still raining.

The symbolic form is $p \wedge q$.

Exercise 1.2 | Q 2.1 | Page 6

Write the truth value of the following statement.

Earth is a planet and Moon is a star.

Solution: Let p : Earth is a planet.

q: Moon is a star.

The truth values of p and q are T and F respectively.

The given statement in symbolic form is p \wedge q.

 $\therefore p \land q \equiv T \land F \equiv F$

: Truth value of the given statement is F.

Exercise 1.2 | Q 2.2 | Page 6

Write the truth value of the following statement.

16 is an even number and 8 is a perfect square.

Solution: Let p: 16 is an even number.

q: 8 is a perfect square.

The truth values of p and q are T and F respectively.

The given statement in symbolic form is $p \land q$.

$$\therefore p \land q \equiv T \land F \equiv F$$

∴ Truth value of the given statement is F.

Exercise 1.2 | Q 2.3 | Page 6

Write the truth value of the following statement.

A quadratic equation has two distinct roots or 6 has three prime factors.

Solution: Let p : A quadratic equation has two distinct roots.

q: 6 has three prime factors.

The truth values of p and q are F and F respectively.

The given statement in symbolic form is p v q.

$$\therefore p \lor q \equiv F \lor F \equiv F$$

 \therefore Truth value of the given statement is F.

Exercise 1.2 | Q 2.4 | Page 6

Write the truth value of the following statement.

The Himalayas are the highest mountains but they are part of India in the North East.

Solution: Let p: Himalayas are the highest mountains.

q: Himalayas are the part of India in the north east.

The truth values of p and q are T and T respectively.

The given statement in symbolic form is p \wedge q.

$$\therefore p \land q \equiv T \land T \equiv T$$

 \div Truth value of the given statement is T.

EXERCISE 1.3 [PAGE 7]

Exercise 1.3 | Q 1.1 | Page 7

Write the negation of the following statement.

All men are animals.

Solution: Some men are not animals.

Exercise 1.3 | Q 1.2 | Page 7

Write the negation of the following statement.

- 3 is a natural number.

Solution: – 3 is not a natural number.

Exercise 1.3 | Q 1.3 | Page 7

Write the negation of the following statement.

It is false that Nagpur is capital of Maharashtra

Solution: Nagpur is capital of Maharashtra.

Exercise 1.3 | Q 1.4 | Page 7

Write the negation of the following statement.

 $2 + 3 \neq 5$

Solution: 2 + 3 = 5

Exercise 1.3 | Q 2.1 | Page 7

Write the truth value of the negation of the following statement.

 $\sqrt{5}$ is an irrational number.

Solution: Truth value of the given statement is T.

: Truth value of its negation is F.

Exercise 1.3 | Q 2.2 | Page 7

Write the truth value of the negation of the following statement.

London is in England.

Solution: Truth value of the given statement is T.

: Truth value of its negation is F.

Exercise 1.3 | Q 2.3 | Page 7

Write the truth value of the negation of the following statement.

For every $x \in \mathbb{N}$, x + 3 < 8.

Solution: Truth value of the given statement is F.

: Truth value of its negation is T.

EXERCISE 1.4 [PAGES 10 - 11]

Exercise 1.4 | Q 1.1 | Page 10

Write the following statement in symbolic form.

If triangle is equilateral then it is equiangular.

Solution: Let p : Triangle is equilateral.

q: Triangle is equiangular.

The symbolic form is $p \rightarrow q$.

Exercise 1.4 | Q 1.2 | Page 10

Write the following statement in symbolic form.

It is not true that "i" is a real number.

Solution: Let p: i is a real number.

The symbolic form is ~ p.

Exercise 1.4 | Q 1.3 | Page 10

Write the following statement in symbolic form.

Even though it is not cloudy, it is still raining.

Solution: Let p: It is cloudy.

q: It is raining.

The symbolic form is $\sim p \land q$.

Exercise 1.4 | Q 1.4 | Page 10

Write the following statement in symbolic form.

Milk is white if and only if the sky is not blue.

Solution: Let p : Milk is white.

q : Sky is blue.

The symbolic form is $p \leftrightarrow \sim q$.

Exercise 1.4 | Q 1.5 | Page 10

Write the following statement in symbolic form.

Stock prices are high if and only if stocks are rising.

Solution: Let p : Stock prices are high.

q: Stock are rising

The symbolic form is $p \leftrightarrow q$.

Exercise 1.4 | Q 1.6 | Page 10

Write the following statement in symbolic form.

If Kutub-Minar is in Delhi then Taj-Mahal is in Agra.

Solution: Let p: Kutub-Minar is in Delhi.

q: Taj-Mahal Is in Agra.

The symbolic form is $p \rightarrow q$.

Exercise 1.4 | Q 2.1 | Page 11

Find the truth value of the following statement.

It is not true that 3 – 7i is a real number.

Solution: Let p: 3-7i is a real number.

The truth value of p is F.

The given statement in symbolic form is ~p.

 $\therefore \sim p \equiv \sim F \equiv T$

: Truth value of the given statement is T.

Exercise 1.4 | Q 2.2 | Page 11

Find the truth value of the following statement.

If a joint venture is a temporary partnership, then discount on purchase is credited to the supplier.

Solution: Let p : A joint venture is a temporary partnership. q : Discount on purchase is credited to the supplier.

The truth value of p and q are T and F respectively.

The given statement in symbolic form is $\mathsf{p}\to\mathsf{q}.$

 $\therefore p \to q \equiv T \to F \equiv F$

 \div Truth value of the given statement is F.

Exercise 1.4 | Q 2.3 | Page 11

Find the truth value of the following statement.

Every accountant is free to apply his own accounting rules if and only if machinery is an asset.

Solution: Let p : Every accountant is free to apply his own accounting rules.

q : Machinery is an asset.

The truth values of p and q are F and T respectively.

The given statement in symbolic form is $p \leftrightarrow q$.

$$\therefore p \leftrightarrow q \equiv F \leftrightarrow T \equiv F$$

: Truth value of the given statement is F.

Exercise 1.4 | Q 2.4 | Page 11

Find the truth value of the following statement.

Neither 27 is a prime number nor divisible by 4.

Solution: Let p: 27 is a prime number.

q: 27 is divisible by 4.

The truth values of p and q are F and F respectively.

The given statement in symbolic form is $\sim p \land \sim q$.

$$\therefore \sim p \land \sim q \equiv \sim F \land \sim F \equiv T \land T \equiv T$$

: Truth value of the given statement is T.

Exercise 1.4 | Q 2.5 | Page 11

Find the truth value of the following statement.

3 is a prime number and an odd number.

Solution: Let p: 3 is a prime number.

q: 3 is an odd number.

The truth values of p and q are T and T respectively.

The given statement in symbolic form is $p \wedge q$.

$$\therefore p \land q \equiv T \land T \equiv T$$

 \therefore Truth value of the given statement is T.

Exercise 1.4 | Q 3.1 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

$$p \wedge (q \wedge r)$$

Solution:
$$p \land (q \land r) \equiv T \land (T \land F)$$

≡ F

Hence, truth value if F.

Exercise 1.4 | Q 3.2 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

$$(p \rightarrow q) \lor (r \land s)$$

Solution: $(p \rightarrow q) \lor (r \land s) \equiv (T \rightarrow T) \lor (F \land F)$

 $\equiv T \vee F$

≡Т

Hence, truth value if T.

Exercise 1.4 | Q 3.3 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

$$\sim [(\sim p \lor s) \land (\sim q \land r)]$$

Solution: $\sim [(\sim p \lor s) \land (\sim q \land r)] \equiv \sim [(\sim T \lor F) \land (\sim T \land F)]$

 $\equiv \sim [(F \lor F) \land (F \land F)]$

≡ ~ (F ∧ F)

≡ ~ F

≡ T

Hence, truth value if T.

Exercise 1.4 | Q 3.4 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

$$(p \to q) \leftrightarrow {\sim} (p \ \lor \ q)$$

Solution: $(p \rightarrow q) \leftrightarrow \sim (p \lor q) \equiv (T \rightarrow T) \leftrightarrow (T \lor T)$

 $\equiv \mathsf{T} \leftrightarrow \mathsf{\sim} \mathsf{T}$

 $\equiv T \leftrightarrow F$

≡ F

Hence, truth value if F.

Exercise 1.4 | Q 3.5 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

$$[(p \lor s) \to r] \lor \sim [\sim (p \to q) \lor s]$$

Solution: $[(p \lor s) \rightarrow r] \lor \sim [\sim (p \rightarrow q) \lor s]$

$$\equiv [(T \lor F) \rightarrow F] \lor \sim [\sim (T \rightarrow T) \lor F]$$

$$\equiv$$
 $(T \rightarrow F) \lor \sim (\sim T \lor F)$

$$\equiv F \lor \sim (F \lor F)$$

≡ T

Hence, truth value is T.

Exercise 1.4 | Q 3.6 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

$$\sim$$
 [p \vee (r \wedge s)] \wedge \sim [(r \wedge \sim s) \wedge q]

Solution: \sim [p \vee (r \wedge s)] \wedge \sim [(r \wedge \sim s) \wedge q]

$$\equiv \sim [T \lor (F \land F)] \land \sim [(F \land \sim F) \land T]$$

$$\equiv \sim (T \vee F) \wedge \sim [(F \wedge T) \wedge T]$$

$$\equiv \sim T \wedge \sim (F \wedge T)$$

$$\equiv F \land \sim F$$

$$\equiv F \wedge T$$

≡ F

Hence, truth value is F.

Exercise 1.4 | Q 4.1 | Page 11

Assuming that the following statement is true,

p : Sunday is holiday,

q: Ram does not study on holiday,

find the truth values of the following statements.

Sunday is not holiday or Ram studies on holiday.

Solution: Symbolic form of the given statement is ~ p V~q

 $\therefore \sim p \lor \sim q \equiv \sim T \lor \sim T$

≡F∨F

≡ F

Hence, truth value is F.

Exercise 1.4 | Q 4.2 | Page 11

Assuming that the following statement is true,

p: Sunday is holiday,

q: Ram does not study on holiday,

find the truth values of the following statements.

If Sunday is not holiday then Ram studies on holiday.

Solution: Symbolic form of the given statement is

 $\sim p \rightarrow \sim q$

 $\therefore \sim p \rightarrow \sim q \equiv \sim T \rightarrow \sim T$

 $\equiv F \rightarrow F$

≡ T

Hence, truth value is T.

Exercise 1.4 | Q 4.3 | Page 11

Assuming that the following statement is true,

p : Sunday is holiday,

q: Ram does not study on holiday,

find the truth values of the following statements.

Sunday is a holiday and Ram studies on holiday.

Solution: Symbolic form of the given statement is $p \land \sim q$

 $\therefore p \land \sim q \equiv T \land \sim T$

 $\equiv T \wedge F$

≡ F

Hence, truth value is F.

Exercise 1.4 | Q 5.1 | Page 11

If p: He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

p ↔ ~ **q**

Solution: He swims if and only if water is not warm.

Exercise 1.4 | Q 5.2 | Page 11

If p: He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

~ (p ∨ q)

Solution: It is not true that he swims or water is warm.

Exercise 1.4 | Q 5.3 | Page 11

If p: He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

 $\mathbf{q} \rightarrow \mathbf{p}$

Solution: If water is warm then he swims.

Exercise 1.4 | Q 5.4 | Page 11

If p: He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

q ∧ ~ **p**

Solution: Water is warm and he does not swim.

EXERCISE 1.5 [PAGE 12]

Exercise 1.5 | Q 1.1 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

$$x^2 + 3x - 10 = 0$$

Solution: $\exists x \in \mathbb{N}$, such that $x^2 + 3x - 10 = 0$

It is true statement, since $x = 2 \in N$ satisfies it.

Exercise 1.5 | Q 1.2 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

3x - 4 < 9

Solution: $\exists x \in \mathbb{N}$, such that 3x - 4 < 9

It is true statement, since

 $x = 2, 3, 4 \in N$ satisfies 3x - 4 < 9.

Exercise 1.5 | Q 1.3 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

 $n^2 \ge 1$

Solution: \forall $n \in \mathbb{N}$, $n^2 \ge 1$

It is true statement, since all $n \in N$ satisfy it.

Exercise 1.5 | Q 1.4 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

2n - 1 = 5

Solution: \exists n \in N, such that 2n - 1 = 5

It is a true statement since all $n = 3 \in N$ satisfy 2n - 1 = 5.

Exercise 1.5 | Q 1.5 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

y + 4 > 6

Solution: $\exists y \in N$, such that y + 4 > 6

It is a true statement since $y = 3, 4, ... \in N$ satisfy y + 4 > 6.

Exercise 1.5 | Q 1.6 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

 $3y - 2 \le 9$

Solution: \exists y \in N, such that \exists y \in 2 \leq 9

It is a true statement since $y = 1, 2, 3 \in N$ satisfy it.

Exercise 1.5 | Q 2.1 | Page 12

If B = $\{2, 3, 5, 6, 7\}$ determine the truth value of $\forall x \in B$ such that x is prime number.

Solution: For x = 6, x is not a prime number.

- x = 6 does not satisfies the given statement.
- ∴ The given statement is false.
- ∴ It's truth value is F.

Exercise 1.5 | Q 2.2 | Page 12

If B = $\{2, 3, 5, 6, 7\}$ determine the truth value of $\exists n \in B$, such that n + 6 > 12.

Solution: For n = 7, n + 6 = 7 + 6 = 13 > 12

- \therefore n = 7 satisfies the equation n + 6 > 12.
- ∴ The given statement is true.
- ∴ It's truth value is T.

Exercise 1.5 | Q 2.3 | Page 12

If $B = \{2, 3, 5, 6, 7\}$ determine the truth value of

 \exists n \in B, such that 2n + 2 < 4.

Solution: There is no n in B which satisfies 2n + 2 < 4.

- ∴ The given statement is false.
- ∴ It's truth value is F.

Exercise 1.5 | Q 2.4 | Page 12

If B = $\{2, 3, 5, 6, 7\}$ determine the truth value of $\forall y \in B$, such that y^2 is negative.

Solution: There is no y in B which satisfies $y^2 < 0$.

- \div The given statement is false.
- ∴ It's truth value is F.

Exercise 1.5 | Q 2.5 | Page 12

If B = $\{2, 3, 5, 6, 7\}$ determine the truth value of $\forall y \in B$, such that $(y - 5) \in N$

Solution: For y = 2, $y - 5 = 2 - 5 = -3 \notin N$.

 \therefore y = 2 does not satisfies the equation $(y - 5) \in N$.

: The given statement is false.

∴ It's truth value is F.

EXERCISE 1.6 [PAGE 16]

Exercise 1.6 | Q 1.1 | Page 16

Prepare truth tables for the following statement pattern.

$$p \rightarrow (\sim p \lor q)$$

Solution:

$$p \rightarrow (\sim p \lor q)$$

р	q	~p	~ p ∨ q	p → (~ p ∨ q)
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Exercise 1.6 | Q 1.2 | Page 16

Prepare truth tables for the following statement pattern.

$$(\sim p \lor q) \land (\sim p \lor \sim q)$$

Solution: $(\sim p \lor q) \land (\sim p \lor \sim q)$

р	q	~p	~q	~p∨q	~pV~q	(~p∨q)∧(~p∨~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	Т	Т	Т

F	F	Т	Т	Т	Т	Т

Exercise 1.6 | Q 1.3 | Page 16

Prepare truth tables for the following statement pattern.

$$(p \land r) \rightarrow (p \lor \sim q)$$

Solution: $(p \land r) \rightarrow (p \lor \sim q)$

р	q	r	~q	p∧r	p∨~q	(p ∧ r) → (p ∨ ~ q)
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	F	Т	Т
Т	F	Т	Т	Т	Т	Т
T	F	F	Т	F	Т	Т
F	Т	Т	F	F	F	Т
F	Т	F	F	F	F	Т
F	F	Т	Т	F	Т	Т
F	F	F	Т	F	Т	Т

Exercise 1.6 | Q 1.4 | Page 16

Prepare truth tables for the following statement pattern.

$$(p \land q) \lor \sim r$$

Solution: $(p \land q) \lor \sim r$

р	q	r	~r	pΛq	(p ∧ q) ∨ ~ r
Т	Т	Т	F	Т	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	Т	F	Т
F	Т	Т	F	F	F
F	Т	F	Т	F	Т

F	F	Т	F	F	F
F	F	F	T	F	Т

Exercise 1.6 | Q 2.1 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

$$q \vee [\sim (p \wedge q)]$$

Solution:

р	q	p∧q	~ (p ∧ q)	q ∨ [~ (p ∧ q)]
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Т

All the truth values in the last column are T. Hence, it is a tautology.

Exercise 1.6 | Q 2.2 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

$$(\sim q \wedge p) \wedge (p \wedge \sim p)$$

Solution:

р	q	~p	~q	(~q∧p)	(p∧~p)	(~q^p)^(p^~p)
Т	Т	F	F	F	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	F
F	F	Т	Т	F	F	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 2.3 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

$$(p \land \sim q) \rightarrow (\sim p \land \sim q)$$

Solution:

р	q	~p	~q	p∧~q	~p^~q	(p∧~q)→(~p∧~q)
Т	Т	F	F	F	F	Т
T	F	F	Т	Т	F	F
F	T	T	F	F	F	Т
F	F	Т	Т	F	Т	Т

The truth values in the last column are not identical. Hence, it is **contingency**.

Exercise 1.6 | Q 2.4 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

$$\sim p \rightarrow (p \rightarrow \sim q)$$

Solution:

р	q	~p	~q	p→~q	~p→(p→~q)
Т	Т	F	F	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is **tautology.**

Exercise 1.6 | Q 3.1 | Page 16

Prove that the following statement pattern is a tautology.

$$(b \lor d) \to d$$

р	q	p∧q	(b∨d)→d
Т	Т	Т	Т

Т	F	F	Т
F	Т	F	Т
F	F	F	Т

All the truth values in the last column are T. Hence, it is **tautology**.

Exercise 1.6 | Q 3.2 | Page 16

Prove that the following statement pattern is a tautology.

$$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$$

Solution:

р	q	~p	~q	p→q	~q→~p	(p→q)↔(~q→~p)
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is a tautology.

Exercise 1.6 | Q 3.3 | Page 16

Prove that the following statement pattern is a tautology.

$$(\sim p \land \sim q) \rightarrow (p \rightarrow q)$$

Solution:

р	q	~p	~q	~p^~q	p→q	(~p∧~q)→(p→q)
Т	Т	F	F	F	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is a tautology.

Exercise 1.6 | Q 3.4 | Page 16

Prove that the following statement pattern is a tautology.

$$(\sim p \lor \sim q) \leftrightarrow \sim (p \land q)$$

Solution:

р	q	~p	~q	~pV~q	p∧q	~pV~q	(~p∨~q↔~(p ∧ q)
Т	Т	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т

All the truth values in the last column are T. Hence, it is a tautology.

Exercise 1.6 | Q 4.1 | Page 16

Prove that the following statement pattern is a contradiction.

$$(p \lor q) \land (\sim p \land \sim q)$$

Solution:

р	q	~p	~q	p∨q	~p^~q	(p∨q)∧(~p∧~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 4.2 | Page 16

Prove that the following statement pattern is a contradiction.

$$(p \land q) \land \sim p$$

р	q	~p	b∨d	(p∧q)∧~p
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	F	F

F	F	Т	F	F

All the truth values in the last column are F. Hence, it is a contradiction.

Exercise 1.6 | Q 4.3 | Page 16

Prove that the following statement pattern is a contradiction.

$$(p \land q) \land (\sim p \lor \sim q)$$

Solution:

р	q	~p	~q	p∧q	~pV~q	(p∧q)∧(~p∨~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	T	F	F	Т	F
F	F	T	Т	F	Т	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 4.4 | Page 16

Prove that the following statement pattern is a contradiction.

$$(p \to q) \land (p \land \sim q)$$

р	q	~q	p→q	p∧~q	(p→q)∧(p∧~q)
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	F	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 5.1 | Page 16

Show that the following statement pattern is contingency.

$$(p \land \sim q) \rightarrow (\sim p \land \sim q)$$

Solution:

р	q	~p	~q	p∧~q	~p^~q	(p∧~q)→(~p∧~q)
Т	Т	F	F	F	F	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	Т	Т

The truth values in the last column are not identical. Hence, it is **contingency**.

Exercise 1.6 | Q 5.2 | Page 16

Show that the following statement pattern is contingency.

$$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$$

Solution:

р	q	~p	p→q	~p∨q	(p→q)↔(~p∨q)
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is a tautology. Not contingency.

Exercise 1.6 | Q 5.3 | Page 16

Show that the following statement pattern is contingency.

$$p \land [(p \rightarrow \neg q) \rightarrow q]$$

р	q	~q	p→~q	(p→~q)→q	p∧[(p→~q)→q]

Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	Т	Т	F
F	F	Т	Т	F	F

Truth values in the last column are not identical. Hence, it is contingency.

Exercise 1.6 | Q 5.4 | Page 16

Show that the following statement pattern is contingency.

$$(p \rightarrow q) \land (p \rightarrow r)$$

Solution:

р	q	r	p→q	p→r	(p→q)∧(p→r)
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	T	T	T	T
F	F	F	T	Т	T

The truth values in the last column are not identical. Hence, it is contingency.

Exercise 1.6 | Q 6.1 | Page 16

Using the truth table, verify

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Prove that the following pair of statement patterns is equivalent.

p
$$\vee$$
 (q \wedge r) and (p \vee q) \wedge (p \vee r)

1	2	3	4	5	6	7	8
р	q	r	q∧r	p∨(q∧r)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	Т	Т	Т	Т	Т	Т

Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

The entries in columns 5 and 8 are identical.

$$\therefore p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Exercise 1.6 | Q 6.2 | Page 16

Using the truth table, verify

$$p \to (p \to q) \equiv {\color{gray} \sim} \ q \to (p \to q)$$

Solution:

1	2	3	4	5	6
р	q	~q	p→q	p→(p→q)	~q→(p→q)
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т

In the above truth table, entries in columns 5 and 6 are identical.

$$\therefore p \to (p \to q) \equiv \sim q \to (p \to q)$$

Exercise 1.6 | Q 6.3 | Page 16

Using the truth table, verify

$$\sim$$
(p \rightarrow \sim q) \equiv p \land \sim (\sim q) \equiv p \land q

1	2	3	4	5	6	7	8
р	q	~ q	p→~q	~(p→~q)	~(~q)	p∧~(~q)	p∧q

Т	Т	F	F	Т	T	Т	Т
Т	F	Т	Т	F	F	F	F
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	F	F	F	F

In the above table, entries in columns 5, 7, and 8 are identical.

$$\therefore \sim (p \rightarrow \sim q) \equiv p \land \sim (\sim q) \equiv p \land q$$

Exercise 1.6 | Q 6.4 | Page 16

Using the truth table, verify

$$\sim$$
(p \vee q) \vee (\sim p \wedge q) \equiv \sim p

Solution:

1	2	3	4	5	6	7
р	q	~p	(p∨q)	~(p∨q)	~p∧q	~(pvq)v(~p∧q)
Т	Т	F	Т	F	F	F
Т	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	Т
F	F	Т	F	Т	F	Т

In the above truth table, the entries in columns 3 and 7 are identical.

$$\therefore \sim (p \lor q) \lor (\sim p \land q) \equiv \sim p$$

Exercise 1.6 | Q 7.1 | Page 16

Using the truth table, verify

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Prove that the following pair of statement patterns is equivalent.

$$p \lor (q \land r)$$
 and $(p \lor q) \land (p \lor r)$

1	2	3	4	5	6	7	8
р	q	r	q∧r	p∨(q∧r)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т

Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

The entries in columns 5 and 8 are identical.

$$\therefore p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Exercise 1.6 | Q 7.2 | Page 16

Prove that the following pair of statement pattern is equivalent.

$$p \leftrightarrow q$$
 and $(p \rightarrow q) \land (q \rightarrow p)$

Solution:

1	2	3	4	5	6
р	q	p↔q	p→q	d→b	(b→d)∨(d→b)
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т

In the above table, entries in columns 3 and 6 are identical.

 \div Statement p \leftrightarrow q and (p \rightarrow q) \land (q \rightarrow p) are equivalent.

Exercise 1.6 | Q 7.3 | Page 16

Prove that the following pair of statement pattern is equivalent.

$$p \rightarrow q$$
 and ~ $q \rightarrow$ ~ p and ~ $p \ V \ q$

1	2	3	4	5	6	7
р	q	~p	~q	p→q	~q→~p	~p∨q
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	F

F	Т	Т	F	Т	Т	Т
F	F	Т	Т	T	Т	Т

In the above table, entries in columns 5, 6 and 7 are identical

 \therefore Statement p \rightarrow q and \sim q \rightarrow \sim p and \sim p v q are equivalent.

Exercise 1.6 | Q 7.4 | Page 16

Prove that the following pair of statement pattern is equivalent.

$$\sim$$
(p \wedge q) and \sim p \vee \sim q

Solution:

1	2	3	4	5	6	7
р	q	~p	~q	p∧q	~(p∧q)	~pV~q
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	T	T

In the above table, entries in columns 6 and 7 are identical.

 \therefore Statement \sim (p \land q) and \sim p \lor \sim q are equivalent.

EXERCISE 1.7 [PAGE 17]

Exercise 1.7 | Q 1.1 | Page 17

Write the dual of the following:

$$(p \lor q) \lor r$$

Solution: $(p \land q) \land r$

Exercise 1.7 | Q 1.2 | Page 17

Write the dual of the following:

$$\sim$$
(p V q) \wedge [p V \sim (q \wedge \sim r)]

Solution: \sim (p \wedge q) \vee [p \wedge \sim (q \vee \sim r)]

Exercise 1.7 | Q 1.3 | Page 17

Write the dual of the following:

 $p \lor (q \lor r) \equiv (p \lor q) \lor r$

Solution: $p \land (q \land r) \equiv (p \land q) \land r$

Exercise 1.7 | Q 1.4 | Page 17

Write the dual of the following:

 \sim (p \land q) \equiv \sim p \lor \sim q

Solution: \sim (p \vee q) \equiv \sim p \wedge \sim q

Exercise 1.7 | Q 2.1 | Page 17

Write the dual statement of the following compound statement.

13 is a prime number and India is a democratic country.

Solution: 13 is a prime number or India is a democratic country.

Exercise 1.7 | Q 2.2 | Page 17

Write the dual statement of the following compound statement.

Karina is very good or everybody likes her.

Solution: Karina is very good and everybody likes her.

Exercise 1.7 | Q 2.3 | Page 17

Write the dual statement of the following compound statement.

Radha and Sushmita cannot read Urdu.

Solution: Radha or Sushmita cannot read Urdu.

Exercise 1.7 | Q 2.4 | Page 17

Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.

Solution: A number is a real number or the square of the number is non-negative.

EXERCISE 1.8 [PAGE 21]

Exercise 1.8 | Q 1.1 | Page 21

Write the negation of the following statement.

All the stars are shining if it is night.

Solution: Let q : All stars are shining.

p: It is night.

The given statement in symbolic form is $p \to q$. It's negation is $\sim (p \to q) \equiv p \land \sim q$

: The negation of a given statement is 'It is night and some stars are not shining'.

Exercise 1.8 | Q 1.2 | Page 21

Write the negation of the following statement.

 \forall n \in N, n + 1 > 0

Solution: \exists $n \in N$ such that $n + 1 \le 0$.

Exercise 1.8 | Q 1.3 | Page 21

Write the negation of the following statement.

 $\exists n \in \mathbb{N}, (n^2 + 2) \text{ is odd number.}$

Solution: \forall n \in N, (n² + 2) is not odd number.

Exercise 1.8 | Q 1.4 | Page 21

Write the negation of the following statement.

Some continuous functions are differentiable.

Solution: All continuous functions are not differentiable.

Exercise 1.8 | Q 2.1 | Page 21

Using the rules of negation, write the negation of the following:

$$(p \to r) \land q$$

Solution: $\sim [(p \rightarrow r) \land q] \equiv \sim (p \rightarrow r) \lor \sim q \dots [Negation of conjunction]$

 \equiv (p \land ~ r) \lor ~q[Negation of implication]

Exercise 1.8 | Q 2.2 | Page 21

Using the rules of negation, write the negation of the following:

$$\mathord{\sim} (p \ \lor \ q) \to r$$

Solution: $\sim [\sim (p \lor q) \rightarrow r] \equiv \sim (p \lor q) \land \sim r \dots [Negation of implication]$

 \equiv (~p \land ~q) \land ~r[Negation of disjunction]

Exercise 1.8 | Q 2.3 | Page 21

Using the rules of negation, write the negation of the following:

$$(\sim p \land q) \land (\sim q \lor \sim r)$$

Solution: $\sim [(\sim p \land q) \land (\sim q \lor \sim r)]$

 $\equiv \sim (\sim p \land q) \lor \sim (\sim q \lor \sim r)$...[Negation of conjunction]

 $\equiv [\sim(\sim p) \lor \sim q] \lor [\sim(\sim q) \land \sim(\sim r)]$...[Negation of conjunction and disjunction]

 \equiv (p \vee ~q) \vee (q \vee r)[Negation on negation]

Exercise 1.8 | Q 3.1 | Page 21

Write the converse, inverse, and contrapositive of the following statement.

If it snows, then they do not drive the car.

Solution: Let p: It snows.

q: They do not drive the car.

 \therefore The given statement is p \rightarrow q.

Its converse is $q \rightarrow p$.

If they do not drive the car then it snows.

Its inverse is $\sim p \rightarrow \sim q$.

If it does not snow then they drive the car.

Its contrapositive is $\sim q \rightarrow \sim p$.

If they drive the car then it does not snow.

Exercise 1.8 | Q 3.2 | Page 21

Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.

Solution: Let p: He studies.

q: He will go to college.

 \div The given statement is p \to q.

Its converse is $q \rightarrow p$.

If he will go to college then he studies.

Its inverse is $\sim p \rightarrow \sim q$.

If he does not study then he will not go to college.

Its contrapositive is $\sim q \rightarrow \sim p$.

If he will not go to college then he does not study.

Exercise 1.8 | Q 4.1 | Page 21

With proper justification, state the negation of the following.

$$(p \rightarrow q) \lor (p \rightarrow r)$$

Solution: $\sim [(p \rightarrow q) \lor (p \rightarrow r)]$

 $\equiv \sim (p \rightarrow q) \land \sim (p \rightarrow r)$...[Negation of disjunction]

 \equiv (p \land ~ q) \land (p \land ~r)[Negation of implication]

Exercise 1.8 | Q 4.2 | Page 21

With proper justification, state the negation of the following.

$$(p \leftrightarrow q) \lor (\sim q \rightarrow \sim r)$$

Solution: $\sim [(p \leftrightarrow q) \lor (\sim q \rightarrow \sim r)]$

 $\equiv \sim (p \leftrightarrow q) \land (\sim q \rightarrow \sim r)$ [Negation of disjunction]

 \equiv [(p \land ~q) \lor (q \land ~p)] \land ~(~q \rightarrow ~r)[Negation of double implication]

 \equiv [(p \land ~q) \lor (q \land ~p)] \land [~ q \land ~(~r)][Negation of implication]

 \equiv [(p \land ~q) \lor (q \land ~p)] \land (~ q \land r)[Negation of negation]

Exercise 1.8 | Q 4.3 | Page 21

With proper justification, state the negation of the following.

$$(p \rightarrow q) \wedge r$$

Solution: $\sim [(p \rightarrow q) \land r]$

 $\equiv \sim (p \rightarrow q) \lor \sim r$ [Negation of conjunction]

 \equiv (p \land ~q) \lor ~ r[Negation of implication]

EXERCISE 1.9 [PAGE 22]

Exercise 1.9 | Q 1.1 | Page 22

Without using truth table, show that

$$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$$

Solution: L.H.S.

$$\equiv p \leftrightarrow q$$

$$\equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$\equiv$$
 (~p \vee q) \wedge (~q \vee p)

$$\equiv$$
 [~ p \land (~ q \lor p)] \lor [q \land (~ q \lor p)][Distributive law]

$$\equiv$$
 [($\sim p \land \sim q$) \lor ($\sim p \land p$)] \lor [($q \land \sim q$) \lor ($q \land p$)][Distributive Law]

$$\equiv$$
 [(~ p \land ~ q) \lor F] \lor [F \lor (q \land p)][Complement Law]

$$\equiv$$
 (~p \wedge ~q) \vee (q \wedge p)[Identity Law]

$$\equiv$$
 (p \land q) \lor (~ p \land ~ q)[Commutative Law]

≡ R.H.S.

Exercise 1.9 | Q 1.2 | Page 22

Without using truth table, show that

$$p \wedge [(\sim p \vee q) \vee \sim q] \equiv p$$

Solution: L.H.S.

$$\equiv p \land [(\sim p \lor q) \lor \sim q]$$

$$\equiv p \land [(\sim p \lor (q \lor \sim q)]$$
[Associative law]

$$\equiv p \land (\sim p \lor T)$$
[Complement law]

$$\equiv p \wedge T$$
[Identity law]

≡ R.H.S.

Exercise 1.9 | Q 1.3 | Page 22

Without using truth table, show that

$$\sim [(p \land q) \rightarrow \sim q] \equiv p \land q$$

Solution: L.H.S.

$$\equiv \, \sim [(p \, \wedge \, q) \rightarrow \, \sim \, q]$$

$$\equiv$$
 (p \land q) \land ~ (~ q)[Negation of implication]

$$\equiv$$
 (p \land q) \land q[Negation of a negation]

$$\equiv p \land (q \land q)$$
[Associative law]

≡ R.H.S.

Exercise 1.9 | Q 1.4 | Page 22

Without using truth table, show that

$$\sim r \rightarrow \sim (p \land q) \equiv [\sim (q \rightarrow r)] \rightarrow \sim p$$

Solution: L.H.S.

$$\equiv \sim r \rightarrow \sim (p \land q)$$

$$\equiv \sim (\sim r) \lor \sim (p \land q)$$
 $[p \rightarrow q \equiv \sim p \lor q]$

$$\equiv r \vee \sim (p \wedge q)$$
[Negation of negation]

$$\equiv$$
 r \vee (\sim p \vee \sim q)[De Morgan's law]

$$\equiv \sim p \vee (\sim q \vee r)$$
[Commutative and associative law]

$$\equiv \sim p \lor (q \rightarrow r)$$
 $[p \rightarrow q \equiv \sim p \lor q]$

$$\equiv$$
 (q \rightarrow r) \vee ~p[Commutative law]

$$\equiv \sim [\sim (q \rightarrow r)] \lor \sim p$$
[Negation of negation]

$$\equiv [\textcolor{red}{\sim} (q \rightarrow r)] \rightarrow \textcolor{red}{\sim} p \qquad [p \rightarrow q \equiv \textcolor{red}{\sim} p \vee q]$$

= R.H.S.

Exercise 1.9 | Q 1.5 | Page 22

Without using truth table, show that

$$(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

Solution: L.H.S.

$$\equiv (p \lor q) \rightarrow r$$

$$\equiv \sim (p \lor q) \lor r$$
 $[p \rightarrow q \rightarrow \sim p \lor q]$

$$\equiv$$
 (~ p \land ~ q) \lor r[De Morgan's law]

$$\equiv$$
 (~p \vee r) \wedge (~q \vee r)[Distributive law]

$$\equiv (p \rightarrow r) \land (q \rightarrow r) \qquad \qquad[p \rightarrow q \rightarrow \sim p \lor q]$$

= R.H.S.

Exercise 1.9 | Q 2.1 | Page 22

Using the algebra of statement, prove that

$$[p \land (q \lor r)] \lor [\sim r \land \sim q \land p] \equiv p$$

Solution: L.H.S.

$$= [p \land (q \lor r)] \lor [\sim r \land \sim q \land p]$$

$$\equiv$$
 [p \land (q \lor r)] \lor [(\sim r \land \sim q) \land p] ...[Associative Law]

$$\equiv$$
 [p \land (q \lor r)] \lor [(\sim q \land \sim r) \land p][Commutative Law]

$$\equiv$$
 [p \land (q \lor r)] \lor [\sim (q \lor r) \land p][De Morgan's Law]

$$\equiv$$
 [p \land (q \lor r)] \lor [p \land \sim (q \lor r)][Commutative Law]

$$\equiv p \land [(q \lor r) \lor \sim (q \lor r)]$$
[Distributive Law]

```
≡ p .....[Identity Law]
```

= R.H.S.

Exercise 1.9 | Q 2.2 | Page 22

Using the algebra of statement, prove that

$$(p \land q) \lor (p \land \sim q) \lor (\sim p \land \sim q) \equiv (p \lor \sim q)$$

Solution: L.H.S.

$$= (p \land q) \lor (p \land \sim q) \lor (\sim p \land \sim q)$$

$$\equiv$$
 (p \land q) \lor [(p \land ~ q) \lor (~ p \land ~ q)][Associative Law]

$$\equiv$$
 (p \land q) \lor [(\sim q \land p) \lor (\sim q \land \sim p)][Commutative Law]

$$\equiv$$
 (p \land q) \lor [\sim q \land (p \lor \sim p)][Distributive Law]

$$\equiv$$
 (p \land q) \lor (\sim q \land t)[Complement Law]

$$\equiv$$
 (p \land q) \lor (\sim q)[Identity Law]

$$\equiv$$
 (p $\vee \sim$ q) \wedge (q $\vee \sim$ q)[Distributive Law]

$$\equiv$$
 (p \vee ~ q) \wedge t[Complement Law]

$$\equiv p \lor \sim q$$
[Identity Law]

= R.H.S.

Exercise 1.9 | Q 2.3 | Page 22

Using the algebra of statement, prove that

$$(p \lor q) \land (\sim p \lor \sim q) \equiv (p \land \sim q) \lor (\sim p \land q)$$

Solution: L.H.S.

$$= (p \lor q) \land (\sim p \lor \sim q)$$

$$\equiv$$
 [(p \lor q) \land ~ p] \lor [(p \lor q) \land ~ q][Distributive law]

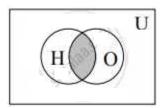
$$\equiv [(p \land \sim p) \lor (q \land \sim p)] \lor [(p \land \sim q) \lor (q \land \sim q)] \qquad[Distributive law]$$

$$\equiv$$
 [F \vee (q \wedge ~p)] \vee [(p \wedge ~ q) \vee F][Complement law]

$$\equiv$$
 (q $\land \sim$ p) \lor (p $\land \sim$ q)[Identity law]

$$\equiv$$
 (p \land ~ q) \lor (~ p \land q)[Commutative law]

= R.H.S.


EXERCISE 1.10 [PAGES 22 - 27]

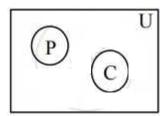
Exercise 1.10 | Q 1.1 | Page 27

Represent the truth of the following statement by the Venn diagram.

Some hardworking students are obedient.

Solution: Let U : The set of all students. H : The set of all hardworking students. O : The set of all obedient students.

The above Venn diagram represents truth of the given statement, $H \cap O \neq \phi$


Exercise 1.10 | Q 1.2 | Page 27

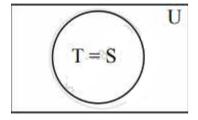
Represent the truth of the following statement by the Venn diagram.

No circles are polygons.

Solution: Let U: The set of all closed geometrical figures in plane.

P: The set of all polygons C: The set of all circles.

The above Venn diagram represents truth of the given statement, $P \cap C \neq \phi$


Exercise 1.10 | Q 1.3 | Page 27

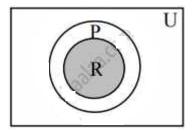
Represent the truth of the following statement by the Venn diagram.

All teachers are scholars and scholars are teachers.

Solution: Let U : The set of all human beings.

T: The set of all teachers. S: The set of all scholars

The above Venn diagram represents truth of the given statement, T = S


Exercise 1.10 | Q 1.4 | Page 22

Represent the truth of the following statement by the Venn diagram.

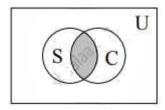
If a quadrilateral is a rhombus, then it is a parallelogram.

Solution: Let U: The set of all quadrilaterals.

P: The set of all parallelograms. R: The set of all rhombuses.

The above Venn diagram represents truth of the given statement, $R \subset P$.

Exercise 1.10 | Q 2.1 | Page 27


Draw a Venn diagram for the truth of the following statement.

Some share brokers are chartered accountants.

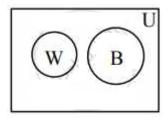
Solution: Let U: The set of all human beings.

S: The set of all share brokers.

C: The set of all chartered accountants.

The above Venn diagram represents the truth of the given statement i.e., $S \cap C \neq \phi$.

Exercise 1.10 | Q 2.2 | Page 27


Draw a Venn diagram for the truth of the following statement.

No wicket keeper is bowler, in a cricket team.

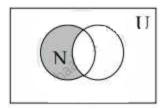
Solution: Let U: The set of all human beings.

W: The set of all wicket keepers.

B: The set of all bowlers.

The above Venn diagram represents the truth of the given statement i.e., $W \cap B = \varphi$.

Exercise 1.10 | Q 3.1 | Page 27


Represent the following statement by the Venn diagram.

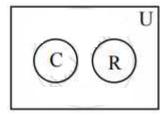
Some non-resident Indians are not rich.

Solution: Let, U: The set of all human beings.

N: The set of all non-resident Indians.

R: The set of all rich people.

The above Venn diagram represents the truth of the given statement i.e., N - R $\neq \varphi$


Exercise 1.10 | Q 3.2 | Page 27

Represent the following statement by the Venn diagram.

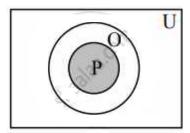
No circle is rectangle.

Solution: Let, U: The set of all geometrical figures.

C: The set of all circles.
R: The set of all rectangles.

The above Venn diagram represents the truth of the given statement i.e., $C \cap R = \varphi$.

Exercise 1.10 | Q 3.3 | Page 27


Represent the following statement by the Venn diagram.

If n is a prime number and $n \neq 2$, then it is odd.

Solution: Let, U: The set of all real numbers.

P: The set of all prime numbers n and $n \neq 2$.

O: The set of all odd numbers.

The above Venn diagram represents the truth of the given statement i.e., $P \subset O$.

MISCELLANEOUS EXERCISE 1 [PAGES 29 - 34]

Miscellaneous Exercise 1 | Q 1.01 | Page 29

Choose the correct alternative:

Which of the following is not a statement?

- 1. Smoking is injuries to health
- 2. 2 + 2 = 4
- 3. 2 is the only even prime number.
- 4. Come here

Solution: Come here

Miscellaneous Exercise 1 | Q 1.02 | Page 29

Choose the correct alternative:

Which of the following is an open statement?

- 1. x is a natural number.
- 2. Give answer a glass of water.
- 3. Wish you best of luck.
- 4. Good morning to all.

Solution: x is a natural number.

Miscellaneous Exercise 1 | Q 1.03 | Page 29

Choose the correct alternative:

Let $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$. Then, this law is known as.

1. commutative law

- 2. associative law
- 3. De-Morgan's law
- 4. distributive law

Solution: distributive law.

Miscellaneous Exercise 1 | Q 1.04 | Page 29

Choose the correct alternative:

The false statement in the following is

- 1. $p \land (\sim p)$ is contradiction
- 2. $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a contradiction.
- 3. $\sim (\sim p) \leftrightarrow p$ is a tautology
- 4. $p \lor (\sim p) \leftrightarrow p$ is a tautology

Solution: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a contradiction.

Miscellaneous Exercise 1 | Q 1.05 | Page 29

Choose the correct alternative:

For the following three statements

p: 2 is an even number.

q: 2 is a prime number.

r: Sum of two prime numbers is always even.

Then, the symbolic statement (p \land q) $\rightarrow \sim$ r means.

- 2 is an even and prime number and the sum of two prime numbers is always even.
- 2. 2 is an even and prime number and the sum of two prime numbers is not always even.
- 3. If 2 is an even and prime number, then the sum of two prime numbers is not always even.
- 4. If 2 is an even and prime number, then the sum of two prime numbers is also even.

Solution: If 2 is an even and prime number, then the sum of two prime numbers is not always even.

Miscellaneous Exercise 1 | Q 1.06 | Page 30

Choose the correct alternative:

If p: He is intelligent.

q: He is strong

Then, symbolic form of statement "It is wrong that, he is intelligent or strong" is

- 1. $\sim p \lor \sim p$
- 2. \sim (p \wedge q)
- 3. ~ (p ∨ q)
- 4. $p \lor \sim q$

Solution: \sim (p \vee q)

Miscellaneous Exercise 1 | Q 1.07 | Page 30

Choose the correct alternative:

The negation of the proposition "If 2 is prime, then 3 is odd", is

- 1. If 2 is not prime, then 3 is not odd.
- 2. 2 is prime and 3 is not odd.
- 3. 2 is not prime and 3 is odd.
- 4. If 2 is not prime, then 3 is odd.

Solution: 2 is prime and 3 is not odd.

Miscellaneous Exercise 1 | Q 1.08 | Page 30

Choose the correct alternative:

The statement (\sim p \land q) $\lor \sim$ q is

- 1. p v q
- 2. p Λ q
- 3. \sim (p \vee q)
- 4. \sim (p \wedge q)

Solution: \sim (p \land q).

Miscellaneous Exercise 1 | Q 1.09 | Page 30

Choose the correct alternative:

Which of the following is always true?

- 1. $(p \rightarrow q) \equiv \sim q \rightarrow \sim p$
- 2. \sim (p \vee q) \equiv \sim p \vee \sim q
- 3. $\sim (p \rightarrow q) \equiv p \land \sim q$

4.
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

Solution:
$$\sim (p \rightarrow q) \equiv p \land \sim q$$
.

Miscellaneous Exercise 1 | Q 1.1 | Page 30

Choose the correct alternative:

 \sim (p \vee q) \vee (\sim p \wedge q) is logically equivalent to

- 1. ∼ p
- 2. p
- 3. q
- 4. ∼ q

Solution: \sim p.

Miscellaneous Exercise 1 | Q 1.11 | Page 30

Choose the correct alternative:

If p and q are two statements then $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is

- 1. contradiction
- 2. tautology
- 3. Neither (i) not (ii)
- 4. None of the these

Solution: tautology.

Miscellaneous Exercise 1 | Q 1.12 | Page 30

Choose the correct alternative:

If p is the sentence 'This statement is false' then

- 1. truth value of p is T
- 2. truth value of p is F
- 3. p is both true and false
- 4. p is neither true nor false

Solution: p is neither true nor false

Miscellaneous Exercise 1 | Q 1.13 | Page 30

Choose the correct alternative:

Conditional $\textbf{p} \rightarrow \textbf{q}$ is equivalent to

- 1. $p \rightarrow \sim q$
- 2. $\sim p \vee q$
- 3. $\sim p \rightarrow \sim q$
- 4. p ∨~q

Solution: $\sim p \lor q$.

Miscellaneous Exercise 1 | Q 1.14 | Page 30

Choose the correct alternative:

Negation of the statement "This is false or That is true" is

- 1. That is true or This is false
- 2. That is true and This is false
- 3. That is true and That is false
- 4. That is false and That is true

Solution: That is true and That is false.

Miscellaneous Exercise 1 | Q 1.15 | Page 30

Choose the correct alternative:

If p is any statement then (p $V \sim p$) is a

- 1. contingency
- 2. contradiction
- 3. tautology
- 4. None of them

Solution: tautology.

Miscellaneous Exercise 1 | Q 2.1 | Page 30

Fill in the blanks:

The statement $q \rightarrow p$ is called as the ——— of the statement $p \rightarrow q$.

Solution: The statement $q\to p$ is called as the $\underline{\textbf{Converse}}$ of the statement $p\to q.$

Miscellaneous Exercise 1 | Q 2.2 | Page 30

Fill in the blanks:

Conjunction of two statement p and q is symbolically written as ———.

Solution: Conjunction of two statement p and q is symbolically written as **p** \wedge **q**.

Miscellaneous Exercise 1 | Q 2.3 | Page 30

Fill in the blanks:

If p \vee q is true then truth value of \sim p \vee \sim q is ———.

Solution: If p V q is true then truth value of \sim p V \sim q is $\underline{\mathbf{F}}$.

Miscellaneous Exercise 1 | Q 2.4 | Page 30

Fill in the blanks:

Negation of "some men are animal" is ———.

Solution: Negation of "some men are animal" is **No men are animals**.

Miscellaneous Exercise 1 | Q 2.5 | Page 30

Fill in the blanks:

Truth value of if x = 2, then $x^2 = -4$ is ————.

Solution: Truth value of if x = 2, then $x^2 = -4$ is \underline{F} .

Miscellaneous Exercise 1 | Q 2.6 | Page 30

Fill in the blanks:

Inverse of statement pattern $p \leftrightarrow q$ is given by ————.

Solution: Inverse of statement pattern $p \leftrightarrow q$ is given by $\sim p \rightarrow \sim q$.

Miscellaneous Exercise 1 | Q 2.7 | Page 30

Fill in the blanks:

 $p \leftrightarrow q$ is false when p and q have ———— truth values.

Solution: $p \leftrightarrow q$ is false when p and q have <u>different</u> truth values.

Miscellaneous Exercise 1 | Q 2.8 | Page 31

Fill in the blanks:

Let p : the problem is easy. r : It is not challenging then verbal form of \sim p \rightarrow r is ————.

Solution: Let p : the problem is easy. r : It is not challenging then verbal form of $\sim p \rightarrow r$ is If the problem is not easy them it is not challenging.

Miscellaneous Exercise 1 | Q 2.9 | Page 31

Fill in the blanks:

Truth value of 2 + 3 = 5 if and only if -3 > -9 is ———.

Solution: Truth value of 2 + 3 = 5 if and only if -3 > -9 is \underline{T} .

Miscellaneous Exercise 1 | Q 3.01 | Page 31

State whether the following statement is True or False:

Truth value of 2 + 3 < 6 is F.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.02 | Page 31

State whether the following statement is True or False:

There are 24 months in year is a statement.

- 1. True
- 2. False

Solution: True

Miscellaneous Exercise 1 | Q 3.03 | Page 31

State whether the following statement is True or False:

p v q has truth value F is both p and q has truth value F.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.04 | Page 31

State whether the following statement is True or False:

The negation of 10 + 20 = 30 is, it is false that $10 + 20 \neq 30$.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.05 | Page 31

State whether the following statement is True or False:

Dual of $(p \land \sim q) \lor t$ is $(p \lor \sim q) \lor C$.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.06 | Page 31

State whether the following statement is True or False:

Dual of "John and Ayub went to the forest" is "John and Ayub went to the forest".

- 1. True
- 2. False

Solution: True.

Miscellaneous Exercise 1 | Q 3.07 | Page 31

State whether the following statement is True or False:

"His birthday is on 29th February" is not a statement.

- 1. True
- 2. False

Solution: True.

Miscellaneous Exercise 1 | Q 3.08 | Page 31

State whether the following statement is True or False:

 $x^2 = 25$ is true statement.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.09 | Page 31

State whether the following statement is True or False:

Truth value of $\sqrt{5}$ is not an irrational number is T.

1. True

2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.1 | Page 31

State whether the following statement is True or False:

 $p \wedge t = p$.

- 1. True
- 2. False

Solution: True.

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. Ice cream Sundaes are my favourite.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. x + 3 = 8; x is variable.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. Read a lot to improve your writing skill.

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. z is a positive number.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. $(a + b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. $(2 + 1)^2 = 9$.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. Why are you sad?

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. How beautiful the flower is!

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. The square of any odd number is even.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. All integers are natural numbers.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. If x is real number then $x2 \ge 0$.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic. Do not come inside the room.

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following:

State which of the following sentences are statements in logic.

What a horrible sight it was!

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

The square of every real number is positive.

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is false. Hence, its truth value is F.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

Every parallelogram is a rhombus.

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is false. Hence, its truth value is F.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

$$a^2 - b^2 = (a + b) (a - b)$$
 for all a, b \in R.

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

Please carry out my instruction.

- 1. Is a statement
- 2. Is not a statement

Solution: It is an imperative sentence. Hence, it is not a statement.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

The Himalayas is the highest mountain range.

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

$$(x-2)(x-3) = x^2 - 5x + 6$$
 for all $x \in \mathbb{R}$.

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

What are the causes of rural unemployment?

1. Is a statement

2. Is not a statement

Solution: It is an interrogative sentence. Hence, it's not a statement.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

0! = 1

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

The quadratic equation $ax^2 + bx + c = 0$ (a $\neq 0$) always has two real roots.

- 1. Is a statement
- 2. Is not a statement

Solution: The quadratic equation $ax^2 + bx + c = 0$ (a $\neq 0$) always has two real roots is a statement.

Hence, its truth value is F.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

What is happy ending?

- 1. Is a statement
- 2. Is not a statement

Solution: It is an interrogative sentence. Hence, it's not a statement.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The Sun has set and Moon has risen.

Solution: Let p : The sun has set.

q: The moon has risen

The symbolic form is $p \wedge q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

Mona likes Mathematics and Physics.

Solution: Let p: Mona likes Mathematics

q: Mona likes Physics

The symbolic form is $p \wedge q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

3 is prime number if 3 is perfect square number.

Solution: Let p : 3 is a prime number.

q: 3 is a perfect square number.

The symbolic form is $p \leftrightarrow q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

Kavita is brilliant and brave.

Solution: Let p : Kavita is brilliant.

q: Kavita is brave.

The symbolic form is $p \wedge q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

If Kiran drives the car, then Sameer will walk.

Solution: Let p: Kiran drives the car.

q : Sameer will walk.

The symbolic form is $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The necessary condition for existence of a tangent to the curve of the function is continuity.

Solution: The given statement can also be expressed as 'If the function is continuous, then the tangent to the curve exists'.

Let p : The function is continuous

q: The tangent to the curve exists.

 $\therefore p \rightarrow q$ is the symbolic form of the given statement.

[Note: Answer in the textbook is incorrect.]

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

To be brave is necessary and sufficient condition to climb the Mount Everest.

Solution: Assuming the first statement p and second as q. Write the following statement in symbolic form.

To be brave is necessary and sufficient condition to climb the Mount Everest.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

$$x^3 + y^3 = (x + y)^3$$
 if $xy = 0$.

Solution: Let p : $x^3 + y^3 = (x + y)^3$

q: xy = 0

 \div p \leftrightarrow q is the symbolic form of the given statement.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The drug is effective though it has side effects.

Solution: The given statement can also be expressed as "The drug is effective and it has side effects"

Let p: The drug is effective.

q: It has side effects.

 \therefore p \land q is the symbolic form of the given statement.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

If a real number is not rational, then it must be irrational.

Solution: Let p : A real number is not rational.

q: A real number must be irrational.

The symbolic form is $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

It is not true that Ram is tall and handsome.

Solution: Let p: Ram is tall.

q: Ram is handsome.

The symbolic form is \sim (p \land q).

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

Even though it is not cloudy, it is still raining.

Solution: Let p: it is cloudy.

q: It is still raining.

The symbolic form is $\sim p \wedge q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

It is not true that intelligent persons are neither polite nor helpful.

Solution: Let p : Intelligent persons are neither polite nor helpful

The symbolic form is \sim p.

Alternate method:

Let p : Intelligent persons are polite. q : Intelligent persons are helpful. The symbolic form is $\sim (\sim p \land \sim q)$.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

If the question paper is not easy then we shall not pass.

Solution: Let p : The question paper is not easy.

q: We shall not pass.

The symbolic form is $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p: Proof is lengthy. q: It is interesting.

Express the following statement in symbolic form.

Proof is lengthy and it is not interesting.

Solution: $p \land \sim q$

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p: Proof is lengthy.

q: It is interesting.

Express the following statement in symbolic form.

If proof is lengthy then it is interesting.

Solution: $p \rightarrow q$

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p: Proof is lengthy.

q: It is interesting.

Express the following statement in symbolic form.

It is not true that the proof is lengthy but it is interesting.

Solution: \sim (p \wedge q)

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p: Proof is lengthy.

q: It is interesting.

Express the following statement in symbolic form.

It is interesting iff the proof is lengthy.

Solution: $q \leftrightarrow p$

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

 $(p \land q) \lor r$

Solution: Sachin wins the match or he is the member of Rajya Sabha or Sachin is happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

 $p \rightarrow r$

Solution: If Sachin wins the match then he is happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

 $\sim p \vee q$

Solution: Sachin does not win the match or he is the member of Rajya Sabha.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

 $p \rightarrow (p \wedge r)$

Solution: If sachin wins the match, then he is the member of Rajyasabha or he is happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

$$p \rightarrow q$$

Solution: If Sachin wins the match then he is a member of Rajyasabha.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

$$(p \land q) \land \sim r$$

Solution: Sachin wins the match and he is the member of Rajyasabha but he is not happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match.

q : Sachin is a member of Rajya Sabha.

r : Sachin is happy.

Write the verbal statement of the following.

$$\sim$$
 (p \vee q) \wedge r

Solution: It is false that sachin wins the match or he is the member of Rajyasabha but he is happy.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

$$4 + 5 = 7 \text{ or } 9 - 2 = 5$$

Solution: Let p : 4 + 5 = 7

$$q: 9-2=5$$

The truth values of p and q are F and F respectively. The given statement in symbolic form is p v q.

$$\therefore p \lor q \equiv F \lor F \equiv F$$

∴ Truth value of the given statement is F.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

If
$$9 > 1$$
 then $x^2 - 2x + 1 = 0$ for $x = 1$

Solution: Let p: 9 > 1

$$q: x^2 - 2x + 1 = 0$$
 for $x = 1$

The truth values of p and q are T and T respectively. The given statement in symbolic form is $p \rightarrow q$.

$$\therefore p \to q \equiv T \to T \equiv T$$

: Truth value of the given statement is T.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

x + y = 0 is the equation of a straight line if and only if $y^2 = 4x$ is the equation of the parabola.

Solution: Let p: x + y = 0 is the equation of a straight line.

 $q: y^2 = 4x$ is the equation of the parabola.

The truth values of p and q are T and T respectively.

The given statement in symbolic form is $p \leftrightarrow q$.

$$\therefore p \leftrightarrow q \equiv T \leftrightarrow T \equiv T$$

: Truth value of the given statement is T.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

It is not true that 2 + 3 = 6 or 12 + 3 = 5

Solution: Let p : 2 + 3 = 6

$$q: 12 + 3 = 5$$

The truth values of p and q are F and F respectively.

The given statement in symbolic form is \sim (p \vee q).

$$\therefore \sim (p \lor q) \equiv \sim (F \lor F) \equiv \sim F \equiv T$$

 \div Truth value of the given statement is T.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

p : Stock prices are high.

q : Stocks are rising.

to be true, find the truth value of the following.

Stock prices are not high or stocks are rising.

Solution: Given that the truth values of both p and q are T.

The symbolic form of the given statement is $\sim p \vee q$.

$$\therefore \sim p \lor q \equiv \sim T \lor T \equiv F \lor T$$

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

p : Stock prices are high.

q: Stocks are rising.

to be true, find the truth value of the following.

Stock prices are high and stocks are rising if and only if stock prices are high.

Solution: The symbolic form of the given statement is

$$(p \wedge q) \leftrightarrow p.$$

$$\therefore (p \land q) \leftrightarrow p \equiv (T \land T) \leftrightarrow T$$

$$\equiv \mathsf{T} \leftrightarrow \mathsf{T}$$

≡ T

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

p : Stock prices are high.

q: Stocks are rising.

to be true, find the truth value of the following.

If stock prices are high then stocks are not rising.

Solution: The Symbolic form of the given statement is $p \rightarrow \sim q$.

$$\therefore p \to {\sim} q \equiv T \to {\sim} T \equiv T \to F \equiv F$$

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

p : Stock prices are high.

q : Stocks are rising.

to be true, find the truth value of the following.

It is false that stocks are rising and stock prices are high.

Solution: The symbolic form of the given statement is $\sim (q \land p)$.

$$\therefore \sim (q \land p) \equiv \sim (T \land T) \equiv \sim T \equiv F$$

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

p: Stock prices are high.

q: Stocks are rising.

to be true, find the truth value of the following.

Stock prices are high or stocks are not rising iff stocks are rising.

Solution: The symbolic form of the given statement is $(p \lor \neg q) \leftrightarrow q$.

$$\therefore (p \lor \neg q) \leftrightarrow q \equiv (T \lor \neg T) \leftrightarrow T$$

$$\equiv (T \lor F) \leftrightarrow T$$

$$\equiv \mathsf{T} \leftrightarrow \mathsf{T}$$

= T

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.08 | Page 32

Rewrite the following statement without using conditional -

(Hint : $p \rightarrow q \equiv \sim p \lor q$)

If price increases, then demand falls.

Solution: Let p : Prince increases.

q: demand falls.

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv p \lor q$.

The given statement can be written as 'Price does not increase or demand falls'.

Miscellaneous Exercise 1 | Q 4.08 | Page 32

Rewrite the following statement without using conditional -

(Hint : $p \rightarrow q \equiv \sim p \lor q$)

If demand falls, then price does not increase.

Solution: Let p : demand falls.

q: Price does not increase.

The given statement is $p \rightarrow q$.

But
$$p \rightarrow q \equiv \sim p \vee q$$
.

∴ The given statement can be written as 'Demand does not fall or price does not increase'.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

$$(p \land q) \rightarrow \sim p$$
.

Solution: $(p \land q) \rightarrow \sim p \equiv (T \land T) \rightarrow \sim T$

$$\equiv T \rightarrow F$$

≣F.

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

$$p \leftrightarrow (q \rightarrow \sim p)$$

Solution: $p \leftrightarrow (q \rightarrow \sim p) \equiv T \leftrightarrow (T \rightarrow \sim T)$

$$\equiv \mathsf{T} \leftrightarrow (\mathsf{T} \to \mathsf{F})$$

$$\equiv \mathsf{T} \leftrightarrow \mathsf{F}$$

≡ F

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

$$(p \land \sim q) \lor (\sim p \land q)$$

Solution: $(p \land \sim q) \lor (\sim p \land q) \equiv (T \land \sim T) \lor (\sim T \land T)$

$$\equiv (\mathsf{T} \wedge \mathsf{F}) \vee (\mathsf{F} \wedge \mathsf{T})$$

 $\equiv F \vee F$

 $\equiv T$

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

$$\sim (p \land q) \rightarrow \sim (q \land p)$$
 Solution: $\sim (p \land q) \rightarrow \sim (q \land p) \equiv \sim (T \land T) \rightarrow \sim (T \land T)$
$$\equiv \sim T \rightarrow \sim T$$

$$\equiv F \rightarrow F$$

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

$$\sim [(p \to q) \leftrightarrow (p \land \sim q)]$$
Solution: $\sim [(p \to q) \leftrightarrow (p \land \sim q)] \equiv \sim [(T \to T) \leftrightarrow (T \land \sim T)]$

$$\equiv \sim [T \leftrightarrow (T \land F)]$$

$$\equiv \sim (T \leftrightarrow F)$$

$$\equiv \sim F$$

$$\equiv T$$

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

If $\triangle ABC$ is not equilateral, then it is not equiangular.

Solution: Let p : \triangle ABC is not equilateral.

 $q:\Delta$ ABC is not equiangular.

The given statement is $p \rightarrow q$.

Its negation is $\sim (p \rightarrow q) \equiv p \land \sim q$

∴ The negation of given statement is '∆ ABC is not equilateral and it is equiangular'.

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

Ramesh is intelligent and he is hard working.

Solution: Let p : Ramesh is intelligent.

q : Ramesh is hard working. The given statement is $p \land q$.

Its negation is $\sim (p \land q) \equiv \sim p \lor \sim q$

∴ The negation of the given statement is 'Ramesh is not intelligent or he is not hardworking.'

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

An angle is a right angle if and only if it is of measure 90°.

Solution: Let p : An angle is a right angle.

q: An angle is of measure 90°.

The given statement is $p \leftrightarrow q$.

Its negation is $\sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$

∴ The negation of the given statement is 'An angle is a right angle and it is not of measure 90° or an angle is of measure 90° and it is not a right angle.'

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

Kanchanganga is in India and Everest is in Nepal.

Solution: Let p : Kanchanganga is in India.

q : Everest is in Nepal.

The given statement is $p \land q$.

Its negation is \sim (p \wedge q) \equiv \sim p \vee \sim q.

The negation of a given statement is 'Kanchanganga is not in India or Everest is not in Nepal'.

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

If $x \in A \cap B$, then $x \in A$ and $x \in B$.

Solution: Let $p : x \in A \cap B$

 $q: x \in A$

 $r: x \in B$

The given statement is $p \rightarrow (q \land r)$.

Its negation is \sim [p \rightarrow (q \wedge r)], and

$$\sim$$
[p \rightarrow (q \wedge r)] \equiv p \wedge \sim (q \wedge r) \equiv p \wedge \sim q \vee \sim r

∴ The negation of given statement is $x \in A \cap B$ and $x \notin A$ or $x \notin B$.

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

$$(p \land \sim q) \leftrightarrow (q \rightarrow p)$$

Solution:

р	q	~q	p∧~q	q→p	(p∧~q)↔(q→p)
Т	Т	F	F	Т	F
Т	F	Т	Т	Т	Т
F	Т	F	F	F	Т
F	F	Т	F	Т	F

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

$$(\sim p \vee q) \wedge (\sim p \wedge \sim q)$$

Solution:

р	q	~p	~q	~p∨q	~p^~q	(~p∨q)∧(~p∧~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

$$(p \land r) \rightarrow (p \lor \sim q)$$

р	q	r	~q	p∧r	p∨~q	(p∧r)→(p∨~q)
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	F	Т	Т

Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	T	F	F	F	Т
F	Т	F	F	F	F	Т
F	F	Т	T	F	T	T
F	F	F	Т	F	Т	Т

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

$$(p \ \lor \ r) \to \mathord{\sim} (q \ \land \ r)$$

Solution:

р	q	r	p∨r	q∧r	~q∧r)	(p∨r)→~(q ∧ r)
Т	Т	Т	Т	Т	F	F
Т	Т	F	Т	F	Т	Т
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	Т	F	F
F	Т	F	F	F	Т	Т
F	F	Т	T	F	Т	Т
F	F	F	F	F	Т	Т

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

$$(p \ \lor \ {\sim} q) \to (r \ \land \ p)$$

р	q	r	~ q	p∨~q	r∧p	(p∨~q)→(r∧p)
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т

F	Т	F	F	F	F	Т
F	F	Т	Т	Т	F	F
F	F	F	Т	Т	F	F

Miscellaneous Exercise 1 | Q 4.12 | Page 33

What is tautology? What is contradiction?

Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.

Solution:

Tautology:

A statement pattern having truth value always T, irrespective of the truth values of its component statement is called a tautology.

Contradiction:

A statement pattern having truth value always F, irrespective of the truth values of its component statement is called a contradiction.

Let Statement p tautology. Consider, truth table

р	~ p
Т	F

i.e., negation of tautology is contradiction.

Let statement of contradiction. Consider, truth table

q	~ q
F	Т

i.e., negation of contradiction is tautology.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

$$[(p \land q) \lor (\sim p)] \lor [p \land (\sim q)]$$

р	q	~p	~q	p∧q	(p∧q)∨(~p)	p∧~q	[(p\q)\(\pi)]\([p\(\pi)]
Т	Т	F	F	Т	Т	F	Т
Т	F	F	Т	F	F	Т	Т
F	Т	Т	F	F	Т	F	Т
F	F	Т	Т	F	Т	F	Т

All the truth values in the last column are T. Hence, it is a **tautology**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

$$[(\sim p \land q) \land (q \land r)] \lor (\sim q)$$

Solution:

р	q	r	~p	~q	~p∧q	q∧r	(~p∧q)∧(q∧r)	[(~p^q)^(q^r)]V(~q)
Т	Т	Т	F	F	F	Т	F	F
Т	Т	F	F	F	F	F	F	F
Т	F	Т	F	Т	F	F	F	Т
Т	F	F	F	Т	F	F	F	Т
F	Т	T	Т	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F	F
F	F	T	Т	Т	F	F	F	Т
F	F	F	Т	Т	F	F	F	Т

Truth values in the last column are not identical. Hence, it is **contingency**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

$$[\sim\!(p \lor q) \to p] \leftrightarrow [(\sim\!p) \land (\sim\!q)]$$

р	q	~p	~q	p∨q	~(p∨q)	~(p∨q)→p	(~p)∧(~q)	[~(p∨q)→p]↔[(~p)∧(~q)]
Т	Т	F	F	Т	F	Т	F	F
Т	F	F	Т	Т	F	Т	F	F
F	Т	Т	F	Т	F	Т	F	F
F	F	Т	Т	F	T	F	Т	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

$$[\sim (p \land q) \rightarrow p] \leftrightarrow [(\sim p) \land (\sim q)]$$

Solution:

р	q	~p	~q	p∧q	~(p∧q)	~(p∧q)→p	(~p)∧(~q)	[~(p∧q)→p]↔[(~p)∧(~q)]
Т	Т	F	F	Т	F	Т	F	F
Т	F	F	Т	F	Т	Т	F	F
F	Т	Т	F	F	Т	F	F	Т
F	F	Т	Т	F	Т	F	Т	F

Truth values in the last column are not identical. Hence, it is **contingency**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

$$[P \to (\sim\!\!q \vee r)] \leftrightarrow \sim\!\![p \to (q \to r)]$$

Solution:

р	q	r	~q	~q∨r	q→r	p→(q→r)	P→(~q∨r)	~[p→(q→r)]	$ \begin{array}{c} [P \rightarrow (\sim q \lor r)] \leftrightarrow \sim [p] \\ \rightarrow (q \rightarrow r)] \end{array} $
Т	Т	Т	F	Т	Т	Т	T	F	F
Т	Т	F	F	F	F	F	F	Т	F
Т	F	Т	Т	Т	Т	Т	Т	F	F
Т	F	F	Т	Т	Т	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	Т	F	F
F	Т	F	F	F	F	Т	Т	F	F
F	F	Т	Т	Т	T	Т	Т	F	F
F	F	F	Т	T	T	Т	Т	F	F

All the truth values in the last column are F. Hence, it is **contradiction**.

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Solution:

1	2	3	4	5	6	7	8
р	q	r	q∨r	p∧(q∨r)	p∧q	p∧r	(p∧q)∨(p∧r)
Т	Т	Т	T	Т	T	T	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	T	Т	Т	F	F	F	F
F	T	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

In the above truth table, the entries in columns 5 and 8 are identical.

$$\therefore p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

$$[\sim (p \lor q) \lor (p \lor q)] \land r \equiv r$$

1	2	3	4	5	6	7
р	q	r	p∨q	~(p∨q)	[~(p∨q)∨(p∨q)]	[~(pvq)v(pvq)]∧r
Т	Т	Т	Т	F	Т	Т
Т	Т	F	Т	F	Т	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	Т	F	Т	Т
F	Т	F	Т	F	Т	F

F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	F

In the above truth table, the entries in columns 3 and 7 are identical.

$$\therefore [\sim (p \lor q) \lor (p \lor q)] \land r \equiv r$$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

$$p \wedge (\sim p \vee q) \equiv p \wedge q$$

Solution:

1	2	3	4	5	6
р	q	~p	~p∨q	p∧(~p∨q)	p∧q
Т	Т	F	Т	Т	Т
Т	F	F	F	F	F
F	Т	Т	Т	F	F
F	F	Т	Т	F	F

In the above truth table, the entries in columns 5 and 6 are identical.

$$\therefore p \land (\sim p \lor q) \equiv p \land q$$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

$$p \leftrightarrow q \equiv \sim (p \land \sim q) \land \sim (q \land \sim p)$$

1	2	3	4	5	6	7	8	9	10
р	q	~p	~q	p↔q	p∧~q	~(p^~q)	(q∧~p)	~(q^~p)	~(p^~q)^~(q ^ ~p)
Т	Т	F	F	Т	F	Т	F	Т	Т
Т	F	F	Т	F	Т	F	F	Т	F

F	Т	Т	F	F	F	Т	Т	F	F
F	F	Т	Т	Т	F	Т	F	Т	Т

In the above truth table, the entries in columns 5 and 10 are identical.

$$\therefore p \leftrightarrow q \equiv \sim (p \land \sim q) \land \sim (q \land \sim p)$$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

$$\sim p \land q \equiv [(p \lor q)] \land \sim p$$

Solution:

1	2	3	4	5	6
р	q	~p	~p∧q	(p∨q)	(p∨q)∧~p
Т	T	F	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	F	F	F

In the above truth table, the entries in columns 4 and 6 are identical.

$$\therefore \sim p \land q \equiv [(p \lor q)] \land \sim p$$

Miscellaneous Exercise 1 | Q 4.15 | Page 33

Write the converse, inverse, contrapositive of the following statement.

If
$$2 + 5 = 10$$
, then $4 + 10 = 20$.

Solution: Let p :
$$2 + 5 = 10$$

$$q: 4 + 10 = 20$$

 \div The given statement is p \rightarrow q.

Its converse is $\textbf{q} \rightarrow \textbf{p}.$

If
$$4 + 10 = 20$$
, then $2 + 5 = 10$

Its inverse is $\sim p \rightarrow \sim q$.

If
$$2 + 5 \neq 10$$
 then $4 + 10 \neq 20$.

Its contrapositive is $\sim q \rightarrow \sim p$.

If $4 + 10 \neq 20$ then $2 + 5 \neq 10$.

Miscellaneous Exercise 1 | Q 4.15 | Page 33

Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.

Solution: Let p : A man is bachelor.

q : A man is happy.

 \therefore The given statement is p \rightarrow q.

Its converse is $q \rightarrow p$.

If a man is happy then he is bachelor.

Its inverse is $\sim p \rightarrow \sim q$.

If a man is not bachelor then he is not happy.

Its contrapositive is $\sim q \rightarrow \sim p$.

If a man is not happy then he is not bachelor.

Miscellaneous Exercise 1 | Q 4.15 | Page 33

Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.

Solution: Let p: I do not work hard.

q: I do not prosper.

 \therefore The given statement is p \rightarrow q.

Its converse is $q \rightarrow p$.

If I do not prosper then I do not work hard.

Its inverse is $\sim p \rightarrow \sim q$.

If I work hard then I prosper.

Its contrapositive is $\sim q \rightarrow \sim p$.

If I prosper then I work hard.

Miscellaneous Exercise 1 | Q 4.16 | Page 33

State the dual of the following statement by applying the principle of duality.

$$(p \land \neg q) \lor (\neg p \land q) \equiv (p \lor q) \land \neg (p \land q)$$

Solution:
$$(p \lor \neg q) \land (\neg p \lor q) \equiv (p \land q) \lor \neg (p \lor q)$$

Miscellaneous Exercise 1 | Q 4.16 | Page 33

State the dual of the following statement by applying the principle of duality.

$$p \lor (q \lor r) \equiv \sim [(p \land q) \lor (r \lor s)]$$

Solution: $p \land (q \land r) \equiv \sim [(p \lor q) \land (r \land s)]$

Miscellaneous Exercise 1 | Q 4.16 | Page 33

State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.

Solution: 2 is even number and 9 is a perfect square.

Miscellaneous Exercise 1 | Q 4.17 | Page 33

Rewrite the following statement without using the connective 'If ... then'.

If a quadrilateral is rhombus then it is not a square.

Solution: Let p : A quadrilateral is rhombus.

q : A quadrilateral is not a square.

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv p \lor q$.

∴ The given statement can be written as 'A quadrilateral is not a rhombus or it is not a square'.

Miscellaneous Exercise 1 | Q 4.17 | Page 33

Rewrite the following statement without using the connective 'If ... then'.

If 10 - 3 = 7 then $10 \times 3 \neq 30$.

Solution: Let p : 10 - 3 = 7

q: $10 \times 3 \neq 30$

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv \sim p \lor q$.

∴ The given statement can be written as $'10 - 3 \neq 7$ or $10 \times 3 \neq 30'$.

Miscellaneous Exercise 1 | Q 4.17 | Page 33

Rewrite the following statement without using the connective 'If ... then'.

If it rains then the principal declares a holiday.

Solution: Let p : It rains.

q : The principal declares a holiday.

The given statement is $p \rightarrow q$.

But
$$p \rightarrow q \equiv p \lor q$$
.

∴ The given statement can be written as 'It does not rain or the principal declares a holiday'.

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

$$(\sim p \land q) \lor (p \land \sim q) \lor (\sim p \land \sim q)$$

Solution:
$$(\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$$

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

$$(p \land q) \land r \equiv p \land (q \land r)$$

Solution:
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

$$p \lor (q \land r) \equiv (p \lor q) \land (q \lor r)$$

Solution:
$$p \land (q \lor r) \equiv (p \land q) \lor (q \land r)$$

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

$$\sim$$
(p \vee q) \equiv \sim p \wedge \sim q

Solution:
$$\sim$$
(p \wedge q) \equiv \sim p \vee \sim q

Miscellaneous Exercise 1 | Q 4.19 | Page 33

Consider the following statements.

- i. If D is dog, then D is very good.
- ii. If D is very good, then D is dog.
- iii. If D is not very good, then D is not a dog.
- iv. If D is not a dog, then D is not very good. Identify the pairs of statements having the same meaning. Justify.

Solution: Let p : D is dog.

q: D is very good.

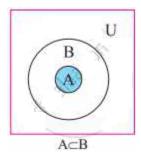
Then the given statement in the symbolic form is i. $\text{p} \rightarrow \text{q}$

ii.
$$q \rightarrow p$$

iii. $\sim q \rightarrow \sim p$
iv. $\sim p \rightarrow \sim q$

Since a statement and its contrapositive are equivalent, statements (i) and (iii) have the same meaning.

Since converse and inverse of a compound statement are equivalent, statements (ii) and (iv) have same meaning.


Miscellaneous Exercise 1 | Q 4.2 | Page 33

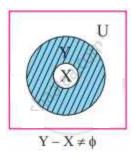
Express the truth of the following statement by the Venn diagram.

All men are mortal.

Solution: U : The set of all human being

A: The set of all men B: The set of all mortal

The above Venn diagram represents the truth of the given statement, i.e. $A \subset B$.


Miscellaneous Exercise 1 | Q 4.2 | Page 33

Express the truth of the following statement by the Venn diagram.

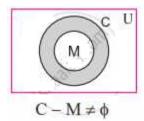
Some persons are not politician.

Solution: U : The set of all human beings.

X : The set of all persons.Y : The set of all politician

The above Venn diagram represents the truth of the given statement, i.e. $Y - X \neq \Phi$

Miscellaneous Exercise 1 | Q 4.2 | Page 33


Express the truth of the following statement by the Venn diagram.

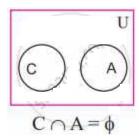
Some members of the present Indian cricket are not committed.

Solution: U: The set of all human beings.

M: The set of all members of the present Indian cricket.

C: The set of all committed members of the present Indian cricket.

The above Venn diagram represents the truth of the given statement, i.e. $C - M = \Phi$


Miscellaneous Exercise 1 | Q 4.2 | Page 33

Express the truth of the following statement by the Venn diagram.

No child is an adult.

Solution: U : Set of all human beings.

C : Set of all child. A : Set of all Adult.

The above Venn diagram represents the truth of the given statement, i.e. $C \cap A = \Phi$

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If $A = \{2, 3, 4, 5, 6, 7, 8\}$, determine the truth value of the following statement.

 $\exists x \in A$, such that 3x + 2 > 9

Solution: For x = 3, 3x + 2 = 3(3) + 2 = 9 + 2 = 11 > 9

x = 3 satisfies the equation 3x + 2 > 9.

∴ The given statement is true.

∴ Its truth value is T.

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If $A = \{2, 3, 4, 5, 6, 7, 8\}$, determine the truth value of the following statement.

 $\forall x \in A, x^2 < 18.$

Solution: For x = 5, $x^2 = 5^2 = 25 < 18$

- \therefore x = 5 does not satisfies the equation $x^2 < 18$.
- ∴ The given statement is false.
- : Its truth value is F.

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If $A = \{2, 3, 4, 5, 6, 7, 8\}$, determine the truth value of the following statement.

 $\exists x \in A$, such that x + 3 < 11.

Solution: For x = 2, x + 3 = 2 + 3 = 5 < 11.

- x = 2 satisfies the equation x + 3 < 11.
- ∴ The given statement is true.
- ∴ Its truth value is T.

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If $A = \{2, 3, 4, 5, 6, 7, 8\}$, determine the truth value of the following statement.

 $\forall x \in A, x^2 + 2 \ge 5.$

Solution: There is no x in A which satisfies $x^2 + 2 \ge 5$.

- ∴ The given statement is false.
- ∴ Its truth value is F.

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

7 is prime number and Tajmahal is in Agra.

Solution: Let p : 7 is prime number.

q: Tajmahal is in Agra.

The given statement in symbolic form is $p \wedge q$.

Its negation is \sim (p \land q) \equiv \sim p \lor \sim q.

 \therefore The negation of given statement is '7 is not prime number or Tajmahal is not in Agra.'

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

10 > 5 and 3 < 8

Solution: Let p:10 > 5.

q: 3 < 8.

The given statement in symbolic form is $p \land q$.

Its negation is \sim (p \land q) \equiv \sim p \lor \sim q.

∴ The negation of given statement is '10 \leq 5 or 3 \geq 8.'

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

I will have tea or coffee.

Solution: Let p : I will have tea.

q: I will have coffee.

The given statement in symbolic form is $p \lor q$.

Its negation is \sim (p \vee q) \equiv \sim p \wedge \sim q.

: The negation of given statement is 'I will not have tea and coffee'.

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

 $\forall \ n \in N, \, n+3>9.$

Solution: \exists $n \in N$ such that $n + 3 \le 9$.

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

 \exists n \in A, such that x + 5 < 11.

Solution: $\forall x \in A, x + 5 \le 11$