PHYSICS

DPP No. 16

Total Marks: 34

Max. Time: 38 min.

Topics: Projectile Motion, Rectilinear Motion

Type of Questions M.M., Min. Single choice Objective ('-1' negative marking) Q.1 to Q.6 [18, 18] (3 marks, 3 min.) Subjective Questions ('-1' negative marking) Q.7 to Q.8 (4 marks, 5 min.) [8, 10] Match the Following (no negative marking) (2×4) Q.10 (8 marks, 10 min.) [8, 10]

1. For ground to ground projectile motion equation of path is $y = 12 x - 3/4 x^2$. Given that $g = 10 \text{ ms}^{-2}$. What is the range of the projectile?

(A) 36m

(B) 30.6 m

(C) 16 m

(D) 12.4 m

2. The vertical height of the projectile at time t is given by $y = 4t - t^2$ and the horizontal distance covered is given by x = 3t. What is the angle of projection with the horizontal?

(A) tan-1 3/5

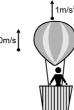
(B) tan-1 4/5

(C) tan-1 4/3

(D) tan-1 3/4

3. A particle A is projected with speed V_A from a point making an angle 60° with the horizontal. At the same instant, second particle B (lie in the same horizontal plane) is thrown vertically upwards from a point directly below the maximum height point of parabolic path of A, with velocity V_B . If the two particles collide then the ratio of V_A/V_B should be;

(A) 1


(B) $2/\sqrt{3}$

(C) $\sqrt{3}$ /2

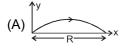
A car accelerates from rest at a constant rate α for some time after which it decelerates at a constant 4. rate β to come to rest. If total time taken by car is t, then maximum velocity V will be:

(A) $V = t \frac{\alpha \beta}{\alpha - \beta}$ (B) $V = t \left(\frac{\beta^2}{\alpha - \beta} \right)$ (C) $V = t \left(\frac{\alpha^2}{\alpha + \beta} \right)$ (D) $V = t \left(\frac{\alpha \beta}{\alpha + \beta} \right)$

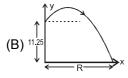
- 5. A lift is moving in upward direction with speed 20 m/s and having acceleration 5 m/s² in downward direction. A bolt drops from the ceiling of lift at that moment. Just after the drop, the:
 - (A) velocity of bolt with respect to ground is zero
 - (B) velocity of bolt with respect to ground is 20 m/s in upward direction
 - (C) acceleration of bolt with respect to ground is 5 m/s²
 - (D) none of these
- 6. A balloon is moving with constant upward acceleration of 1 m/s². A stone is thrown from the balloon downwards with speed 10 m/s with respect to the balloon. At the time of projection balloon is at height 120 m from the ground and is moving with speed 20 m/s upward. The time required to fall on the ground by the stone after the projection will be-

(A) 4 sec.

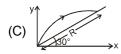
(C) 6 sec.

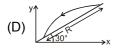

(B) 5 sec.

(D) None of these


- 7. A particle is projected under gravity at an angle of projection 45° with horizontal. Its horizontal range is 36 m. Find maximum Height attained by particle.
- **8.** A bullet is fired with speed 50 m/s at 45° angle with horizontal. Find the height of the bullet when its direction of motion makes angle 30° with the horizontal.
- 9. In the column-I, the path of a projectile (initial velocity 10 m/s and angle of projection with horizontal 60° in all cases) is shown in different cases. Rangle 'R' is to be matched in each case from column-II. Take g = 10 m/s². Arrow on the trajectory indicates the direction of motion of projectile.

Column-I


Column-II


(p) R =
$$\frac{15\sqrt{3}}{2}$$
 m

(q) R =
$$\frac{40}{3}$$
m

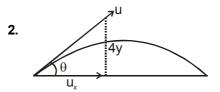
(r) R =
$$5\sqrt{3}$$
 m

(s) R =
$$\frac{20}{3}$$
m

Answers Key

DPP NO. - 16

- **1.** (C)
- 2.
- **3**. (B)
- l. (D)
- **5.** (B)


- **6.** (C) **7.** 9
- 8. $h = \frac{125}{3}$ m above point of projection
- 9. (A) r (B) p (C) s (D) q

Hint & Solutions

DPP NO. - 16

1.
$$y = x \tan \theta \left(1 - \frac{x}{R} \right) y = (12 x) \left(1 - \frac{x}{16} \right)$$

 \Rightarrow Range = 16 m Ans.

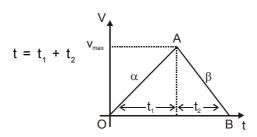
$$y = 4t - t^2$$
, $x = 3t$

$$V_y = \frac{dy}{dt} = 4 - 2t$$
, $V_x = \frac{dx}{dt} = 3$

$$\Rightarrow u_{y} = v_{y} \Big|_{t=0} = 4, \ u_{x} = v_{x} \Big|_{t=0} = 3$$

The angle of projection:

$$\tan \theta = \frac{V_y}{V_x} = \frac{4}{3} \Rightarrow \theta = \tan^{-1} \left(\frac{4}{3}\right)$$
 Ans.


3.
$$V_A \sin 60^\circ = V_B$$

$$\Rightarrow \frac{V_A}{V_B} = \frac{2}{\sqrt{3}}$$

4.
$$t = t_1 + t_2$$

slope of OA curve =
$$\tan \theta = \alpha = \frac{v_{max}}{t_1}$$

slope of AB curve =
$$\beta = \frac{v_{max}}{t_2}$$

$$\Rightarrow t = \frac{v_{\text{max}}}{\alpha} + \frac{v_{\text{max}}}{\beta} \Rightarrow v_{\text{max}} = \left(\frac{\alpha \beta}{\alpha + \beta}\right) t$$

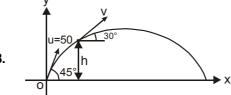
- **5.** The velocity of an object released in a moving frame is equal to that of the frame as observed from the frame.
- **6.** velocity of ball w.r.t. ground = 20 10 = 10 m/sec upwards.

$$x = ut + \frac{1}{2} at^2$$

$$120 = -10 t + \frac{1}{2} \times 10 t^2$$

$$24 = -2 t + t^2$$

$$t^2 - 2t - 24 = 0$$


$$t = 6 sec.$$

7.
$$\frac{H}{R} = \frac{\tan \theta}{4}$$

$$\theta$$
 = 45° & R = 36 m

$$H = 9 m$$

h = height of the point where velocity makes 30° with horizontal.

As the horizontal component of velocity remain same $50 \cos 45^{\circ} = v \cos 30^{\circ}$

$$v = 50\sqrt{\frac{2}{3}}$$

Now by equation

$$v^2 = u^2 + 2a_v y$$

$$\left(50 \times \sqrt{\frac{2}{3}}\right)^2 = 50^2 - 2gxh$$

$$\Rightarrow 2gh = 50^2 - 50^2 \times \frac{2}{3}$$

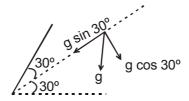
$$\Rightarrow$$
 2gh = $\frac{1}{3} \times 50^2$

$$\Rightarrow$$
 h = $\frac{2500}{60}$ = $\frac{125}{3}$

 $h = \frac{125}{3}$ m above point of projection

9. (A)
$$R = \frac{u^2 \sin 2\theta}{g} = \frac{100\sqrt{3}}{2(10)} = 5\sqrt{3}m$$

(B)
$$11.25 = -10\sin 60^{\circ} t + \frac{1}{2} (10) t^{2}$$

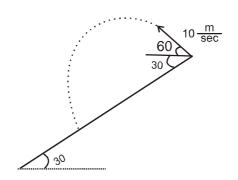

$$\Rightarrow$$
 5t² - 5 $\sqrt{3}$ t - 11.25 = 0

$$t = \frac{5\sqrt{3} \pm \sqrt{25(3) + 4(5)(11.25)}}{10}$$

$$= \frac{5\sqrt{3} \pm \sqrt{3}(10)}{10}$$

$$= \frac{15}{10}\sqrt{3} = \frac{3}{2}\sqrt{3}$$

R = 10 cos 60
$$\left(\frac{3}{2}\sqrt{3}\right)$$
 = 7.5 $\sqrt{3}$ m


(C)
$$t = \frac{2u\sin 30^{\circ}}{g\cos 30^{\circ}} = \frac{2(10)\left(\frac{1}{2}\right)}{10\left(\frac{\sqrt{3}}{2}\right)} = \frac{2}{\sqrt{3}}$$
 sec.

R = 10 cos 30° t
$$-\frac{1}{2}$$
 g sin 30° t²

$$= \frac{10\sqrt{3}}{2} \left(\frac{2}{\sqrt{3}}\right) - \frac{1}{2} (10) \left(\frac{1}{2}\right) \frac{4}{3}$$

$$= 10 - \frac{10}{3} = \frac{20}{3} \text{ m}$$

(D)
$$T = \frac{2(10)}{g\cos 30} = \frac{2(10)}{10\left(\frac{\sqrt{3}}{2}\right)} = \frac{4}{\sqrt{3}}$$
 sec.

$$R = \frac{1}{2} g \sin 30^{\circ} t^{2}$$

$$=\frac{1}{2}$$
 (10) $\left(\frac{1}{2}\right)$ $\frac{16}{3}$ $=\frac{40}{3}$ m