

REST AND MOTION

DISTANCE

- The length of the actual path traversed by the particle is termed as its distance.
- Distance = S = length of path ACB.
- Scalar quantity and is measured in meter. It can never decrease with time.

DISPLACEMEN'

AVERAGE VELOCITY

Average Velocity (
$$\vec{v}_{av}$$
) = $\frac{\text{Total Displacement}}{\text{Total Time Taken}} = \frac{\vec{B} - \vec{A}}{t}$

AVERAGE SPEED

Average Speed(
$$v_{av}$$
) = $\frac{\text{Total Distance Travelled}}{\text{Total Time Taken}} = \frac{\varsigma}{t}$

- The change in position vector of the particle for a given time interval is known as its displacement.
- Displacement = B A
- It can decrease with time. Vector quantity and is measured in meter.

INSTANTANEOUS VELOCITY

INSTANTANEOUS SPEED

The instantaneous speed is the speed at a particular instant of time. • $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$

Here Δs is the distance travelled in time At.

The slope of the tangent equal ds/dt, which is equal to the instantaneous speed at 't'.

$$v = \tan(\theta) = \frac{DC}{AC} = \frac{ds}{dt}$$

EQUATIONS OF MOTION

1.
$$v = u + at$$
 3. $s = ut + \frac{1}{2}at^2$

2.
$$v^2 - u^2 = 2as$$

2.
$$v^2 - u^2 = 2as$$
 4. $s_{nth} = u + \frac{a}{2} (2n - 1)$

ACCELERATION

When the velocity of a moving object/particle changes with time, we can say that it is accelerated.

Average Acceleration

Instantaneous Acceleration

$$a_{av} = \frac{\overrightarrow{v_2} - \overrightarrow{v_1}}{t_2 - t_1} = \frac{\Delta \overrightarrow{v}}{\Delta t}$$
 $\overrightarrow{a} = \lim_{\Delta t = 0} \overrightarrow{a}_{av} = \frac{d\overrightarrow{v}}{dt}$

Reaction Time
$$\Delta t = t_1 - t_0$$

REACTION TIME

It's the difference between the time

when one see a situation to the time when one acts.

U

u = +ve

h = +ve

a = -g

 $h = ut - 1/2gt^2$

0 = u - gt

 $0^2 = u^2 - 2gh$

$$a = -g$$

$$0 = ut - 1/2gt^2$$

$$-v = u - gt$$

$$v^2 = u^2 - 2g(0)$$

$$u = 0$$

$$h = -ve$$

$$v = -ve$$

$$a = -g$$

$$-h = O(t) - 1/2gt^2$$

$$-v = 0 - gt$$

$$v^2 = (0)^2 + 2gh$$

$$v = \pm \sqrt{2gh}$$

$$u = -ve$$

$$v = -ve$$

$$a = -g$$

$$h = -ve$$

$$-h = -ut - 1/2gt^2$$

$$-v = -u - gt$$

$$v^2 = u^2 + 2gh$$

$$u = +ve$$

$$v = -ve$$

$$a = -g$$

$$h = -ve$$

$$-h = ut - 1/2gt^2$$

$$-v = u - gt$$

$$v^2 = u^2 + 2gh$$

RECTILINEAR MOTION CASES

DISPLACEMENT, VELOCITY AND ACCELERATION GRAPH

RIVER-BOAT PROBLEM

V_b = absolute velocity of boatman.

I Time taken by boatman to cross the river:

I Displacement along x-axis when he reaches on the other I bank:

crosses the river in shortest interval of time-

$$t_{min} = \frac{w}{V_{br}}$$

1. Condition when the boatman 1.2. Condition when the boatman wants 1.3. Shortest Path to reach point B, i.e., at a point just opposite from where he started

$$\theta = \sin^{-1}\left(\frac{V_r}{V_{br}}\right)$$

when
$$V_r < V_{br} \rightarrow S_{min} = w$$

when $V_r > V_{br} \rightarrow$

$$S_{min} = w \left(\frac{V_r}{V_{br}} \right)$$

AIRCRAFT PROBLEM

PROBLEM

$$\overrightarrow{V}_{r,g} = \overrightarrow{V}_{r,m} + \overrightarrow{V}_{m,g}$$

1 BASIC PROJECTILE MOTION

2 PROJECTILE FIRED PARALLEL TO HORIZONTAL

3 PROJECTILE AT AN ANGLEO FROM HEIGHT 'H'

4 PROJECTILE MOTION DOWN THE INCLINED PLANE

5 PROJECTILE MOTION UP THE INCLINED PLANE

