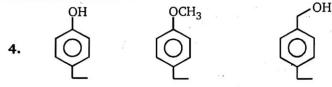
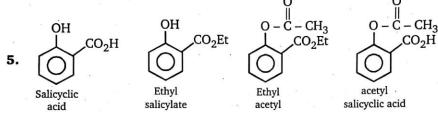

13 PRACTICAL ORGANIC CHEMISTRY



- (a) H₃O[⊕], NaOI
- (c) H₃O[⊕], then Na

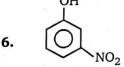
- (b) H_3O^{\oplus} , then Fehling test
- (d) Both (b) and (c)
- 2. Compound $CH_3 CH$ OEt and $CH_3 CH_2 CH_2 CH_3$ can be differentiated by :
 - (a) H₃O[⊕], Na
 - (c) H₃O[⊕], Fehling test

- (b) H₃O[⊕], Tollens' test
- (d) All of these
- 3. $\bigcap_{\text{(aniline)}}^{\text{NH}_2}$ and $\bigcap_{\text{(cyclohexyl amine)}}^{\text{NH}_2}$ can be differentiated by :
 - (a) Hinsberg test
 - (c) NaNO₂, HCl, then β-Naphthol
- (b) Iso-cyanide test
- (d) NaOH



(p-ethyl phenol) (p-methyl anisole)

(p-ethyl benzyl alcohol)


Above compounds can be differentiated by using the reagent:

- (a) NaOH, Tollen's reagent, FeCl₃
- (b) CrO3, Tollen's reagent, FeCl3
- (c) Tollen's reagent, CrO₃, FeCl₃
- (d) Na, Tollen's reagent, FeCl₃

Above compounds can be differentiated by the salicylate. Which of the following chemical test? (used in decreasing order)

- (a) NaOH, FeCl₃, NaHCO₃
- (b) aq. NaHCO₃, FeCl₃, NaOH
- (c) NaOI, NaOH, NaHCO₃
- (d) NaOH, Na, NaHCO₃

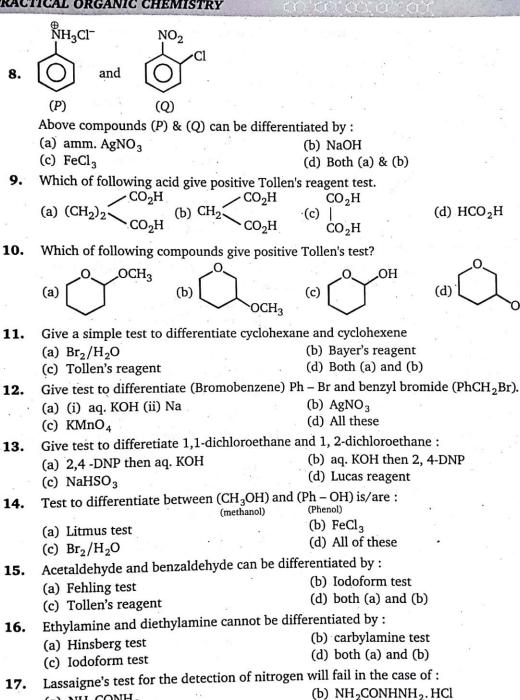
(m-nitrophenol)

(m-nitro benzoic acid) (m-nitro aniline)

(m-dinitro benzene)

Above compounds can be differentiated by which of the following chemical test? (used in decreasing order)

- (a) NaOH, NaHCO₃, HCl
- (b) HCl, NaOH, NaHCO3
- (c) NaHCO₃, NaOH, HCl
- (d) NaOH, HCl, NaHCO3


7.
$$(i) CH_3CHO \longrightarrow (A) \xrightarrow{I_2} CO_2Na + CHI_3,$$

Product (A) in the above reaction is:

(a)
$$CH_3$$
 $CH_2 - CH_3$ (b) $CH_2 - CH_3$ (c) $Ph - CH_2 - CH - CH_3$ (d) CH_3 $CH_2 - CH_3$

(a) NH2CONH2

(c) NH₂NH₂. HCl

(d) C₆H₅NHNH₂. 2HCl

582	00.	a^{\prime} a^{\prime} a^{\prime} a^{\prime}	ORGANIC	Chemistry for IIT-JEE							
18.	Sodium nitropruss colouration which	sulphide ions produces a									
	(a) red	(b) blue	(c) brown	(d) purple							
19.	In Kjeldahl's method, nitrogen present is estimated as:										
	(a) N ₂	(b) NH ₃	(c) NO ₂	(d) none of these							
20.	In Kjeldahl's method of estimation of nitrogen, K 2SO 4 acts as :										
	(a) an oxidising ag	ent	(b) catalytic agent								
	(c) hydrolysing ag		(d) boiling point e								
21.	The prussian blue colour obtained during the test of nitrogen by Lassaigne's test is due to the formation of :										
19	(a) $Fe[Fe(CN)_6]_3$ (c) $Fe(CN)_3$		(b) $Na_3[Fe(CN)_6]$ (d) $Na_4[Fe(CN)_5]$								
22.	(4) 1.1.42- ((2.7)3-1-3										
	(a) urea	(b) hydrazine	(c) azobenzene	(d) phenyl hydrazine							
23.											
	(a) distillation	•	(b) steam distillati	on ·							
	(c) crystallization		(d) fractional cryst								
24.	Which of the fol acetophenone?	lowing reagent is t	ised for the separation	n of acetaldehyde from							
	(a) NH ₂ OH	(b) NaOI	(c) Tollen's reagen	t (d) $C_6H_5NHNH_2$							
25.	The formula of gas	is $[CO]_x$. If its vapour	density is 70, the value	e of x will be :							
	(a) 2.5	(b) 3.0	(c) 5.0	(d) 6.0							
26.	The structure of to mechanism is:	he monomer that wo	ould give the following	g polymer by an addition							
	2 100	CO ₂ Me	CO ₂ Me								
		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
		CO	₂ Me CO ₂ Me								
	(a) CO ₂	Me	(b) CO	Me							
	(c) CO ₂ Me		(d) CO ₂ Me								
27.	-	not got of stance-1									
4/.	monosaccharides I	- IV	nemical relationships	amongst the following							
	OH	OH	OH	OH							
	<u> </u>	но —о,	-0.0	. [
	OH	(OH)	(III) OH	1/							
	(I) HO ON	. (II)	OMe (III) HO	(IV) OH							
	OH	ОН									
		OII	OH	OH							

- (a) I and II are anomers; III and IV are epimers
- (b) I and II are epimers; III and IV are anomers
- (c) I and III are anomers; I and II are epimers
- (d) I and III are epimers; II and IV are anomers
- **28.** A dye, phenolphtnalein is prepared by reacting phenol with phthalic anhydride in acidic medium. It give pink colour in alkaline medium due to extended conjugation in a new complex formed (phthalein dye test) identify the complex *A*:

$$\stackrel{\circ}{\longrightarrow} (A) \text{ Product } ; \text{ The structure of } (A) \text{ is:}$$

ANSWERS — LEVEL 1															
1.	(d)	2.	(d)	3.	(c)	4.	(b)	5.	(b)	6.	(c)	7.	(a)	8.	(d)
9.	(d)	10.	(c)	11.	(d)	12.	(d)	13.	(b)	14.	(d)	15.	(d)	16.	(c)
17.	(c)	18.	(b)	19.	(b)	20.	(d)	21.	(d)	22.	(b)	23.	(a)	24.	(c)
25.	(c)	26.	(c)	27.	(c)	28.	(b)								

LEVEL-2

1. Comprehension

Given are the isomers of $C_8H_8O_2$.

- A. Which isomer gives positive iodoform test?
 - (a) a

(b) b

(c) d

- (d) e
- B. Which isomer gives +ive Tollen's test, also reacts with FeCl₃?
 - (a) b

(b) f

(c) c

- (d) d
- **C.** Which isomer reacts with NaHCO₃?
 - (a) c

(b) d

(c) ϵ

- (d) f
- D. Which isomer on hydrolysis gives 1, 4-di hydroxybenzene?
 - (a) a

(b) d ·

(c) e

(d) f

2. Ph
$$-C$$
 $-OH$ $\xrightarrow{NaHCO_3}$ (A) gas; Ph $-OH$ \xrightarrow{Na} (B) ga

Sum of molecular mass of gas (A+B=?)

ANSWERS — LEVEL 2

- 1. A-d; B-b; C-a; D-b
- **2.** 48