Polynomials

MATHEMATICS

NOTES

FUNDAMENTALS

• **Polynomial:** A function p(x) of the form $p(x) = a_0 + a_1 x^n + \dots + a_n x^n$, where a_0, a_1, \dots, a_n an are real numbers and 'n' is a non-negative (positive) integer is called a polynomial.

Note: a_0, a_1, \dots, a_n are called the coefficients of the polynomial.

- If the coefficients of a polynomial are integers, then it is called a polynomial over integers.
- If the coefficients of a polynomial are rational numbers, then it is called a polynomial over rational numbers.
- If the coefficients of a polynomial are real numbers, then it is called a polynomial over real numbers.
- A function $p(x) = a_0 + a_1x + \dots + a_nx^n$ is not a polynomial if the power of the variable is either negative or a fractional number.
- **Standard form:** A polynomial is said to be in a standard form if it is written either in the ascending or descending powers of the variable, as $1 + x + 2x^2 + 3x^3 6x^5 \times 6x^6$
- **Degree of a polynomial:** The highest power of x in p(x) is the degree of the polynomial.

Example: $2-3x^5+6x^4+92x^3$: Here, highest term being $-3x^5$: degree of polynomial = 5.

Polynomial	General Form	Coefficients
Zero polynomial	0	_
Linear polynomial	ax + b	$a, b \in R, a \neq 0$
Quadratic polynomial	$ax^2 + bx + c$	$a,b,c \in R, a \neq 0$
Cubic polynomial	$ax^3 + bx^2 + cx + d$	$a,b,c,d \in R, a \neq 0$
Bi-Quadratic polynomial	$ax^4 + bx^3 + cx^2 + dx + c$	$a,b,c,d,e\in R,a\neq 0$

- **Value of a polynomial:** If p(x) is a polynomial in x, and if 'a' is any real number, then the value obtained upon replacing 'x' by 'a' in p(x) is denoted as p(a).
- **Zero of a polynomial:** A real number 'a' for which the value of the polynomial p(x) is zero, is called the zero of the polynomial.
- In other words, a real number 'a' is called a zero of a polynomial p(x) if p(a) = 0.

• Geometric meaning of the zero of a polynomial:

(a) The graph of a linear equation of the form $y = ax + b, a \neq 0$ is a straight line which intersects the X-axis at $\left(\frac{-b}{a}, 0\right)$

Zero of the polynomial ax + b is the x-coordinate of the point of intersection of the graph with X-axis.

Note: A linear polynomial $ax + b, a \neq 0$ has exactly one zero, i.e., $\left(\frac{-b}{a}\right)$

(b) \bigvee The graph of a quadratic equation $y = ax^2 + bx + c$, $a \neq 0$ is a curve called parabola that either opens upwards like when the coefficient of x^2 is positive or opens downwards like when the coefficient of x^2 is negative. The zeros of a quadratic polynomial $ax^2 + bx + c$ are the x-coordinates of the points where the parabola intersects the X-axis.

Example: $p(x) = x^2 + 2x + 4 = 0;$ $b^2 - 4ac = 2^2 - 4.1.4 = -12 < 0$

It has no zeros as the parabola will never intersect X-axis.

Note: For the parabola $ax^2 + bx + c$.

(i) Vertex
$$\left(\frac{-b}{2a}, -\frac{D}{4a}\right)$$
 where $D = b^2 - 4ac$

(ii) Axis of symmetry,
$$x = \frac{-b}{2a}$$
 parallel to Y-axis

(ii) Zeros are
$$\frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$

(c) The graph of a cubic polynomial intersects the X-axis at three points, whose x-coordinates are the zeros of the cubic polynomial.

In general, the graph of a polynomial of degree 'n' y = p(x) passes through at most 'n' points on the X-axis. Thus, a polynomial p(x) of degree 'n' has at most 'n' zeros.

Relationship between zeros and coefficients of a polynomial.

Types of	General Form	Number of	Relationship between zeroes and coefficients	
Polynomial		Zeroes	Sum of zeroes	Product of zeroes
Linear Polynomial	$ax+b$, $a \neq 0$	1	only one zero = $\frac{-(\text{constant term})}{(\text{coefficient of } x)} = \frac{-b}{a}$	
Quadratic Polynomial	$ax^2 + bx + c, a \neq 0$	2	$\frac{-(\text{coefficient of } x)}{(\text{coefficient of } x^2)} = \frac{-b}{a}$	$\frac{\text{constant term}}{\text{coefficient of } x^2} = \frac{c}{a}$
Cubic Polynomial	$ax^3 + bx^2 + cx, +d, a \neq 0$	3	$\frac{-(\text{coefficient of } x)}{(\text{coefficient of } x^2)} = \frac{-b}{a}$	$\frac{\text{cons}\tan t \text{ term}}{\text{coefficient of } x^2} = \frac{-d}{a}$
			Sum of the product of roots taken two at a time $\frac{coefficient of x}{coefficient of x^{2}} = \frac{c}{a}$	

- To form a quadratic polynomial with the given zeros: If α and β are the zeros of a quadratic polynomial, then the quadratic polynomial is obtained by expanding $(x \alpha) (x \beta)$. i.e., $(x \alpha)(x \beta) = x^2 (\text{Sum of the zeros}) x + \text{product of zeros}.$
- To form a cubic polynomial with the given zeros: If α, β and γ are the zeros of a polynomial, then the cubic polynomial is obtained by expanding $(x \alpha)(x \beta)(x \gamma)$.
- Division algorithm of polynomials: If p(x) and g(x) are any two polynomials with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that p(x) = g(x)×q(x)+r(x), where either r(x) = 0 or degree r(x) < degree of g(x).
- If (x-a) is a factor of polynomial p(x) of degree n > 0, then 'a' is the zero of the polynomial.

Characteristics of the function	b ² - 4ac < 0	$b^2 - 4ac = 0$	$b^2 - 4ac > 0$
When 'a' is positive i.e. a > 0	Y O (Minima)	$\begin{array}{c} Y \\ \bullet \\$	$\begin{array}{c} Y \\ O \\ O \\ (Minima) \end{array} X$
When 'a' is negative i.e. a < 0	$O_{1} \longrightarrow X$ (Maxima) Y	$O_{\text{Maxima}} X$ $(Maxima)$ Y	$ \begin{array}{c} $

Graphical Representation of Different forms of Quadratic Equation