Sample Question Paper - 4 Class – X Session -2021-22 TERM 1 Subject- Mathematics (Standard) 041

Maximum Marks: 40

Time Allowed: 1 hour and 30 minutes

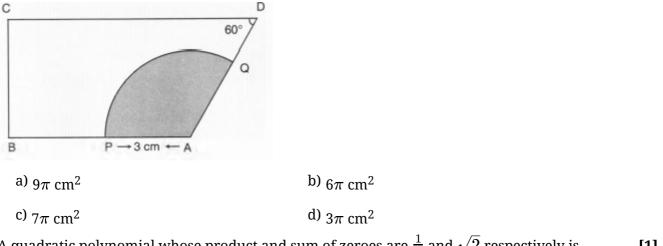
General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A

Attempt any 16 questions

The largest number which divides 70 and 125, leaving remainders 5 and 8, respectively, is 1. [1] a) 875 b) 65 c) 13 d) 1750 2. If the system of equations [1] 3x + y = 1 and (2k - 1) x + (k - 1) y = 2k + 1is inconsistent, then k = a) -1 b) 1 c) 2 d) 0 In \triangle ABC, it is given that AB = 9 cm, BC = 6 cm and CA = 7.5 cm. Also, \triangle DEF is given such that 3. [1] EF = 8 cm and \triangle DEF ~ \triangle ABC. Then, perimeter of \triangle DEF is a) 30 cm b) 22.5 cm c) 27 cm d) 25 cm 4. If 29x + 37y = 103 and 37x + 29y = 95 then [1] a) x = 3, y = 2 b) x = 2, y = 1 c) x = 2, y = 3 d) x = 1, y = 2 5. If 8 tan x = 15, then sin $x - \cos x$ is equal to [1] a) $\frac{17}{7}$ b) $\frac{8}{17}$ c) $\frac{7}{17}$ d) $\frac{1}{17}$ 6. The least positive integer divisible by 20 and 24 is [1] a) 480 b) 240


C) 300

d) 120

- 7. If -2 and 3 are the zeros of the quadratic polynomial x^2 + (a + 1)x + b then
 - a) a = 2, b = 6 b) a = 2, b = -6

c)
$$a = -2, b = -6$$
 d) $a = -2, b = 6$

8. In Fig, the area of the shaded region is

- 9. A quadratic polynomial whose product and sum of zeroes are $\frac{1}{3}$ and $\sqrt{2}$ respectively is [1]
 - a) $3x^2 x + 3\sqrt{2}x$ b) $3x^2 - 3\sqrt{2}x + 1$ c) $3x^2 + x - 3\sqrt{2}x$ d) $3x^2 + 3\sqrt{2}x + 1$
- 10. In a \triangle ABC it is given that AB = 6 cm, AC = 8 cm and AD is the bisector of \angle A. Then, BD : DC = ? [1]

11. A card is selected at random from a well shuffled deck of 52 playing cards. The probability of [1] its being a face card is

a) $\frac{3}{26}$	b) $\frac{3}{13}$
c) $\frac{1}{26}$	d) $\frac{4}{13}$
7 imes 11 $ imes$ 13 + 13 is a/an:	

12.

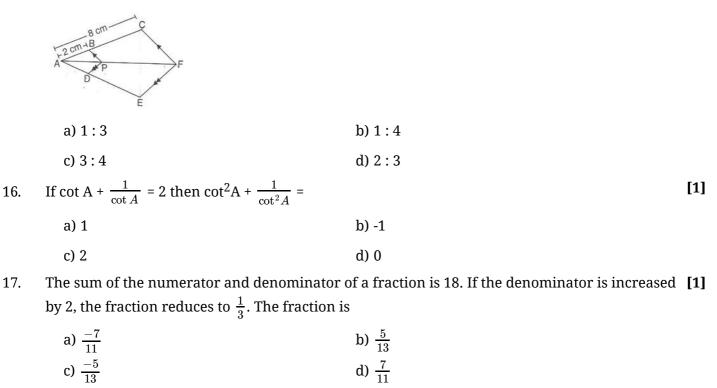
- a) odd number but not composite b) square number
- c) prime number d) composite number
- 13. The circumference of a circle is 100 cm. The side of a square inscribed in the circle is [1]

a)
$$\frac{50}{\pi}$$
 b) $50\sqrt{2}$
c) $\frac{100}{\pi\sqrt{2}}$ d) $\frac{50\sqrt{2}}{\pi}$

14. If the sum of the areas of two circles with radii r_1 and r_2 is equal to the area of a circle of [1] radius r, then $r_1^2 + r_2^2$

[1]

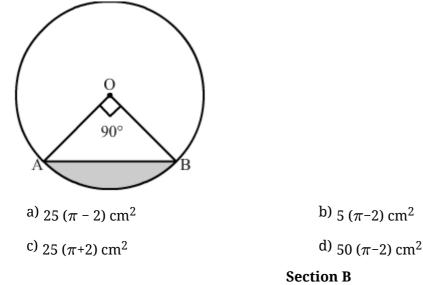
[1]


[1]

a) _r ²	b) _{<r< sub=""></r<>}
------------------------------	--------------------------------

c) None of these

b) <r² d) >r²


- ne of these
- 15. In the given figure if BP||CF, DP||EF, then AD : DE is equal to

18. A bag contains 3 red, 5 black and 7 white balls. A ball is drawn from the bag at random. The [1] probability that the ball drawn is not black, is:

Attempt any 16 questions

- a) $\frac{5}{10}$ b) $\frac{2}{3}$ c) $\frac{1}{3}$ d) $\frac{9}{15}$
- 19. The HCF of two consecutive numbers is
 - a) 2 b) 0
 - c) 3 d) 1
- 20. In fig, the shaded area is (radius = 10cm)

[1]

[1]

[1]

21.	The graphs of the equations $2x + 3y - 2 = 0$ and	l x - 2y - 8 = 0 are two lines which are	[1]
	a) perpendicular to each other	b) parallel	
	c) intersecting exactly at one point	d) coincident	
22.	In the given figure, ABCD is a trapezium whos	se diagonals AC and BD intersect at O such that	[1]
	OA = (3x - 1) cm, OB = (2x + 1) cm, OC = (5x - 3)	cm and OD = (6x - 5) cm. Then, x = ?	
	$/ \gg $		
	a) 4	b) 2	
2.2	c) 3.5 If $a=2^3 imes 3, b=2 imes 3 imes 5, c=3^n imes 5$ and	d) 3	[4]
23.			[1]
	a) 1	b) 4	
	c) 3	d) 2	[4]
24.	If a cot θ + b cosec θ = p and b cot θ + a cosec θ	$\theta = q$, then $p^2 - q^2 =$	[1]
	a) $a^2 + b^2$	b) $a^2 - b^2$	
	c) $b^2 - a^2$	d) b - a	
25.	In a $\triangle ABC$, $\angle C = 3 \angle B = 2(\angle A + \angle B)$, then $\angle B$	= ?	[1]
	a) 60°	b) 40°	
	c) 80 ₀	d) 20°	
26.		e 16 cm and 12 cm. Then, the length of the side of	[1]
	the rhombus is		
	a) 9 cm	b) 10 cm	
	c) 8 cm	d) 20 cm	
27.	\triangle ABC $\sim \triangle$ DEF such that ar (\triangle ABC) = 36 cm ² corresponding sides is	² and ar (\triangle DEF) = 49 cm ² . Then, the ratio of their	[1]
	a) 7 : 6	b) $\sqrt{6}:\sqrt{7}$	
	c) 36 : 49	d) 6 : 7	
28.	The coordinates of the mid-point of the line se		[1]
	a) (0, 0)	b) (-1, 1)	
	c) (1, -1)	d) (-2, 4)	
29.	If sec θ + tan θ = x, then sec θ =	-, -, -, -,	[1]
-	a) $\frac{x^2 + 1}{x}$	b) $\frac{x^2-1}{2}$	
	c) $\frac{x^2-1}{x}$	b) $\frac{x^2-1}{2x}$ d) $\frac{x^2+1}{2x}$	
	$c_{j} = \frac{1}{x}$	$\frac{1}{2x}$	

30. Half the perimeter of a rectangular garden, whose length is 4m more than its width is 36m. [1] The area of the garden is

	The area of the garden is		
	a) 320 m ²	b) _{300 m²}	
	c) ₄₀₀ m ²	d) 360 m ²	
31.	The number $(\sqrt{3}+\sqrt{5})^2$ is		[1]
	a) an irrational number	b) an integer	
	c) a rational number	d) not a real number	
32.	The decimal expansion of the rational numbe	er $\frac{37}{2^2 \times 5}$ will terminate after	[1]
	a) two decimal places	b) one decimal place	
	c) four decimal places	d) three decimal places	
33.	$\cos^2 30^\circ \cos^2 45^\circ + 4 \sec^2 60^\circ + rac{1}{2} \cos^2 90^\circ$ -	$-2{ m tan}^260^\circ$ = ?	[1]
	a) $\frac{75}{8}$	b) $\frac{73}{8}$	
	c) $\frac{83}{8}$	d) $\frac{81}{8}$	
34.	If the perimeter of a circle is equal to that of a	a square, then the ratio of their areas is	[1]
	a) 22 : 7	b) 14:11	
	c) 11 : 14	d) 7:22	
35.	Two dice are thrown simultaneously. The pro	bability of getting a doublet is	[1]
	a) $\frac{1}{6}$	b) $\frac{1}{3}$	
	c) $\frac{2}{3}$	d) $\frac{1}{4}$	
36.		9. Nine times this number is twice the number	[1]
	obtained by reversing the digits, then the nur	nber is	
	a) 72	b) 27	
	c) 18	d) 81	
37.	If a = ($2^2 \times 3^3 \times 5^4$) and b = ($2^3 \times 3^2 \times 5$) the	en HCF (a, b) = ?	[1]
	a) 360	b) 90	
	c) 180	d) 540	
38.	If $2\cos 3 heta=1$ then $ heta$ = ?		[1]
	a) 30°	b) 10°	
	c) 15°	d) 20°	
39.	A letter is chosen at random from the word A	SSASSINATION. The probability that it is a vowel	[1]
	is		

a) $\frac{6}{13}$ b) $\frac{7}{13}$ c) $\frac{6}{31}$ d) $\frac{3}{13}$ Point $P\left(\frac{a}{8}, 4\right)$ is the mid-point of the line segment joining the points A(- 5, 2) and B(4, 6). The

40. [1] value of **a** is:

a) -4	b) 4
c) -8	d) -2

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

Ankit's father gave him some money to buy avocado from the market at the rate of $p(x) = x^2 - 24x + 128$. Let α, β are the zeroes of p(x).

41.	Find the value of $lpha$ and eta , where $lpha < eta$.		[1]
	a) 8, 16	b) 4, 9	
	c) 8, 15	d) -8, -16	
42.	Find the value of $lpha+eta+lphaeta$.		[1]
	a) 158	b) 152	
	c) 151	d) 155	
43.	The value of p(2) is		[1]
	a) 81	b) 83	
	c) 80	d) 84	
44.	If $lpha$ and eta are zeroes of x ² + x - 2, then $rac{1}{lpha}$ +	$\frac{1}{\beta}$ =	[1]
	a) $\frac{1}{3}$	b) $\frac{1}{2}$	
	c) $\frac{1}{5}$	d) $\frac{1}{4}$	
45.	If sum of zeroes of $q(x) = kx^2 + 2x + 3k$ is equ	al to their product, then k =	[1]
	a) $\frac{-2}{3}$	b) $\frac{1}{3}$	
	c) $\frac{-1}{3}$	d) $\frac{2}{3}$	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

Students of residential society undertake to work for the campaign **Say no to Plastics**. Group A took the region under the coordinates (3, 3), (6, y), (x, 7) and (5, 6) and group B took the region under the

coordinates (1, 3), (2, 6), (5, 7) and (4, 4).

46. If region covered by group A forms a parallelogram, where the coordinates are taken in the [1] given order, then

a) x = 8, y = 4	b) x = 2, y = 4
c) x = 4, y = 8	d) x - 4, y = 2

- 47. Perimeter of the region covered by group A is
 - a) $(\sqrt{10} + \sqrt{13})$ units b) none of these c) $\sqrt{13}$ units d) $\sqrt{10}$ units
- 48. If the coordinates of region covered by group B, taken in the same order forms a quadrilateral, **[1]** then the length of each of its diagonals is

[1]

a) $3\sqrt{2}$ units, $2\sqrt{2}$ units	b) $4\sqrt{2}$ units, $2\sqrt{2}$ units
c) $3\sqrt{2}$ units, $2\sqrt{2}$ units	d) none of these

49. If region covered by group B forms a rhombus, where the coordinates are taken in given [1] order, then the perimeter of this region is

a) $2\sqrt{10}$ units	b) $\sqrt{10}$ units
c) $4\sqrt{10}$ units	d) $3\sqrt{10}$

50. The coordinates of the point which divides the join of points $P(x_1, y_1)$ and $Q(x_2, y_2)$ internally [1] in the ratio m : n is

a) $\left(rac{mx_2+nx_1}{m+n},rac{my_2+ny_1}{m+n} ight)$	b) $\left(rac{mx_2+ny_2}{m+n},rac{mx_1+ny_1}{m+n} ight)$
c) none of these	d) $\left(rac{mx_1+ny_1}{m+n},rac{mx_2+ny_2}{m+n} ight)$

Solution

Section A

1. **(c)** 13

Explanation: Since, it is given that 5 and 8 are the remainders of 70 and 125 respectively. On subtracting these remainders from the numbers we get 65 = (70-5) and 117 = (125-8), which is divisible by the required number.

Now, required number = HCF (65,117) [for the largest number]

According to Euclid's division algorithm,

b = a \times q + r, 0 \leq r \leq a [. dividend = divisor \times quotient + remainder]

 $\Rightarrow 117 = 65 \times 1 + 52$ $\Rightarrow 65 = 52 \times 1 + 13$ $\Rightarrow 52 = 13 \times 4 + 0$

 \Rightarrow HCF = 13

Hence, 13 is the largest number which divides 70 and 125, leaving remainders 5 and 8

2. **(c)** 2

Explanation: The given system of equations is inconsistent,

3x + y = 1 (2k - 1)x + (k - 1)y = 2k + 1If the system of equations is inconsistent, we have $\frac{3}{2k-1} = \frac{1}{k-1} = \frac{1}{2k+1}$ Take,

Take, $\frac{3}{2k-1} = \frac{1}{k-1}$ $\Rightarrow 3k-3 = 2k-1$ $\Rightarrow k = 2$

3. **(a)** 30 cm

Explanation: $\triangle DEF \sim \triangle ABC$ $\therefore \frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC} = \frac{DE+EF+DF}{AB+BC+AC}$ $\Rightarrow \frac{DE}{9} = \frac{8}{6} = \frac{DF}{7.5}$ $\frac{DE}{9} = \frac{8}{6} \Rightarrow DE = \frac{8 \times 9}{6} = 12 \text{ cm}$ $\frac{DF}{7.5} = \frac{8}{6} \Rightarrow DF = \frac{7.5 \times 8}{6} = 10 \text{ cm}$ Perimeter of $\triangle DEF = DE + EF + DF$ = 12 + 8 + 10 = 30 cm

4. **(d)** x = 1, y = 2

Explanation: 29x + 37y=103(i) 37x+29y=95(ii) Adding (i) and (ii), we get 66 (x + y) = $198 \Rightarrow x + y = 3$. Subtracting (ii) from (i), we get 8 (y - x) = $8 \Rightarrow y - x = 1$. Solve above equations we get x = 1, y = 2

5. (c) $\frac{7}{17}$

Explanation: 8 tan x = $15 \Rightarrow \tan x = \frac{15}{8} = \frac{\text{Perpendicular}}{\text{Base}}$ By Pythagoras Theorem, (Hyp.)² = (Base)² + (Perp.)² = $(8)^2 + (15)^2$ = $64 + 225 = 289 = (17)^2$ \therefore Hyp. = 17 units

$$\therefore \sin x = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{15}{17}$$
$$\cos x = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{8}{17}$$
$$\sin x - \cos x = \frac{15}{17} - \frac{8}{17} = \frac{15-8}{17}$$
$$= \frac{7}{17}$$

6. **(d)** 120

Explanation: Least positive integer divisible by 20 and 24 is LCM of (20, 24).

 $20 = 2^2 \times 5$ $24 = 2^3 \times 3$

: LCM (20, 24) = $2^3 \times 3 \times 5 = 120$ Thus 120 is divisible by 20 and 24.

7. (c) a = -2, b = -6Explanation: $\alpha + \beta = 3 + (-2) = 1$ and $\alpha\beta = 3 \times (-2) = -6$ $\therefore -(a + 1) = 1$ $\Rightarrow a + 1 = -1 \Rightarrow a = -2$ Also, b = -6

8. **(d)** 3π cm²

Explanation: In the figure, $\angle C = \angle B = 90^{\circ} \text{ and } \angle D = 60^{\circ}$ $\therefore \angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\angle A + 90^{\circ} + 90^{\circ} + 60^{\circ} = 360^{\circ}$ $\therefore \angle A = 120^{\circ}$ Area of shaded region $= \frac{\theta}{360} \times \pi r^2$ $= \frac{120}{360} \times \pi \times 3^2$ $= \frac{1}{3} \times \pi \times 9$ $= 3\pi$

Therefore, area of the shaded region is $3\pi~{
m cm}^2$.

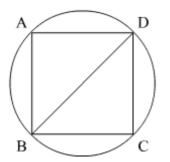
9. **(b)** $3x^2 - 3\sqrt{2}x + 1$

Explanation: Given: $\alpha + \beta = \frac{\sqrt{2}}{1} = \frac{-(-\sqrt{2})}{1} = \frac{-(-3\sqrt{2})}{3}$ And $\alpha\beta = \frac{c}{a} = \frac{1}{3}$ On comparing, we get, a = 3, b = $-3\sqrt{2}$, c = 1 Putting these values in the general form of a quadratic polynomial ax² + bx + c, we have $3x^2 - 3\sqrt{2} + 1$

10. **(a)** 3 : 4

Explanation: $\frac{BD}{DC} = \frac{AB}{AC} = \frac{6}{8} = \frac{3}{4}$ [by angle-bisector theorem]

11. **(b)** $\frac{3}{13}$


Explanation: Face Cards are = 4 kings + 4 queens + 4 jacks = 12 Number of possible outcomes = 12 Number of Total outcomes = 52 \therefore Required Probability = $\frac{12}{52} = \frac{3}{13}$

12. (d) composite number

Explanation: We have $7 \times 11 \times 13 + 13 = 13 (77 + 1) = 13 \times 78$. Since the given number has 2 more factors other than 1 and itself, therefore it is a composite number.

13. (c)
$$\frac{100}{\pi\sqrt{2}}$$

Explanation:

We have given the circumference of the circle that is 100 cm. If *d* is the diameter of the circle, then its circumference will be πd . $\therefore \pi d = 100$ $\therefore d = \frac{100}{\pi}$ We obtained diameter of the circle which is also the diagonal of the square ABCD. Now, side of a square is; Diagonal = $\sqrt{2} \times$ side Therefore, side = $\frac{Diagonal}{\sqrt{2}} = \frac{\frac{100}{\pi}}{\sqrt{2}}$

Therefore, side of the inscribed square is $\frac{100}{\pi\sqrt{2}}$ cm.

14. **(a)** r²

Explanation: We have given area of the circle of radius r_{1+} area of the circle of radius r_2 = area of the

circle of radius r. Therefore, we have, $\pi r_1^2 + \pi r_2^2 = \pi r^2$ Cancelling π , we get $r_1^2 + r_2^2 = r^2$ Therefore, $r_1^2 + r_2^2 = r^2$.

15. **(a)** 1 : 3

Explanation: Since BP||CF, Then, $\frac{AP}{PF} = \frac{AB}{BC}$ [Using Thales Theorem] $\Rightarrow \frac{AP}{PF} = \frac{2}{6} = \frac{1}{3}$ Again, since DP|| EF, Then, $\frac{AP}{PF} = \frac{AD}{DE}$ [Using Thales Theorem] $\Rightarrow \frac{AD}{DE} = \frac{1}{3}$ $\Rightarrow AD : DE = 1 : 3$

16. **(c)** 2

Explanation: Given: $\cot A + \frac{1}{\cot A} = 2$ Squaring both sides, we get $\Rightarrow \cot^2 A + \frac{1}{\cot^2 A} + 2 \times \cot A \times \frac{1}{\cot A} = 4$ $\Rightarrow \cot^2 A + \frac{1}{\cot^2 A} = 2$

17. **(b)**
$$\frac{5}{13}$$

Explanation: Let the fraction be $\frac{x}{y}$. According to question $x + y = 18 \dots (i)$ And $\frac{x}{y+2} = \frac{1}{3}$ $\Rightarrow 3x = y + 2$ $\Rightarrow 3x - y = 2 \dots (ii)$ On solving eq. (i) and eq. (ii), we get x = 5, y = 13Therefore, the fraction is $\frac{5}{13}$ 18. **(b)** $\frac{2}{3}$

Explanation: Total no of balls = 3 + 5 + 7= 15 Favourable cases (not black) = 10 [3 red + 7 white] Probability = $\frac{favourable}{total} \frac{outcomes}{outcomes}$ So, here P(not black) = $\frac{10}{15} = \frac{2}{3}$

Therefore the probability that the ball is drawn is not black is $\frac{2}{3}$

19. **(d)** 1

Explanation: The HCF of two consecutive numbers is always 1. (e.g. HCF of 24, 25 is 1).

20. **(a)** 25 (π – 2) cm²

Explanation: Area of the shaded region is-

 $egin{aligned} &= \left[rac{\pi heta}{360} - \sinrac{ heta}{2} \cosrac{ heta}{2}
ight](r)^2 \ &= \left(rac{\pi}{4} - rac{1}{2}
ight)(10)^2 \ &= 25(\pi-2) ext{cm}^2 \end{aligned}$

Section **B**

21. **(c)** intersecting exactly at one point **Explanation:** We have,

2x + 3y - 2 = 0 And, x - 2y - 8 = 0 Here, a₁ = 2, b₁ = 3 and c₁ = -2 And, a₂ = 1, b₂ = -2 and c₂ = -8 $\therefore \frac{a_1}{a_2} = \frac{2}{1}, \frac{b_1}{b_2} = \frac{3}{-2}$ and $\frac{c_1}{c_2} = \frac{-2}{-8} = \frac{1}{4}$ Clearly, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

Hence, the given system has a unique solution and the lines intersect exactly at one point.

22. **(b)** 2

Explanation: In the given figure, ABCD is a trapezium and its diagonals AC and BD intersect at O. and OA = (3x - 1) cm OB = (2x + 1) cm, OC and OD = (6x - 5) cmNow, $\frac{AO}{OC} = \frac{BO}{OD}$ (Diagonals of a trapezium divides each other proportionally) $\Rightarrow \frac{3x-1}{5x-3} = \frac{2x+1}{6x-5}$ $\Rightarrow (3x-1)(6x-5) = (2x+1)(5x-3)$ $\Rightarrow 18x^2 - 10x^2 - 21x + 6x - 5x + 5 + 3 = 0$ $\Rightarrow 8x^2 - 20x + 8 = 0$ $\Rightarrow 2x^2 - 5x + 2 = 0$ $\Rightarrow 2x^2 - x - 4x + 2 = 0$ $\Rightarrow x(2x-1)-2(2x-1)=0$ $\Rightarrow (2x-1)(x-2) = 0$ Either 2x - 1 = 0, then x = $\frac{1}{2}$ but it does not satisfy or x - 2 = 0, then x = 2∴ x = 2

23. **(d)** 2

Explanation: LCM (a, b, c) $= 2^3 \times 3^2 \times 5$ (I) we have to find the value of n Also we have $a = 2^3 \times 3$ $b = 2 \times 3 \times 5$

 $c=3^n imes 5$ We know that the while evaluating LCM, we take greater exponent of the prime numbers in the factorisation of the number. Therefore, by applying this rule and taking $n \ge 1$ we get the LCM as LCM (a, b, c) = $2^3 \times 3^n \times 5$ (II) On comparing (I) and (II) sides, we get: $2^3 imes 3^2 imes 5=2^3 imes 3^n imes 5$ n = 2 (c) $b^2 - a^2$ Explanation: Given, a cot θ + b cosec θ = p b cot θ + a cosec θ = q Squaring and subtracting above equations, we get $p^2 - q^2 = (a \cot \theta + b \csc \theta)^2 - (b \cot \theta + a \csc \theta)^2$ = $a^2 \cot^2 \theta + b^2 \csc^2 \theta$ + 2ab $\cot \theta \csc \theta$ - ($b^2 \cot^2 \theta + a^2 \csc^2 \theta$ + 2ab $\cot \theta \csc \theta$) = $a^2 \cot^2 \theta + b^2 \csc^2 \theta + 2ab \cot \theta \csc \theta - b^2 \cot^2 \theta - a^2 \csc^2 \theta - 2ab \cot \theta \csc \theta$ $= a^2 (\cot^2 \theta - \csc^2 \theta) + b^2 (\csc^2 \theta - \cot^2 \theta)$ $= -a^2 (\csc^2 \theta - \cot^2 \theta) + b^2 (\csc^2 \theta - \cot^2 \theta)$ = $-a^2 \times 1 + b^2 \times 1$

 $= b^2 - a^2$

25. **(b)** 40°

24.

Explanation: Let C = 3B = 2(A + B) = x°. Then, C = x°, B = $\left(\frac{x}{3}\right)^{\circ}$ and (A + B) = $\left(\frac{x}{2}\right)^{\circ}$ (A + B) + C = 180° $\Rightarrow \frac{x}{2}$ + x = 180 \Rightarrow 3x = 360 \Rightarrow x = 120. $\therefore \angle B = \left(\frac{120}{3}\right)^{\circ} = 40^{\circ}$

26. **(b)** 10 cm

Explanation: One diagonal is 16 and another 12 then half of both length is 8 and 6.diagonal of rhombus bisect at 90°

Hence, by pythagoras theorem we have

 $8^{2} + 6^{2} = h^{2}$ 64 + 36 = 100 Side = 10.

27. **(d)** 6 : 7

Explanation: $\triangle ABC \sim \triangle DEF$ ar ($\triangle ABC$) = 36 cm² and ar ($\triangle DEF$) = 49 cm² i.e. areas ABC and DEF 36 49 Ratio in their corresponding sides = $\sqrt{36}$: $\sqrt{49}$ = 6 : 7

28. **(c)** (1, -1)

Explanation: Let the coordinates of midpoint C(x, y) of the line segment joining the points A(-2, 3) and B(4, -5)

$$\therefore x = \frac{x_1 + x_2}{2} = \frac{-2 + 4}{2} = \frac{2}{2} = 1$$

And $y = \frac{y_1 + y_2}{2} = \frac{3 - 5}{2} = \frac{-2}{2} = -1$
Therefore, the coordinates of mid-point C are (1, -1)

29. **(d)** $\frac{x^2+1}{2x}$

Explanation: Given, $\sec \theta + \tan \theta = x$ We know that, $\sec^2 \theta - \tan^2 \theta = 1$ $\Rightarrow (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1$ $\Rightarrow x(\sec \theta - \tan \theta) = 1$

 $\sec\theta - \tan\theta = \frac{1}{x}$ Now $\sec \theta + \tan \theta = x$ Adding we get, $2 \sec heta = rac{1}{x} + x = rac{1+x^2}{x}$ $\sec heta = rac{1+x^2}{2x}$ (a) 320 m²

Explanation: Let the width be x then length be x + 4 According to the question, l + b = 36x + (x + 4) = 362x + 4 = 362x = 36-42x = 32x = 16. Hence, The length of the garden will be 20 m and width will be 16 m. Area = length \times breath = 20 \times 16 = 320 m²

(a) an irrational number 31.

Explanation: $\left(\sqrt{3}+\sqrt{5}\right)^2$ = $\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2 imes\sqrt{3} imes\sqrt{5}$ $=3+5+2\sqrt{15}$ $=8+2\sqrt{15}$ Here, $\sqrt{15}=\sqrt{3} imes\sqrt{5}$

Since $\sqrt{3}$ and $\sqrt{5}$ both are an irrational number. Therefore, $\left(\sqrt{3}+\sqrt{5}\right)^2$ is an irrational number.

32.

(a) two decimal places Explanation: $\frac{37}{2^2 \times 5} = \frac{37 \times 5}{2^2 \times 5^2} = \frac{185}{100} = 1.85$

So, the decimal expansion of the rational number will terminate after two decimal places.

(c) $\frac{83}{8}$ 33.

30.

Explanation: $\cos^2 30^\circ \cos^2 45^\circ + 4 \sec^2 60^\circ + \frac{1}{2} \cos^2 90^\circ - 2 \tan^2 60^\circ$ $= \left(rac{\sqrt{3}}{2}
ight)^2 \cdot \left(rac{1}{\sqrt{2}}
ight)^2 + \left(4 imes 2^2
ight) + \left(rac{1}{2} imes 0^2
ight) - 2 imes (\sqrt{3})^2$ $=\left(\frac{3}{4}\times\frac{1}{2}\right)+16+0-6=\frac{3}{8}+10=\frac{83}{8}$

34. **(b)** 14 : 11

> **Explanation:** Let the radius of the circle be *r* and side of the square be *a*. Then, according to question, $2\pi r = 4a \Rightarrow a = rac{2\pi r}{4} = rac{\pi r}{2}$

Now, ratio of their areas

$$\frac{\pi r^2}{\left(\frac{\pi r}{2}\right)^2}$$

$$= \frac{\pi r^2 \times 4}{\pi^2 r^2}$$

$$= \frac{14}{11}$$

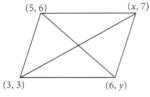
$$\Rightarrow \pi r^2 : a^2 = 14 : 11$$

35. (a) $\frac{1}{6}$

> Explanation: Doublet means getting same number on both dice simultaneously Doublets = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) Number of possible outcomes = 6 Total number of ways to throw a dice = 36 Probability of getting a doublet = $\frac{6}{36} = \frac{1}{6}$

36. (c) 18

Explanation: Let unit digit = x , Tens digit = y , therefore original no will be 10y + x


Sum of digits are 9 So that x + y = 9 ... (i) nine times this number is twice the number obtained by reversing the order of the digits 9(10y + x) = 2(10x)+ y) 90y + 9x = 20x + 2y88y - 11x = 0Divide by 11 we get 8y - x = 0 ... (ii) Adding equations (i) and (ii), we get 9y = 9 $y = \frac{9}{9} = 1$ Putting this value in equation 1 we get x + y = 9x + 1 = 9 x = 8 Therefore the number is 10(1) + 8 = 1837. (c) 180 **Explanation:** It is given that: $a = (2^2 \times 3^3 \times 5^4)$ and $b = (2^3 \times 3^2 \times 5)$: HCF (a, b) = Product of smallest power of each common prime factor in the numbers = $2^2 \times 3^2 \times 5 = 180$ (d) 20° 38. **Explanation:** $2\cos 3\theta = 1 \Rightarrow \cos 3\theta = \frac{1}{2} = \cos 60^{\circ} \Rightarrow 3\theta = 60^{\circ} \Rightarrow \theta = 20^{\circ}$ (a) $\frac{6}{13}$ 39. Explanation: Vowels present in the given word are A, A, I, A, I, O = 6 Number of possible outcomes = {A, A, I, A, I, O} = 6 Number of total outcomes = 13 Required Probability = $\frac{6}{13}$ **(a)** -4 40. **Explanation:** We have given that the mid point of A(-5, 2), B(4, 6) is $p = (\frac{a}{8}, 4)$ the mid point of A(-5, 2), B(4, 6) = $(\frac{-1}{2}, 4)$ so $\frac{a}{8} = \frac{-1}{2}$ 2a = -8 $a = \frac{-8}{2}$ a = -4 Section C 41. (a) 8, 16 **Explanation:** Given, α and β are the zeroes of p(x) = x² - 24x + 128 Putting p(x) = 0, we get $x^2 - 8x - 16x + 128 = 0$ \Rightarrow x(x - 8) - 16(x - 8) = 0 \Rightarrow (x - 8)(x - 16) = 0 \Rightarrow x = 8 or x = 16 $\therefore \alpha$ = 8, β = 16 42. **(b)** 152 **Explanation:** $\alpha + \beta + \alpha\beta$ = 8 + 16 + (8)(16) = 24 + 128 = 152 (d) 84 43. **Explanation:** p(2) = 2² - 24(2) + 128 = 4 - 48 + 128 = 84 **(b)** $\frac{1}{2}$ 44. **Explanation:** Since α and β are zeroes of $x^2 + x - 2$ $\therefore \alpha + \beta$ = -1 and $\alpha\beta$ = -2 Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{-1}{-2} = \frac{1}{2}$

45. (a) $\frac{-2}{3}$

Explanation: Sum of zeroes = $\frac{-2}{k}$ Product of zeroes = $\frac{3k}{k}$ = 3 According to question, we have $\frac{-2}{k}$ = 3 \Rightarrow k = $\frac{-2}{3}$

46. **(a)** x = 8, y = 4

Explanation: Since the diagonals of a parallelogram bisect each other.

:. By mid-point formula, we have $\left(\frac{x+3}{2}, \frac{3+7}{2}\right) = \left(\frac{5+6}{2}, \frac{6+y}{2}\right)$ $\Rightarrow x + 3 = 11 \text{ and } y + 6 = 10 \Rightarrow x = 8 \text{ and } y = 4$

47. **(b)** none of these **Explanation:** Distance between (3, 3) and (6, 4)

 $= \sqrt{(6-3)^2 + (4-3)^2} = \sqrt{9+1} = \sqrt{10} \text{ units}$ And distance between (6, 4) and (8, 7) $= \sqrt{(8-6)^2 + (7-4)^2} = \sqrt{4+9} = \sqrt{13} \text{ units}$ Now, required perimeter = $2(\sqrt{10} + \sqrt{13})$ units

48. (a) $3\sqrt{2}$ units, $2\sqrt{2}$ units

Explanation: Let A(1, 3), B(2, 6), C(5, 7) and D(4,4) be the given points. Then length of diagonal AC = $\sqrt{(5-1)^2 + (7-3)^2} = \sqrt{16+16}$

=
$$\sqrt{32} = 4\sqrt{2}$$
 units
and BD = $\sqrt{(4-2)^2 + (4-6)^2} = \sqrt{4+4}$
= $\sqrt{8} = 2\sqrt{2}$ units

49. (c) $4\sqrt{10}$ units Explanation: Length of one of the sides $=\sqrt{(2-1)^2 + (6-3)^2} = \sqrt{1+9} = \sqrt{10}$ units \therefore Perimeter = $4\sqrt{10}$ units

50. **(a)**
$$\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$$

Explanation: $\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$