Appendix A
Some Results in Quantum Mechanics

A.1 Barrier Penetration

Consider the one-dimensional potential shown in Figure A.1(a). Free particles of
mass m and energy E represented by plane waves are incident from the left and
encounter the constant rectangular barrier of height V, where V > E.

In region I (x < 0), there is an incoming wave e***, where the wave number & is
given by

Rk = 2mE, (A1)

and also a wave reflected at the barrier travelling from right to left of the form
e **_ Thus the total wavefunction in region I is

V1 (x) = Ae™ 4 Be ™, (A2)
where A and B are complex constants. Within the barrier, region Il (0 < x < a),
the solution of the Schrodinger equation is a decaying exponential plus an

exponential wave reflected from the boundary at x = q, i.e. the total wavefunction
is

P (x) = Ce™™ 4 De"™, (A.3)
where C and D are complex constants and x is given by
Wk* =2m(V — E). (A.4)

Finally, in region III (x > a) to the right of the barrier, there is only an outgoing
wave of the form

3 (x) = Fe™, (A.5)

where again F is a complex constant.
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Figure A.1 Rectangular barrier with (a) wavefunction solutions, and (b) form of the incoming
and outgoing waves; (c) modelling an arbitrary smooth barrier as a series of rectangular barriers

We are interested in the transmission coefficient T, defined by
T = |F/A|*. (A.6)

The values of F and A are found by imposing continuity of the wavefunction and
its first derivative, i.e. matching the values of these quantities at the two boundaries
x = 0 and x = a. The algebra may be found in any introductory book on quantum
mechanics.' The result is

- 2kreka
 |2kk cosh(ka) — i(k* — k2) sinh(ka)

(A7)

The corresponding incident and transmitted waves are shown in Figure A.1(b)
(the reflected waves are not shown).

For large xa, which corresponds to small penetrations, we can make the
replacement

1
sinh(ka) = cosh(ka) ~ Ee”‘“ (A.8)
and hence
4kt \* o
T ~ <k2 n %2> e . (A.9)

ISee, for example, Chapter 6 of Me61.
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The first factor is due to the reflection losses at the two boundaries x = 0 and x = a
and the decreasing exponential describes the amplitude decay within the barrier.
The first factor is slowly varying with energy and is usually neglected.

The result of Equation (A.9), ignoring the first factor, may be used to find the
transmission coefficient for an arbitrary smoothly-varying barrier by modelling it
as a series of thin rectangular barriers. This is illustrated in Figure A.1(c). Thus by
replace 2xa by 2> k(x)Ax and taking the limit of small Ax, the summation goes
over to an integral, i.e.

dia — 2 de{z—m V() — E] } (A.10)

and

(A.11)

T ~ exp l—Zde{;—T V(x) — E] }E .

This is the essence of what is known as the WKB approximation in quantum
mechanics. Equation (A.11) was used in Section 7.6 to discuss a-decay and in
Section 8.2.1 to discuss nuclear fusion.

A.2 Density of States

Consider a spinless particle of mass m confined within a cube of sides L and
volume V = L3, oriented so that one corner is at the origin (0,0,0) and the edges
are parallel to the x, y and z axes. If the potential is zero within the box, then the
walls represent infinite potential barriers and the solutions of the Schrodinger
equation must therefore vanish on all faces of the cube. It is straightforward to
show that the solutions of the Schrodinger equation satisfying these boundary
conditions are standing waves of the form

P(x,y,2) = Csin(kx) sin(kyy) sin(k,z), (A.12)
where C is a constant and the components of the wave number k = (k,, k,, k) take
the values

ky:’%”, kZ:”ZTW, (e ny,n) =1,2,3.... (A.13)

The energy of the particle is given by

k2 (hn)?
2 2 2\ _ 2 2 2
kx+ky+kz)_—2 =3 (n; +ny +n), (A.14)

h2
E=""¢
2m
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where k = |k| = p/fi and p is the particle’s momentum. Negative values of the
integers do not lead to new states since they merely change the sign of the wave
function Equation (A.12) and phase factors have no physical significance.

The allowed values of k form a cubic lattice in the quadrant of ‘k-space’ where
all the values of (ny,ny,n;) are positive. Since each state corresponds to
one combination of (ny,ny,n;), the number of allowed states is equal to the
number of lattice points. The spacing between the lattice points is (L/7), so the
density of points per unit volume in k-space is (L/ 7r)3. The number of lattice
points n(ky) with k less than some fixed value k is the number contained within a
volume that for large values of ky may be well approximated by the quadrant of a
sphere of radius ko, i.e.

14 L\’  V 4rk
ko) =-=mk (=) = —0, A.15
n(ko) 837T0<7T> (27r)3 3 ( )

Hence the number of points with & in the range ko < k < (ko + dko) is

dn(ky) = #47&3&0. (A.16)

The density of states is defined as p(ko) = dn(ko)/dko and so is given by

plko) = ﬁmfkg. (A.17)

Thus p(ko)dko is the number of states with k between ko and ko + dko, or
equivalently
4nv. -,

i’ (A.18)

p(p)dp =

is the number of states with momentum between p and p + dp. This is the form
used in Equation (7.1) when discussing the Fermi energy in the Fermi gas model.
Equation (A.18) can also be written in terms of energy using E = p*/2m, when it
becomes

47V

and this was the form used in discussing §-decay in Section 7.7.2.

Although the above derivation is for a particle confined in a box, the same
technique can be used for scattering problems. In this case we can consider a large
volume V = L3 and impose ‘periodic’ boundary conditions

Yx+L,y,z) = P(x,y + L,z) = P(x,y,z+ L) = ¥(x,y,2). (A.20)
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Instead of standing waves, the solutions of the Schrodinger equation consistent
with Equation (A.20) are the travelling waves

eikr _ eikxxeik\.yeikzz (A21)
where
2 2n, 2
ko = ’ZW, k = ”LVT? k. — ”LZ”, neny,n. =0,+£1,+£2 ... (A.22)

The density of lattice points in k-space now becomes (L/27)°, but unlike the
standing wave case, permutations of signs in Equation (A.22) do produce new
states and the whole quadrant of lattice points has to be considered. Thus these two
effects ‘cancel out’ and we arrive at the same result for the density of states in
Equations (A.18) and (A.19). This approach was used in discussing the formal
definitions of cross sections in Chapter 1.

All the above is for spinless particles. If the particle has spin then the density of
states must be multiplied by the appropriate spin multiplicity factor, taking account
of the Pauli principle as necessary. Thus, for example, for spin-% particles, with two
spin states, Equation (A.19) becomes

8TV

A.3 Perturbation Theory and the Second Golden Rule

Without detailed proof, we will outline the derivation from perturbation theory of
the important relationship between the transition probability per unit time for a
process and its matrix element.’

In perturbation theory, the Hamiltonian at time ¢ may be written in general as

H(t) = Hy+ V(1), (A.24)
where Hj is the unperturbed Hamiltonian and V/(¢) is the perturbation, which we

will assume is small. The solution for the eigenfunctions of H starts by expanding
in terms of the complete set of energy eigenfunctions |u,) of Hy, i.e.

(D) = ealn) un)e 0, (A.25)

2We follow the derivation given in Chapter 9 of Ma92.
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where E, are the corresponding energies. If |¢(7)) is normalized to unity, then
the squared coefficient |c,(¢)|* is the probability that at time 7 the system is in a
state |u,). Substituting Equation (A.25) into the Schrodinger equation leads to a
differential equation for the transition coefficients:

dc

ih fu@ =Y Vi(0)e re,(1), (A.26)

where the matrix element Vj, = (uy |V(f)|u,) and the angular frequency
wpm = (Ef — E,)/h. If we assume initially (f = 0) that the system is in a state
|u;), then ¢, (0) = 6,; and the solutions for ¢/() are found by substituting this result
into the right-hand side of Equation (A.22) giving, to first-order in V,

t

1
C,'(l‘) =1 +—hJ Vii(t/)d[l (A27a)
i
0
and
1 t
o) = J V(e dd  (f #1). (A.27D)
i
0

For f # i, the quantity }cf(t) ’2 is the probability, in first-order perturbation theory,
that the system has made a transition from state i to state f.

The above is for a general time-dependent perturbation V(z), but the results can
also be used to describe other situations, for example where the perturbation is
zero up to some time #y and a constant thereafter. In this case, the integrals in
Equations (A.27) can be evaluated and, in particular, Equation (A.27b) gives, again
to first-order in V,

Vi
cr (1) = huff_

[1—e“] (A.28)

and hence the probability of the transition i — f is

2 4Vi[* [sin2(wy
Py(t) = |er(n)] = |Z§| l C(j%ft)]. (A.29)

The function in the square brackets in Equation (A.29) is shown in Figure A.2.
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Figure A.2 The function {#ﬁ)]
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For sufficiently large values of ¢, it has the form of a large central peak with
much smaller side oscillations. In this case Py is only appreciable if

hlws| = |Er — Ei| < 27h/t (A.30)

and then the square bracket can be replaced by a Dirac delta function®, i.e.

201

sin“ (5wt 1
lim (+f> = —hté(E; — E;), (A31)
1—00 wfl 2

where the external factors are to preserve the normalization. Then
2 2
Py(t) = 15~ |Vi|"6(E; — E)) (A.32)
3The Dirac delta function was the first so-called ‘generalized function’. It is defined by the two conditions:

(i) 6(x' —x) = 0if x # ¥’ and (ii) ff;c 6(x — x)dx’ = 1. It follows that if f(x) is a function continuous in the
interval x; < x < x,, then J:sz(x’)é(x’ —x)d =f(x) if x; <x <x or =0if x < x; or x > x,.
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and the transition probability per unit time is

dPy(1)
dr

— 2% |Vﬂ|25(Ef —E). (A.33)

The above assumes that the final state is discrete, but it is more common for the
final states to form a continuum defined by the density of states p(E) derived in
Section A.2 above. In this case, since p(E)dE is the number of states with energy
between E and E + dE, we can write the transition rate per unit time d7j /dt to a
group of states f with energies in this range as

dTﬂ . JdPﬂ(f)
de ) dr

2w 2
E)dEr = — E A.34
p(Er)dEy = - [|Vﬁ| P f)}Ef:E,.’ (A.34)

where the integral has been evaluated using the properties of the delta function.
Equation (A.34) is called the Second Golden Rule (sometimes Fermi’s Second
Golden Rule, although strictly the result is not due to Fermi) and has been used
in several places in this book, for example in Chapter 7 when discussing nuclear
(-decay.



