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CHAPTER HIGHLIGHTS

Chapter 2

Introduction
State of Stress in 2D System 
(Biaxial or Plane Stress)
Examples: Beam, shaft. 

In 2D system, on any inclined plane there will be two com-
ponents of stresses. 

Stress tensor = 
p q

q p
x xy

yx y











qxy = qyx for moment equilibrium 

Total stress components = 4
Independent stress components = 3.

Stresses on Inclined Planes
A body is subjected to px, py and qxy as shown in the follow-
ing fi gure. 

The resultant stress acting on a plane inclined at an angle 
q (in anti-clockwise) to the vertical. 

px

py

px

py

qyx

qxy

qxy

qyx

θ
pθ

qθ

Normal stress on inclined plane: 

p
p p p p

qx y x y
xyθ θ θ=

+
+

−
+

2 2
2 2cos sin

Shear stress on inclined plane:

q
p p

qx y
xyθ θ θ=

−







 −

2
2 2sin cos

Complex Stresses, Shear Force 
and Bending Moment Diagrams
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Resultant stress on inclined plane: 

p p qRθ θ θ= +2 2

pθ

pRθ

qθ

ϕ

Angle of obliquity, φ θ

θ
=











−tan 1 q

p

Special Cases

	 1.	 1D system or uniaxial stress system:

		  Example: Tie or strut (truss members)

p pθ

θ

		  px = p; py = 0, qxy = 0

		  p
p

pθ θ θ= + =
2

1 2 2( ) coscos

		  q
p

pθ θ θ θ= =
2

2(sin ) sin cos

		  pmax = p (at q = 0°)

		  qmax = 
p

2
 (at q = 45°, i.e., diagonal plane)

	 2.	 Pure shear:

		  Example: Shafts subjected to torsion. 

q

q

q

q

θ

		  pq = qsin2q = 2qsin qcos q; qq = qcos 2q
		  pmax = ±q (at q = 45° or 135°, i.e., on diagonal planes)

		  qmax = q (at q = 90° or 0°)

q

q

qq

q

q q
q

Principal Planes and Stresses
Principal Stresses

•• Maximum or minimum normal stress is principal stress. 
•• These stresses are used in designs. 
•• In 2D, two principal stresses and corresponding planes 

exist. 

Major

Minor

p

p

p p p p
q

x y x y
xy

1

2

2

2

2 2
=







+
±

−





+

Principal Plane

•• The plane on which principal stresses are acting is prin-
cipal plane.

•• On principal plane, shear stress q = 0.
•• In 2D system, there will be two principal planes separated 

by 90°.

Let principal plane is making an angle a with vertical.

We know q
p p

qx y
xyθ θ θ=

−







 −

2
2 2sin cos

q
p p

qx y
xyα α α= =

−







 −0

2
2 2sin cos

tan 2
2

α =
−
q

p p
xy

x y

Maximum Shear Stresses

q
p p p p

q
x y

xymax = ±
−






 ±

−







 +1 2

2

2

2 2
or
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Maximum Shear Stress Planes

•• The planes on which qmax is acting. 

•• In 2D system, there will be two qmax planes separated by 90°.

•• Angle between qmax plane and the nearest principal plane 
will be at 45°.

•• On maximum shear stress plane, normal stress will also 
be acting.

Normal stress on qmax plane:

p
p p p px y′ =

+ +1 2

2 2
or

Strains on Inclined Plane
Stress System Strain System

px ex

py ey

qxy γ xy

2











Normal strain,

ε
ε ε ε ε

θ
γ

θθ =
+

+
−







 +











x y x y xy

2 2
2

2
2cos sin

Shear strain, 

γ ε ε
θ

γ
θθ

2 2
2

2
2 2







 =

−







 −











x y xysin cos

Principal strains:

Major 

Minor

ε

ε

ε ε ε ε γ1

2

2 2

2 2 2
=








+
±

−







 +











x y x y xy

Principal planes:

tan 2

2
2

α

γ

ε ε
=











−

xy

x y

a = angle of major principal plane with vertical

Principal planes located by stress system (or) by correspond-
ing strain system, both are same.

NOTE

Maximum Shear Strain
γ ε εmax

2 2
1 2=
−

gmax = e1 - e2

q
p p

max =
−1 2

2

If in 3D system, gmax = e1 - e3,

where e1 and e3 are major and minor strains. 

Mohr’s Circle
Mohr’s circle is used for analysing stresses graphically.

Squaring and adding expressions for normal stress and 
shear stress leads to the equation of a circle. This principle 
is used in Mohr’s circle.

Construction of Mohr’s Circle  
for Complex Stresses
It can be seen that radius of the Mohr’s circle represents the 
maximum shear stress.

The following sign conventions should be observed 
while constructing the Mohr’s circle.

	 1.	 Tensile stress is to be treated as positive and 
compressive stress negative. Positive normal stresses 
are to be plotted to the right of the origin and negative 
normal stresses to the left of the origin.

	 2.	 Shear stress producing clockwise moment in element 
is treated as positive and should be drawn above the 
X-axis.

Measurement of Stresses on  
a Plane Making an Angle q with  
the Plane at Which px Acts

q

q

py

Px Pxθ

(+)

The plane makes angle q in the anti-clockwise direction 
from plane at which px acts. As per the sign convention, 
radial vector will be above the X-axis in positive direction.

O

H

R
B

E q

G

Q
B

q

A

F
A

Py
Px

qxy

Pt

Pn

P2

P1

γ

2θ
2  1θ
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Line AB is a reference line representing px, py and q. Line 
QR is drawn at an angle twice q (i.e., 2q). Coordinates of 
R give the values of normal stress px and shear stress pt on 
the plane.

In the diagram, angle AQF = 2q1 represents the position 
of the principal plane. q1 is the angle from the reference 
plane at which the principal plane is situated.

q
q

px

py

py

px A

B

q

−q

−q

o

Mohr’s circle is drawn on a set of axes representing normal 
stress (x-direction) and shear stress (y-direction).

Each set of a normal stress and shear stress can be rep-
resented by a point.

Points representing (px, -q) and (py, + q) are marked as 
A and B. 

The line joining A and B passes through point Q on the 
horizontal axis. A circle is drawn through A and B with Q as 
centre. This is known as Mohrs’ circle.

px

py

p

F

A

G

QE

q

q

O

−q

q
B

H

Tension

OQ
p px y=

+
2

Radius = QB = QA

=
−





+
p p

q
x y

2

2

2

Points E and F represent principal planes where the shear 
stress is zero.

∠AQF = 2fp = Angle at which the principal plane exists.

∠AQH = 2fs = Angle at which the plane of maximum 
shear stress exists.

Mohr’s Circle of Strain
Radius of Mohr’s circle of strain =

γmax

2

2
γ

2
maxγ

ε1
ε2

ε

Strain Gauge
Strain gauge is a small device that is attached to the surface 
of an object. It contains wires and are stretched or shortened 
when the object is strained at that point.

The gauges are extremely sensitive and measures strains 
as small as 1 × 10-6.

Since each gauge measure the normal strain in only one 
direction. It is often necessary to use three gauges in com-
bination with each gauge measuring the strain in a different 
direction.

From three such measurements, it is possible to calculate 
the strains in any direction on the surface. 

A group of three gauges arranged in a particular pattern 
are called a strain rosette.

Based on the arrangement of strain gauges. strain rosettes 
are classified as: 

	 1.	 Rectangular strain rosettes a = 45°

	 2.	 Delta strain rosettes a = 60°

	 3.	 Star strain rosettes a = 120°

Where a is angle between strain gauges.

Rectangular Strain Rosettes

45°

εC
εB

εA

Expression for ex, ey and gxy in terms of rectangular strain 
rosettes reading 
� (eA, eB, eC to be calculated)
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We know: 

en = 
1

2
(ex + ey) + 1

2
(ex - ey) cos 2q + 

γ xy

2
sin 2q 

At, q = 0°
(en)q = 0° = ∈A = ex

At, q = 90°
(en)q = 90° = ec = ey

(en)q = 45° = eB = 
1

2
(eA + eC) + 

γ xy

2

⇒ gxy = 2eB - (eA + eC) 

In strain tensor form:

[e30] = 

ε ε
ε ε

ε
ε ε

ε

A B
A C

B
A C

C

−
+








−
+


























( )

( )

2

2

e1,2 are principal strains

ε ε ε ε ε γ1 2
2 21

2
, ( ) ( ) ( )= + ± − +



x y x y xy

Maximum shear strain: 

gmax = Higher of [|e1| (or) |e1 - e2|]

Principal stresses: 

σ
µ

ε µε1 2 1 2
1

=
−

+
E

[ ]  

σ
µ

ε µε2 2 2 1
1

=
−

+
E

[ ]  

where E is Young’s modulus and m is Poisson’s ratio. 

Maximum shear stress: 

Ymax = Higher of 
σ σ σ1 1 2

2 2
or

−







 .  

Theories of Failure
Strength of a member is based on mechanical properties 
which are usually determined from simple tension or com-
pression tests. Predicting failure in members subjected to 
uniaxial stress is both simple and straight forward. But pre-
dicting the failure stresses for members subjected to biaxial 
or triaxial stresses is much more complicated. For that prin-
cipal theories of failure have been formulated. 

Generally, ductile materials fail by yielding, i.e., when 
permanent deformations occurs in the material and brittle 
materials fail by fracture. Therefore, for ductile materials, 
the limiting strength is the stress at yield point and for brittle 
materials the limiting strength is the ultimate stress in ten-
sion or compression. 

	 1.	 Maximum principal stress (Rankine) theory: 
According to this theory, the failure occurs at a point 
in a member when the maximum principal stress 
reaches its limiting strength.

		  p1 = sy (for tension and compression) 

		  Since the maximum principal stress theory is based 
on failure in tension or compression and ignores the 
possibility of failure due to shear, it is not used for 
ductile materials. 

		  But as brittle materials are strong in shear but weak in 
tension or compression, this theory is generally used. 

	 2.	 Maximum shear stress (Guest’s or Tresca’s) 
theory: The failure occurs when the maximum shear 
stress becomes equal to that at the yield point in 
tension test. 

q p pmax ( )= −
1

2
1 2

		  The failure occurs when the maximum principal 
stress reaches a value equal to the shear stress at yield 
point in tension test. The shear stress at a yield point 
in simple tension is equal to half of the yield stress in 
tension. 

q p p y
max ( )= − =

1

2 2
1 2

σ
 

		  This theory is mostly used for designing members of 
ductile materials which are weak in shear.

Aluminium alloys and certain steels are not governed 
by the Guest’s theory.

NOTE

	 3.	 Maximum principal strain (Saint Venant’s) 
theory: Failure occurs when the maximum principal 
strain in a biaxial system reaches the limiting value of 
strain.

ε
µ

max = −
p

E

p

E
1 2  

⇒ sy = (p1 - mp2)

		  Failure should occur at higher load, because the 
Poisson’s ratio reduces the effect in perpendicular 
directions. 

This theory is not used in general, because it only 
gives reliable results in particular cases. 

	 4.	 Maximum strain energy (Haigh) theory: This 
assumes that failure occurs when total strain energy 
in the complex stress system is equal to that at the 
yield point in tensile test. 

U
E

p p p p
E
y= + −  =

1

2
2

2
1
2

2
2

1 2

2

µ
σ

 

		  This theory is good for ductile materials. 

	 5.	 Maximum distortion energy (Hencky and von 
Mises) theory: This assumes that failure occur when 
shear strain energy (distortion energy) in the complex 
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system is equal to that at the yield point in tension or 
compression test. 

( )p p y1 2
2 22− = σ

( ) ( ) ( )p p p p p p y1 2
2

2 3
2

3 1
2 22− + − + − = σ

		  This theory is mostly used for ductile materials in 
place of maximum strain energy theory.

Classification of Beams
A structural member on which forces act at right angles to 
its axis is called a ‘beam’. Beam can be classified depending 
upon the types of supports as follows:
	 1.	 Cantilever: If one end of the beam is fixed and the 

other end is free, it is called a ‘cantilever’.

	 2.	 Simply supported beam: When both ends of the 
beam is supported, it is called a simply supported 
beam.

	 3.	 Fixed beam: When both ends are rigidly fixed, it is 
called a fixed beam.

	 4.	 Overhanging beam: In overhanging beams, supports 
are not provided at the ends.

	 5.	 Continuous beam: If more than two supports are 
provided, it is called a continuous beam.

Shear Force and Bending 
Moment in Beams
Statically determinate beam: In statically determinate 
beams, the reaction at supports can be determined by apply-
ing the equation of static equilibrium. The values of reac-
tions are not affected by the deformation of the beam.

The various types of loading are:

	 1.	 Point load or concentrated loads.

	 2.	 Uniformly distributed loads.

	 3.	 Uniformly varying loads.

Shear force and bending moment: Shear force is the 
force that is trying to shear off a section of the beam and is 
obtained by the algebraic sum of all the forces and reactions 
acting normal to the axis of the beam acting either to the left 
or right of the section.

Bending moment acting at a section of a beam is the 
moment that is trying to bend it and is obtained by the alge-
braic sum of all the moments and reactions about the sec-
tion, either to the right or left of the section.

Shear force is treated as positive if it leads to move the 
left portion upward in relation to the right portion.

Bending moment is treated as positive if tries to sag the 
beam. The moment will be clockwise if the left portion of 
the beam is considered.

Sign conventions: Positive bending moment produces con-
cavity upwards.

+ve

Sagging

Negative bending moment produces convexity upwards.

−ve

Hogging

Point of contra flexure: Bending moment in a beam varies 
depending upon the loads. Bending moment at a point may 
be positive, negative, or zero. The point at which bending 
moment changes its sign is called ‘point of contra flexure’. 
Bending moment is zero at this point. At point of contra 
flexure beam curvature is changed from sagging to hogging 
or vice versa.

Relation between Load Intensity, Shear 
Force and Bending Moment

x
M

F

dx

F + dF

M + dM

F
mW

Considering an elemental length dx.
The shear force ‘F’ acts on the left side of the element 

and at the right side, it is F + dF.
The bending moment M acts on the left side of the ele-

ment and at the right side it is M + dM.
Since dx is very small, applied load may be taken as uni-

form and equal to W
N

m
.

Taking moment about the right face and neglecting small 

quantity of higher order, we get: 
dM

dx
F= − .

Shear Force and Bending 
Moment Diagrams
Cantilever Subjected to Central  
Concentrated Load
SD = Space diagram
SFD = Shear force diagram
BMD = Bending moment diagram

L

W

SD

x

Part III_Unit 2_Chapter 02.indd   118 5/30/2017   6:49:04 PM



Chapter 2  ■  Complex Stresses, Shear Force and Bending Moment Diagrams  |  3.119

W

SFD

(+)

WL Wx

BMD

(+)

Shear force is constant throughout the beam. Bending 
moment varies linearly.

F = W
M = Wx

SD
x

w/unit length

SFD

wL
(+)

BMD

(+)

2
wL

Cantilever Subjected to Uniformly  
Distributed Load

SD
x

w/unit length

SFD

wL
(+)

BMD

(+)

2
wL

Shear force has got linear variation.

F = wx

Bending moment varies parabolically.

M
Wx

=
2

2

Cantilever Subjected to Uniformly  
Varying Load

L
wx

BMD

SFD

L
x

6
wL2

6L
wx3

2
wL

unit length
w

(+)

2L
wx2

Shear force has a parabolic variation and bending moment 
has a cubic variation.

Simply Supported Beam 
with Concentrated Load

(+)

(+)
L

wa

L
wb

SFD

(+)
L

wab

BMD

RA =
L

wb RB =
L

wbSD

a b

b

Simply Supported Beam 
with Uniformly Distributed Load

+

−

RA RB

2
wL

2
wL

8
wL2

BMD

SFD

SD

w/unit length
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+

−

RA RB

2
wL

2
wL

8
wL2

BMD

SFD

SD

w/unit length

Simply Supported Beam 
with Uniformly Varying Load

x
LSD

SFD
0.577L

+

−

RA RB

x

x

3
wL

6
wL

L
wx

BMD

0.0615 wL

Total load = 
wL

2

This acts at the centroid 
L

3






R L
wL L

A ⋅ − =
2 3

0

R
wL

A =
6

R
wL wL wL

B = − =
2 6 3

Total load on LHS of xx.

wx

L

x wx

L
× =

2 2

2

F R
wx

L
A= −

2

2
 = −

wL wx

L6 2

2

Alx F
wL

= =0
6

,

Alx L F
wL

= = −,
3

Moment at section xx:

M
wLx wx

L

x
= −

6 2 3

2

Maximum value of moment occurs at x
L

=
3

SOLVED EXAMPLES

Example 1
Determine the shear force and bending moment varia-
tion for the simply supported beam as shown in the figure. 
Indicate values of salient points.

A D
B C

3 m

50 kN

2 m 5 m

20 kN/m

Solution
Shear force is taken as +ve if it tends to move the left por-
tion upward.

If the moment on the left side is clockwise, it is treated 
as +ve.

Total value of the uniformly varying load on AB is 
20 3

2
30

×
= kN

A D
RDRA

CBB12 2 5

49

BMD

SFD
31 kN

50 kN

155 kNM
117

RA + RD = 30 + 50 = 80

Taking moments about A:

30 × 2 + 50 × 5 - RD × 10 = 0

RD = =
310

10
31 kN

Some Important Points 
  1. � Algebraic sum of all forces (including reactions) is zero.
  2.  Algebraic sum of all moments about any point in zero.
  3.  Moment at hinged joint is zero.
  4.  Moment is zero at the free end of a beam.
  5. � Shear force and bending moment are maximum at 

the fixed end of a cantilever.
  6.  Moment is zero at simply supported ends.
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\ RA = 80 - 31 = 49 kN

Shear force at A: FA = RA = 49 kN

Moment at A, MA = 0 (as simply supported)

(Also, MA = 30 × 2 + 50 × 5 - 31 × 10 = 0)

Shear force at B: FB = 49 - 30 = 19 kN

MB = 49 × 3 -30 × 1 = 117 kN-m

FC (left) 49 - 30 = 19 kN

Mc = 49 × 5 - 30 × 3 = 155 kN-m

Fc (right) = 19 - 50 = -31 kN

FD = RD = 31 kN

MD = 0.

Example 2
Determine the shear force and bending moment variation 
for a simply supported beam shown in the following figure.

A
C D

B

2 m 5 m 3 m

800 N/m

Solution

A C D B

RA RB
x

SFD

BMD

+2200

−1800

2 m 5 m 3 m

4400 7425 5400

800 N/m

Taking moment about A.
RB × 10 = (800 × 5) × 4.5 = 1800 N
RA = (800 × 5) - 1800 = 2200 N
Shear force at A = RA = +2200 N

Portion AC:  Measuring x from A and taking all these forces 
to the left of section.
Shear force, F = +RA = +2200 N. (constant)

Bending moment M = RA x = 2200x
MA = 0
MC = 2200 × 2 = 4400 Nm

Portion CD:  Measuring x from A
	 F = +2200 - (x - 2) × 800 
	 = +2200 - 800x + 1600
	 = +3800 - 800x (Linear variation)
	 F = 0
When 800x = 3800

or, x M= =
3800

800
4 75.

M R x x
x

A= × − − ×
−

( )
( )

2 800
2

2

= − − ×R x xA ( )2 4002

FD = +3800 - 800 × 7 = -1800 N
MD = 2200 × 7 - (7 - 2)2 × 400 = 5400 N
Maximum bending moment occurs, when F = 0.
That is, at x = 4.75 m
So, Mmax = 2200 × 4.75 - (4.75 - 2)2 

400 = 7425 Nm.

Portion DB:  Taking x from B, and considering the right-
hand side forces:
	 F = -RB = -1800 N (constant)
	 M = RB × x = 1800x
	 MB = 0
	 MD = 1800 × 3 = 5400 Nm.

Example 3

Draw shear force and bending moment variation for the 
cantilever beam loaded as shown in the following figure.

A B C D E F

1 m 1 m 1 m

30 kNm
20 kN

20 kN/m

1 m 1 m

Solution

A

RA

B C D E
F

x

1 m 1 m 1 m

30 kNm 20 kN
20 kN/m

1 m 1 m

RA = 20 × 1 + 20 = 40 kN

Measuring x from F

Portion FE:
	 FE = 0 upto E
	 MF = 0 upto E

Portion ED:
F = 20 constant

	 M = [20(x - 1)] linear
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	 FE = 20 kN
	 ME = [20(1 - 1)] = 0
	 MP = -20(2 - 1) = -20

Portion DC:
	 F = 20 constant
	 M = -[20(x - 1) + 30] linear
	 FD = 20 kN
	 MD = [20(2 - 1) + 30]
	 = -[20 + 30]
	 = -50 kN-m
	 Fc = 20
	 Mc = -[20(3 - 1) + 30]
	 = -50 kN-m
	 Fc = 20
	 Mc = [20(3 - 1) + 30]
	 = (20 × 2 + 30)
	 = (40 + 30) = -70 kN-m.

Portion CB:
	 F = 20 + (x - 3) 20 linear

M x
x

= − + +
−







20 1 30

3 20

2

2

( )
( )

 parabolic

	 Fc = 20 + 0 = 20 kN
	 Mc= [40 + 70 + 0] = -70 kN-m
	 FB 20 + 1 × 20 = 40

MB = − + +
−







20 4 1 30

4 3 20

2

2

( )
( )

= [60 + 30 + 10]
= -100 kN-m.

Portion BA:
	 F = 20 + 20 = 40 constant
	 M = - [20(x - 1) + 30 + 20(x - 3.5)] linear
	 FB = 40
	 MB

 = -(20 × 3 + 30 + 20 × 0.5)
	 = (60 + 30 + 10) = -100
	 FA = 40
	 MA = (20 × 4 + 30 + 20 × 1.5)
	 = -(80 + 30 + 30)
	 = -140 kN-m.

140 100
70

50

20

20

40

A B C D

SFD

BMD

E F

0

0

(−)

(+)

Example 4
Show that sum of normal stresses in any two mutually per-
pendicular directions is constant.

Solution

Equation for normal stress is

p
p p p p

qn
x y x y=
+

+
−

+
2 2

2 2cos sinθ θ

on a plane at angle q + 90°,

=
+

+
−p p p px y x y

2 2
 × cos( ) sin( )2 180 2 180θ θ+ + +q

=
+

−
−

−
p p p p

qx y x y

2 2
2 2cos sinθ θ

By adding, pn + pn′ = px + py = constant.

Example 5
The components of stresses on a rectangular element are 

px = -30 N/mm2

py = +25 N/mm2

q = +15 N/mm2

Determine the magnitude of the two principal stresses and 
the angle between px and the major principal stress.

Solution
q

q

q

px

py

q = 15 N/mm2

px = 30 N/mm2

py = 25 N/mm2

To draw the Mohr’s circle, first draw a horizontal line repre-
senting the normal stress and then a vertical line representing 
the shearing stress. The point of intersection of these lines is 
the origin O, the point from where the stress values are plotted.

Locate the point ‘X ’, such that OM = px

= -30 N/mm2, and Mx = q = +15 N/mm2

Similarly, locate point Y such that: 

ON = py = +25 N/mm2 and 

  NY = q = -15 N/mm2

p

q

q
R

N
px

px py

O
SD

CM

X

Y

12
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Draw line XY and locate the mid-point C the centre of 
Mohr’s circle with C as the centre and radius equal to CX or 
CY, draw a circle which is the Mohr’s circle.

OC
p px y=

+
2

=
− +30 25

2
= -2.5 N/mm2

Radius of Mohr’s circle = R

=
−





+
p p

q
x y

2

2

2

=
− −





+
30 25

2
15

2
2  = 31.33 N/mm2

Draw a horizontal diameter passing through the centre ‘O’. 
Locate the extreme points 1 and 2 on this diameter. Then, 
O1 is the maximum principal stress and O2 is the minor 
principal stress.

Now,
p1 = O1 = The maximum principal stress
p2 = O2 = The minor principal stress
From Mohr’s circle, we have:
p1 = OC + R = 2.5 + 31.33 

= 28.82 N/mm2 (Tensile).
p2 = OC - R = -2.5 - 31.33

= -33.82 N/mm2 (Compressive)

tanα = =
−

XM

CM OM OC

15

=
−

=
15

30 2 5
0 545

.
.

\ a = 28.6°
Angle XC1 = 2fp = 180 - 28.6° = 151.4°
\ fp = 75.7°

Here, the major principal stress. 

p1 = 28.82 N/mm2 (Tensile) acts on a plane making an 
angle fp = 75.7° in the clockwise direction from the diam-
eter xy to the diameter 1–2.

That is, principal planes lie at an angle fp from the 
x-direction.

Example 6
At a point in a material, the principal stresses are 800 

N/cm2 and 300 N/cm2 where both are tensile. Find the 

normal, tangential and resultant stresses on a plane inclined 
at 50° to the major principal plane.

Solution
p1 = 800 N/cm2 (tensile)
p2 = 300 N/cm2 (tensile)
Angle with major principal plane = 50°
Let, pn = Normal stress at the point

p
p p p p

n =
+

+
−1 2 1 2

2 2
2cos φ

=
+

+
−800 300

2

800 300

2
100cos �

= 550 + 250(-0.1736)

= 506.6 N/cm2

Let, q be the tangential stress at the point, 

q
p p

=
−1 2

2
2sin θ

=
−800 300

2
100sin

= 250(0.9848) 
= 246.20 N/cm2

Resultant stress = p p qr n= +2 2

= +( . ) ( . )506 6 246 202 2

= 563.26 N/cm2.

Exercises

	 1.	 A beam is made up of two identical bars AB and BC, 
by hinging them together at B. The end A is built-in 
(cantilevered) and the end C is simply supported. With 
the load P acting as shown, the bending moment at A is

		

A

B C

P

L L

L/2

	 (A)	 zero

	 (B)	
PL

2

	 (C)	
3

2

PL

	 (D)	 indeterminate

	 2.	 A cantilever beam carries the anti-symmetric load 
shown, where w0 is the peak intensity of the distrib-
uted load. Qualitatively, the correct bending moment 
diagram for this beam is
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L L

B

w0

w0

	 (A)	 	 (B)	

	 (C)	 	 (D)	

	 3.	 The symmetry of stress tensor at a point in the body 
under equilibrium is obtained from

	 (A)	 conservation of mass
	 (B)	 force equilibrium equations
	 (C)	 moment equilibrium equations
	 (D)	 conservation of energy

	 4.	 The components of strain tensor at a point in the plane 
strain case can be obtained by measuring longitudinal 
strain in following directions:

	 (A)	 Along any two arbitrary directions
	 (B)	 Along any three arbitrary directions
	 (C)	 Along two mutually orthogonal directions
	 (D)	 Along any arbitrary directions

	 5.	 Mohr’s circle for the state of stress defined by 
30 0

0 30











MPa is a circle with 
	 (A)	 centre at (0, 0) and radius 30 MPa.
	 (B)	 centre at (0, 0) and radius 60 MPa.
	 (C)	 centre at (30, 0) and radius 30 MPa.
	 (D)	 centre at (30, 0) and zero radius.

	 6.	 A small element at the critical section of component 
is in a bi-axial state of stress with the two principal 
stresses being 360 MPa and 140 MPa. The maximum 
shear stress is 

	 (A)	 110 MPa
	 (B)	 180 MPa
	 (C)	 314 MPa
	 (D)	 330 MPa

	 7.	 The magnitude of the only shear stresses acting at a 
point in plane stress situation is 7.5 N/mm2. The mag-
nitudes of the principle stresses will be

	 (A)	 +15.0 N/mm2 and −7.5 N/mm2

	 (B)	 +7.5 N/mm2 and −15.0 N/mm2

	 (C)	 +7.5 N/mm2 and −7.5 N/mm2

	 (D)	 +10.0 N/mm2 and −7.5 N/mm2

	 8.	 Which of the following Mohr’s circles shown, 
qualitatively and correctly represents the state of plane 
stress at a point in a beam above the neutral axis, where 
it is subjected to combine shear and bending compres-
sive stresses

	 (A)	
σ (tensile)

τ

	 (B)	

σ (tensile)

τ

	 (C)	

σ (tensile)

τ

	 (D)	

σ (tensile)

τ

	 9.	 The state of two dimensional stresses acting on a con-
crete lamina consists of a direct tensile stress, σx = 1.5 
N/mm2, and shear stress, τ = 1.20 N/mm2, which cause 
cracking of concrete. Then the tensile strength of the 
concrete in N/mm2 is

	 (A)	 1.50	 (B)	 2.08
	 (C)	 2.17	 (D)	 2.29

	10.	 In a two dimensional analysis, the state of stress at a 
point is shown in the following figure.

		

A

Y

X
B C

AB = 4
BC = 3
AC = 5

σx

σy

τ

σ

		  If σ = 120 MPa and τxy = 70 MPa, σx and σy are 
respectively

	 (A)	 26.7 MPa and 172.5 MPa
	 (B)	 54 MPa and 128 MPa
	 (C)	 67.5 MPa and 213.3 MPa
	 (D)	 16 MPa and 138 MPa
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	11.	 If principal stresses in a two-dimensional case are −10 
MPa and 20 MPa respectively, then maximum shear 
stress at the point is 

	 (A)	 10 MPa
	 (B)	 15 MPa
	 (C)	 20 MPa
	 (D)	 30 MPa

	12.	 A beam having a double cantilever attached at mid span 
is shown in the figure. The nature of forces in beam 
‘ab’ is 

		

P

P

a b
c

g
f

e d

		  lengths
		  cd = cf
		  de = fg
		  ac = cb

	 (A)	 bending and shear.
	 (B)	 bending, shear and torsion.
	 (C)	 pure torsion.
	 (D)	 torsion and shear.

	13.	 A cantilever beam curved in plan and subjected to 
lateral loads will develop at any section

	 (A)	 bending moment and shearing force.
	 (B)	 bending moment and twisting moment.
	 (C)	 twisting moment and shearing force.
	 (D)	� bending moment, twisting moment and shearing 

force.

	14.	 A curved member with a straight vertical leg is carrying 
a vertical load at Z, as shown in the figure. The stress 
resultants in the XY segment are. Bending moment, 
shear force and axial force.

		

Z

Y

X

	 (A)	 Bending moment and axial force only
	 (B)	 Bending moment and shear force only
	 (C)	 Axial force only
	 (D)	 Bending moment only

	15.	 For the loading given in the figure below, two state-
ments (I and II) are made

		

W

AB

C
D E

	  I.	�Member AB carries shear force and bending 
moment.

	 II.	� Member BC carries axial load and shear force.

		  Which of the following is true?
	 (A)	 Statement I is true but II is false
	 (B)	 Statement I is false but II is true
	 (C)	 Both statements I and II are true
	 (D)	 Both statements I and II are false

	16.	 List I shows different loads acting on a beam and List II 
shows different bending moment distributions. Match 
the load with the corresponding bending moment 
diagram.

List I List II

a. 1.

b. 2.

c. 3.

d. 4.

5.

	 	 Codes:
		  a	 b	 c	 d		  a	 b	 c	 d
	 (A)	 4	 2	 1	 3	 (B)	 5	 4	 1	 3
	 (C)	 2	 5	 3	 1	 (D)	 2	 4	 1	 3

	17.	 The bending moment diagram for a beam is given 
below

		

200 kN-m

100 kN-m

0.5 m 0.5 m 1 m 1 m

b

a

b′a′
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		  The shear force at sections aa′ and bb′ respectively are 
of the magnitude

	 (A)	 100 kN, 150 kN
	 (B)	 zero, 100 kN
	 (C)	 zero, 50 kN
	 (D)	 100 kN, 100 kN

	18.	 A simply supported beam AB has the bending moment 
diagram as shown in the following figure:

		

A B
C

M

M

L L L

M

		  The beam is possibly under the action of following 
loads:

	 (A)	 Couples of M at C and 2M at D
	 (B)	 Couples of 2M at C and M at D
	 (C)	 Concentrated loads of M/L at C and 2M/L at D
	 (D)	� Concentrated load of M/L at C and couple of 2M 

at D

	19.	 If failure in shear along 45° planes is to be avoided, 
then a material subjected to uniaxial tension should 
have its shear strength equal to at least the

	 (A)	 tensile strength.
	 (B)	 compressive strength.
	 (C)	� half the difference between the tensile and com-

pressive strength.
	 (D)	 half the tensile strength.

Direction for questions 20 and 21:
A horizontal beam AB 10 m long is hinged at ‘A’ and simply 
supported at ‘B’. The beam is loaded as shown in the figure.

		

A

15 kN-m

8 kN 4 kN 6 kN 8 kN

30°
30°

45°
B

C 1 1 1.5 3.52 D E F

G

	20.	 The value of reaction force at ‘A’ will be 
	 (A)	 6.47 kN
	 (B)	 34.78 kN
	 (C)	 8.58 kN
	 (D)	 9.49 kN

	21.	 The maximum bending moment will be
	 (A)	 31.82 kN-m
	 (B)	 34.78 kN-m
	 (C)	 33.17 kN-m
	 (D)	 38.25 kN-m

	22.	 Constant bending moment over span/will occur in

	 (A)	 W

l

	 (B)	 W

l

	 (C)	 W

l

	 (D)	 W

l l1l1

W

	23.	 The bending moment diagram shown in the figure 
corresponds to the shear force diagram in

	 (A)	

	 (B)	

	 (C)	

	 (D)	

	24.	 A loaded beam is shown in the following figure

		

W W W

L L L L
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		  The bending moment diagram of the beam is best rep-
resented as

	 (A)	

	 (B)	

	 (C)	

	 (D)	

	25.	 Shear force and bending moment diagrams for a beam 
ABCD are shown in the figure. It can be concluded that

		

3000 Nm

1000 Nm

3000 Nm

300 N

200 N

10 m

10 m 10 m 15 m

25 m

A

A DB C

D
B C

	 (A)	 the beam has three supports.
	 (B)	 end A is fixed.
	 (C)	 a couple 2000 Nm acts at C.
	 (D)	� a uniformly distributed load is confined to portion 

BC only.
	26.	 According to maximum shear stress failure criterion, 

yielding in material occurs when maximum shear 
stress is 

	 (A)	
1

2
 yield stress 	 (B)	 2  yield stress 

	 (C)	
2

3  
yield stress 	 (D)	 2 yield stress 

	27.	 When a material is subjected to uniaxial tension, 
to avoid failure due to shear in 45° planes, the shear 
strength of the material should be atleast

	 (A)	 half the tensile strength.

	 (B)	
1

2
 times tensile strength.

	 (C)	 tensile strength.

	 (D)	
3

4
 times tensile strength.

	28.	 At a point in a strained material, direct stresses 120 
N/mm2 (tensile) and 100 N/mm2 (compressive) are 
acting. If major principal stress is 150 N/mm2, maxi-
mum shearing stress at the point is 

	 (A)	 87 N/mm2

	 (B)	 140 N/mm2 
	 (C)	 130 N/mm2

	 (D)	 280 N/mm2 

	29.	 At a point in a stressed body stresses acting are as 
shown in the figure. Value of py is

		

A B

py

pt

3 MPa

45°

3 MPa

6 MPa
2 MPa

C

	 (A)	 -8 MPa
	 (B)	 8 MPa
	 (C)	 -4 MPa
	 (D)	 4 MPa

	30.	 A body is subjected to direct stress xσ , σ y  and σ z  in 

the x, y and z directions. If E = modulus of elasticity 
and µ = Poisson’s ratio, direct strain εx in the x 
direction is 

	 (A)	
E

1
[ ( )]x x y zε σ µ σ σ= + +

	 (B)	
E

1
[ ( )]x x y zε σ µ σ σ= + −

	 (C)	
E

1
[ ( )]x x y zε σ µ σ σ= − +

	 (D)	
E

1
[ ( )]x x y zε σ µ σ σ= − −

	31.	 Slope of a beam under load is 
	 (A)	 rate of change of deflection.
	 (B)	 rate of change of bending moment.
	 (C)	� rate of change of bending moment x flexural 

rigidity.
	 (D)	 rate of change of deflection x flexural rigidity.

	32.	 If two principal strains at a point are 1000 × 10-6 and 
– 500 × 10–6 then maximum shear strain is 

	 (A)	 500 × 10–6

	 (B)	 750 × 10–6

	 (C)	 1500 × 10–6

	 (D)	 1500 2  × 10–6 
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	33.	 Figure shows Mohr’s circle for a state of stress at a 
point in a strained material 

		

O
C

τ

σ

		  Consider the following statements:
	 I.	�Major principal stress is equal to twice the maxi-

mum shear stress.
	 II.	�Minor principal stress is equal to the maximum 

shear stress.
	 III.	�Major principal stress is equal to maximum shear 

stress.
	 IV.	�Plane of maximum shear stress is at 90° to the major 

principal plane.
	 The correct statements are 
	 (A)	 I and IV	 (B)	 II and III
	 (C)	 I alone	 (D)	 IV alone 

	34.	 During tension test of a bar, its cross-sectional area 
became half of the original cross sectional area. Values 
of true strain and engineering strain are 

	 (A)	 0.693 and 1	 (B)	 1 and 2
	 (C)	 0.5 and 0.5	 (D)	 0.5 and 1

	35.	 In a uniaxial stress system, the principal plane is 
defined as one on which 

	 I.	Shear stress is zero.
	 II.	Normal stress is zero.
	 III.	Shear stress is maximum.
	 IV.	Normal stress is maximum.

		  Of the above statements,
	 (A)	 I and II are correct	 (B)	 II and III are correct
	 (C)	 III and IV are correct	 (D)	 I and IV are correct

	36.	 Match the following List I (Loaded beam) and List II 
(Maximum bending moment).

List I List II

a. w/m

l/2l/2

1. wl

2

2

b. w/m

l

2. wl

6

2

c. w/m

l

3.
wl

3

8
2

List I List II

d. w/m

2l

4. wl

4

2

		  Codes:
		  a	 b	 c	 d		  a	 b	 c	 d
	 (A)	 3	 2	 1	 1	 (B)	 3	 4	 2	 1
	 (C)	 1	 2	 3	 4	 (D)	 4	 3	 2	 2

	37.	 A simply supported beam with span 6 m has a rectan-
gular cross section with depth 350 mm. If it is to be 
loaded centrally with a concentrated load of 30 kN, The 
width required at a distance of 2 m from end for uni-
form strength of 8 N/mm2 is 

	 (A)	 176 mm	 (B)	 167 mm
	 (C)	 192 mm	 (D)	 184 mm

	38.	 A simply supported beam AB is centrally loaded by a 
concentrated load of 100 N and a moment of 10 Nm as 
shown in figure. Reaction (in N) at A and B respectively 
are

		

A B
0.5 0.5

100

10 N m

	 (A)	 55,55	 (B)	 60,40
	 (C)	 40, 60	 (D)	 50, 50

	39.	 State of stress at a point is as follows. σx = 900 MPa, σy 
= 300 MPa. Maximum shear stress = 500 MPa. Value 
of maximum principal stress (in MPa) is

	 (A)	 900	 (B)	 1000
	 (C)	 1100	 (D)	 1200

	40.	 At a point in a strained body, normal stresses are zero 
and shear stresses are 100 MPa. Value of principal stress 
are

	 (A)	 50 MPa	 (B)	 100 MPa
	 (C)	 150 MPa	 (D)	 20 MPa

	41.	 A simply supported beam of uniform cross-section of 
width b and depth d and length L is loaded as shown 
in the figure. The ratio of maximum allowable stress in 
bending to that in shear is

		

A

P

B

L
4

L3
4

	 (A)	
L

d2
    (B) 

3

4

L

d   
(C) 

L

D
    (D) 

3

2

L

D
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PreVious Years’ Questions

d.
+

− qL
2

qL
2

List II

1.

LL/4 L/4

q/unit length q/unit length

2.

LL/4

q/2 q/2q

L/4

3.

LL/4 L/4

q/unit length

4.

LL/4

q/2 q/2

L/4

  Codes:
  a b c d  a b c d

 (A) 3 1 2 4 (B) 3 4 2 1

 (C) 2 1 4 3 (D) 2 4 3 1

 5. A mass less beam has a loading pattern as shown in 
the fi gure. The beam is of rectangular cross-section 
with a width of 30 mm and height of 100 mm.

  

A B C

20002000

3000 Nm−1

  The maximum bending moment occurs at 
 [GATE, 2010]

 (A) location B
 (B) 2675 mm to the right of A
 (C) 2500 mm to the right of A
 (D) 3225 mm to the right of A

 6. The major and minor principal stresses at a point are 
3 MPa and -3MPa respectively. The maximum shear 
stress at the point is [GATE, 2010]

 1. In a simply-supported beam loaded as shown in the 
following fi gure, the maximum bending moment in 
Nm is [GATE, 2007] 

  100 mm

100 N

500 mm 500 mm

 (A) 25 (B) 30
 (C) 35 (D) 60

 2. An axially loaded bar is subjected to a normal stress 
of 173 MPa. The shear stress in the bar is  
 [GATE, 2007]

 (A) 75 MPa (B) 86.5 MPa
 (C) 100 MPa (D) 122.3 MPa

 3. Consider the following statements:
 I. On a principal plane, only normal stress acts.
 II.  On a principal plane, both normal and shear stress-

es act.
 III. On a principal plane, only shear stress acts.
 IV.  Isotropic state of stress is independent of frame of 

reference.

  Which of the above statements is/are correct? 
 [GATE, 2009]

 (A) I and IV (B) II only
 (C) II and IV (D) II and III

 4. Match List I (Shear force diagrams) beams with List 
II (Diagrams of beams with supports and loading) 
and select the correct answer by using the codes given 
below the lists: [GATE, 2009]

List I

a.

+ +
−−

qL
4

qL
4

qL
2

qL
2

b.
+

−

qL
4

qL
4

c.
+ +

− −

qL
2

qL
2

qL
2

qL
2
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 (A) zero (B) 3 MPa
 (C) 6 MPa (D) 9 MPa

 7. Two people weighing W each are sitting on a plank 
of length L fl oating on water at L/4 from either end. 
Neglecting the weight of the plank, the bending 
moment at the centre of the plank is  [GATE, 2010]

 (A) 
WL

8
 (B) 

WL

16

 (C) 
WL

32
 (D) zero

 8. For the simply supported beam of length L, subjected 
to a uniformly distributed moment M kN-m per unit 
length as shown in the fi gure, the bending moment (in 
kN-m) at the mid-span of the beam is [GATE, 2010]

  L

 (A) zero (B) M
 (C) ML (D) M/L

 9. The state of stress at a point under plane stress condi-
tion is sxx = 40 MPa, syy = 100 MPa and τxy = 40 MPa. 

The radius of the Mohr’s circle representing the given 
state of stress in MPa is [GATE, 2012]

 (A) 40 (B) 50
 (C) 60 (D) 100

 10. If a small concrete cube is submerged deep in still 
water in such a way that the pressure exerted on all 
faces of the cube is p, then the maximum shear stress 
developed inside the cube is  [GATE, 2012]

 (A) 0 (B) 
p

2
 (C) p (D) 2p

 11. The following statements are related to bending of 
beams: [GATE, 2012]

     I.  The slope of the bending moment diagram is 
equal to the shear force.

   II.  The slope of the shear force diagram is equal to 
the load intensity.

 III.  The slope of the curvature is equal to the fl exural 
rotation.

 IV.   The second derivative of the defl ection is equal to 
the curvature.

 The only FALSE statements is 
 (A) Ι (B) ΙΙ
 (C) ΙΙΙ (D) ΙV
 12. The state of 2D-stress at a point is given by the

following matrix of stresses: 

  
σ σ
σ σ













=










100 30
30 20

xx xy

xy yy
 MPa

  What is the magnitude of maximum shear stress in 
MPa? [GATE, 2013]

 (A) 50 (B) 75
 (C) 100 (D) 110

 13. The state of stress at a point is given by sx = –6 MPa, 
sy = 4 MPa, and τxy = –8 MPa. The maximum tensile 

stress (in MPa) at the point is ______. [GATE, 2014]

 14. For the state of stress (in MPa) shown in the following 

fi gure, the maximum shear stress (in MPa) is ______.
 [GATE, 2014]

  

4

4

2 2

4

 15. For the overhanging beam shown in fi gure, the mag-
nitude of maximum bending moment (in kN-m) is 
______. [GATE, 2015]

  

B
A C

4 m

10 kN-m 20 kN

2 m

 16. Two triangular wedges are glued together as shown in 
the following fi gure. The stress acting normal to the 
interface, sn is ______ MPa. [GATE, 2015]

100 MPa

100 MPa

100 MPa

100 MPa

45°

σ n

 17. Two beams are connected by a linear spring as shown 
in the following fi gure. For a load P as shown in the 
fi gure, the percentage of the applied P carried by the 
spring is _________. [GATE, 2015]

P

Ks = 3EI/(2L3)

L

EI

EI
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	18.	 A horizontal beam ABC is loaded as shown in the fig-
ure. The distance of the point of contraflexure from 
end A (in m) is _________.� [GATE, 2015]

A

B
C

10 kN
0.75 m

1 m

	19.	 For the plane stress situation shown in the figure, the 
maximums shear stress and the plane on which it acts 
are� [GATE, 2015]

σ y = 50 MPa

σ y = 50 MPa

σ x = 50 MPax

y

σ x = 50 MPa

	 (A)	 -50 MPa, on a plane 45° clockwise wrt x-axis.
	 (B)	� -50 MPa, on a plane 45° anti-clockwise wrt 

x-axis.
	 (C)	 50 MPa, at all orientations.
	 (D)	 zero, at all orientations.

	20.	 A steel strip of length, L = 200 mm is fixed at end A and 
rests at B on a vertical spring of stiffness, k = 2 N/mm. 
The steel strip is 5 mm wide and 10 mm thick. A verti-
cal load, P = 50 N is applied at B, as shown in the figure. 

Considering E = 200 GPa, the force (in N) developed in 
the spring is _________.� [GATE, 2015]

A

P

B

L

k

	21.	 For the stress state (in MPa) shown in the figure, the 
major principal stress is 10 MPa.� [GATE, 2016]

5

5

τ

5

5

		  The shear stress t is 
	 (A)	 10.0 MPa	 (B)	 5.0 MPa
	 (C)	 2.5 MPa	 (D)	 0.0 MPa

Answer Keys

Exercises
	 1.  B	 2.  C	 3.  C	 4.  B	 5.  D	 6.  A	 7.  C	 8.  A	 9.  C	 10.  C
11.  B	 12.  A	 13.  D	 14.  C	 15.  A	 16.  D	 17.  C	 18.  A	 19.  D	 20.  D
	21.  B	 22.  D	 23.  B	 24.  A	 25.  C	 26.  A	 27.  A	 28.  B	 29.  A	 30.  C
	31.  A	 32.  B	 33.  C	 34.  A	 35.  D	 36.  A	 37.  D	 38.  C	 39.  C	 40.  B
	41.  C

Previous Years’ Questions
	 1.  B	 2.  B	 3.  A	 4.  A	 5.  C	 6.  B	 7.  D	 8.  A	 9.  B	 10.  A
	11.  C	 12.  A	 13.  8.4 to 8.5	 	 14.  5	 15.  40	 16.  0 (Zero)		  17.  33.33%
	18.  –0.25	 19.  D	 20.  3.2	 21.  B
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