SAMPLE OUESTION CAPER

BLUE PRINT

Time Allowed : 3 hours

Maximum Marks: 80

S. No.	Chapter	VSA/Case based (1 mark)	SA-I (2 marks)	SA-II (3 marks)	LA (5 marks)	Total
1.	Relations and Functions	2(2)	_	1(3)	_	3(5)
2.	Inverse Trigonometric Functions	1(1)	1(2)	_	_	2(3)
3.	Matrices	2(2)	_	_	1(5)*	3(7)
4.	Determinants	1(1)	1(2)*	_	_	2(3)
5.	Continuity and Differentiability	1(1)*	1(2)	2(6)	_	4(9)
6.	Application of Derivatives	1(4)	1(2)	1(3)*	_	3(9)
7.	Integrals	1(1)*	1(2)*	1(3)	_	3(6)
8.	Application of Integrals	-	1(2)	1(3)	_	2(5)
9.	Differential Equations	1(1)*	1(2)	1(3)*	_	3(6)
10.	Vector Algebra	2(2)#	1(2)*	_	_	3(4)
11.	Three Dimensional Geometry	5(5)#	_	_	1(5)*	6(10)
12.	Linear Programming	-	_	-	1(5)*	1(5)
13.	Probability	1(4)	2(4)	_	_	3(8)
	Total	18(24)	10(20)	7(21)	3(15)	38(80)

*It is a choice based question.

[#]Out of the two or more questions, one/two question(s) is/are choice based.

Subject Code : 041

MATHEMATICS

Time allowed : 3 hours

General Instructions :

- 1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

Part - A :

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

Part - B :

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. If the function $f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases}$ is continuous at x = 2, then find the value of k.

OR

If
$$y = \log_7 (\log x)$$
, then find $\frac{dy}{dx}$.

- **2.** If $tan^{-1}(cot\theta) = 2\theta$, then find the value of θ .
- 3. Find the value of $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) \cdot (\hat{k} + \hat{i})$.

OR

If lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular, then find the value of *k*.

4. If a line makes angles 90°, 135°, 45° with the *X*, *Y*, *Z* axes respectively, then find its direction cosines.

Class 12

Maximum marks : 80

5. Evaluate :
$$\int \frac{dx}{5 - 8x - x^2}$$

Evaluate :
$$\int_{-\pi/4}^{\pi/4} |\sin x| dx$$

6. For matrix $A = \begin{bmatrix} 3 & 4 & -2 \\ -4 & 5 & -3 \\ 2 & 7 & 9 \end{bmatrix}$, find $\frac{1}{2}(A - A')$. (where A' is the transpose of the matrix A)

7. Find the direction cosines of the side *AC* of a $\triangle ABC$ whose vertices are given by *A* (3, 5, 4), *B* (-2, -2, -2) and *C* (3, -5, 4).

OR

Show that three points *A*(−2, 3, 5), *B*(1, 2, 3) and *C*(7, 0, −1) are collinear.

8. If $A = \{1, 5, 6\}, B = \{7, 9\}$ and $R = \{(a, b) \in A \times B : |a - b| \text{ is even}\}$. Then write the relation *R*.

9. Find the degree and order of the differential equation : $5x\left(\frac{dy}{dx}\right)^2 - \frac{d^2y}{dx^2} - 6y = \log x$. OR

Solve the differential equation $(1 + x^2)\frac{dy}{dx} = e^y$.

- **10.** If *A* and *B* are the points (– 3, 4, 8) and (5, 6, 4) respectively, then find the ratio in which *yz*-plane divides the line joining the points *A* and *B*.
- 11. If *A* is a square matrix such that $A^2 = A$, then find $(I + A)^3 7A$.
- 12. A line makes an angle of $\pi/4$ with each of *X*-axis and *Y*-axis. What angle does it make with *Z*-axis?

13. If $P = \begin{bmatrix} 10 & -2 \\ -5 & 1 \end{bmatrix}$, then check whether P^{-1} exists or not.

14. Write the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

15. Let n(A) = 4 and n(B) = 6, then find the number of one-one functions from A to B.

16. A line makes 45° with OX, and equal angles with OY and OZ. Find the sum of these three angles.

Section - II

Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. A card is lost from a pack of 52 cards. From the remaining cards of pack two cards are drawn and are found to be both spades.

A ♣	*	0	2 \$	*		3 ‡	*		4 *	*	5 .	* *	6.+ +	*	7 * *		***	9	*		-	₽	^K
		*∀		÷	ŧ		÷	÷Q	÷	*	*	*ŝ	*	*	* *	*L	***	*	* 6	÷ ÷ • 01	l i i i i i i i i i i i i i i i i i i i		k the second second
A •	٩	8	2	٠		3 ¢	۰ ۱		4♠	٠	5 .	* *	6 ♠ ♠	۰ ۱	7 * *			9			J.		K •
		¥		۴	ż		۴	÷	۴	•	۲	¢∳	۴	•	* *	Ż	***		•	**			
A ♥	¥		2	۴		3♥	*		4,♥	۷	5,♥	¥	€ ♥ ♥	*	7	•	•••	9	*		J		K
		∧		•	Å			* 5		•		¢ŝ		\$		2			6		n and a start		S. A.
A *	٠	22	*	٠	2	3	*		4 ♦	٠	\$ ♦	•	6 ♦	*	7		8	9	*				K
		*		٠	*2		٠	*9	٠	•	٠	♦ * 5	٠	♦ *	• •	1	****		¢ * 6	• • • o			

Based on the above information, answer the following questions :

(i) The probability of drawing two spades, given that a card of spade is missing, is

(a)
$$\frac{21}{425}$$
 (b) $\frac{22}{425}$ (c) $\frac{23}{425}$ (d) $\frac{1}{425}$

(ii) The probability of drawing two spades, given that a card of club is missing, is

(a)
$$\frac{26}{425}$$
 (b) $\frac{22}{425}$ (c) $\frac{19}{425}$ (d) $\frac{23}{425}$

(iii) Let A be the event of drawing two spades from remaining 51 cards and E_1 , E_2 , E_3 and E_4 be the events

that lost card is of spade, club, diamond and heart respectively, then the value of $\sum_{i=1}^{4} P(A / E_i)$ is

- (a) 0.17 (b) 0.24 (c) 0.25 (d) 0.18
- (iv) All of a sudden, missing card is found and, then two cards are drawn simultaneously without replacement. Probability that both drawn cards are aces is

(a)
$$\frac{1}{52}$$
 (b) $\frac{1}{221}$ (c) $\frac{1}{121}$ (d) $\frac{2}{221}$

- (v) If two card are drawn from a well shuffled pack of 52 cards, with replacement, then probability of getting not a king in 1st and 2nd draw is
 - (a) $\frac{144}{169}$ (b) $\frac{12}{169}$ (c) $\frac{64}{169}$ (d) none of these

18. Arun got a rectangular parallelopiped shaped box and spherical ball inside it as his birthday present. Sides of the box are x, 2x, and x/3, while radius of the ball is r cm. Based on the above information, answer the following questions :

Based on the above information, answer the following questions :

- (i) If *S* represents the sum of volume of parallelopiped and sphere, then *S* can be written as
 - (a) $\frac{4x^3}{3} + \frac{2}{2}\pi r^2$ (b) $\frac{2x^2}{3} + \frac{4}{3}\pi r^2$ (c) $\frac{2x^3}{3} + \frac{4}{3}\pi r^3$ (d) $\frac{2}{3}x + \frac{4}{3}\pi r$
- (ii) If sum of the surface areas of box and ball are given to be constant, then x is equal to

(a)
$$\sqrt{\frac{k^2 - 4\pi r^2}{6}}$$
 (b) $\sqrt{\frac{k^2 - 4\pi r}{6}}$ (c) $\sqrt{\frac{k^2 - 4\pi}{6}}$ (d) none of these

(iii) The radius of the ball, when S is minimum, is

(a)
$$\sqrt{\frac{k^2}{54+\pi}}$$
 (b) $\sqrt{\frac{k^2}{54+4\pi}}$ (c) $\sqrt{\frac{k^2}{64+3\pi}}$ (d) $\sqrt{\frac{k^2}{4\pi+3}}$

(iv) Relation between length of the box and radius of the ball can be represented as

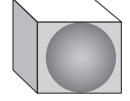
(a)
$$x = 2r$$
 (b) $x = \frac{r}{2}$ (c) $x = \frac{r}{2}$ (d) $x = 3r$

(v) Minimum volume of the ball and box together is

(a)
$$\frac{k^2}{2(3\pi+54)^{2/3}}$$
 (b) $\frac{k}{(3\pi+54)^{3/2}}$ (c) $\frac{k^3}{3(4\pi+54)^{1/2}}$ (d) none of these
PART - B

Section - III

19. Find the intervals on which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is increasing.



20. A vector \vec{r} is inclined at equal angles to OX, OY and OZ. If the magnitude of \vec{r} is 6 units, then find \vec{r} .

OR

Find the value of λ such that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other.

- 21. If A and B are two independent events, such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{1}{5}$, then find the value of $P(A|A \cup B)$.
- **22.** If $x \in [0, 1]$, then find the value of $\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right)$. **23.** Evaluate : $\int \frac{\sqrt{16 + (\log x)^2}}{dx} dx$ OR
 - Evaluate : $\int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^2 x} dx$
- 24. Solve the differential equation : $\frac{dy}{dx} = \frac{3e^{2x} + 3e^{4x}}{e^{x} + e^{-x}}$
- **25.** *A* and *B* are two events such that $P(A) \neq 0$. Find P(B/A) if
 - (i) *A* is a subset of *B* (ii) $A \cap B = \phi$
- **26.** Find the derivative of $\left[\sqrt{1-x^2} \sin^{-1} x x\right]$ w.r.t. *x*.
- **27.** Find the area bounded by the curve $x^2 + y^2 = 1$ in the first quadrant.

28. Compute the adjoint of the matrix $\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$.

OR

If the matrix $\begin{bmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{bmatrix}$ is not invertible, then find the value of *a*.

Section - IV

29. Let $A = R - \{2\}$ and $B = R - \{1\}$. If $f: A \to B$ is a mapping defined by $f(x) = \frac{x-1}{x-2}$, then show that f is bijective. **30.** Consider $f(x) = \begin{cases} \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & \text{for } x \neq 0\\ k, & \text{for } x = 0 \end{cases}$. If f(x) is continuous at x = 0, then find the value of k.

31. Find the values of *x* for which $f(x) = (x (x - 2))^2$ is an increasing function. Also, find the points on the curve, where the tangent is parallel to *x*-axis.

OR

An open box with a square base is to be made out of a given quantity of cardboard of area c^2 square units. Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$ cubic units.

32. Evaluate : $\int_{0}^{1} \{\tan^{-1} x + \tan^{-1}(1-x)\} dx$

33. If
$$y = x \log\left(\frac{x}{a+bx}\right)$$
, then prove that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$.
34. Solve the differential equation $\frac{dy}{dx} = \frac{e^x (\sin^2 x + \sin 2x)}{y(2 \log y + 1)}$.

OR

Find the solution of the equation $\frac{dy}{dx} = \frac{y^2 - y - 2}{x^2 + 2x - 3}$.

35. Find the area enclosed between the curve $y = \log_e (x + e)$ and the coordinates axes.

Section - V

36. Find the image of the point having position vector $\hat{i} + 3\hat{j} + 4\hat{k}$ in the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$.

OR

Find the points on the line $\frac{x+2}{1} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of 2 units from the point (-2, -1, 3).

37. Solve the following linear programming problem (LPP) graphically.

Maximize Z = 4x + 6ySubject to constraints: $x + 2y \le 80, \ 3x + y \le 75; \ x, y \ge 0$

OR

Solve the following linear programming problem (LPP) graphically. Minimize Z = 30x + 20ySubject to constraints : $x + y \le 8$, $x + 4y \ge 12$, $5x + 8y \ge 20$; $x, y \ge 0$

38. If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, then calculate *AC*, *BC* and (*A* + *B*)*C*. Also verify that (*A* + *B*)*C* = *AC* + *BC*.

OR

Find the matrix A satisfying the matrix equation $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} A \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- 1. Since, f(x) is continuous at x = 2.
- $\therefore \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \implies k(2)^2 = 3 \implies k = \frac{3}{4}$

OR

 $y = \log_7 (\log x) = \frac{\log(\log x)}{\log 7}$ $\therefore \quad \frac{dy}{dx} = \frac{1}{\log 7} \cdot \frac{1}{\log x} \cdot \frac{1}{x} \Rightarrow \frac{dy}{dx} = \frac{1}{x \log 7 \log x}$ 2. We have, $\tan^{-1}(\cot\theta) = 2\theta \implies \cot\theta = \tan 2\theta$ $\Rightarrow \cot\theta = \cot\left(\frac{\pi}{2} - 2\theta\right)$

$$\Rightarrow \theta = \frac{\pi}{2} - 2\theta \Rightarrow 3\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{6}$$

3. We have,

$$\hat{(i+j)} \times (\hat{j}+\hat{k}) \cdot (\hat{k}+\hat{i}) = (\hat{i} \times \hat{j}+\hat{i} \times \hat{k}+\hat{j} \times \hat{k}) \cdot (\hat{k}+\hat{i})$$

= $(\hat{k}-\hat{j}+\hat{i}) \cdot (\hat{k}+\hat{i}) = \hat{k} \cdot \hat{k}+\hat{i} \cdot \hat{i}$ (:: $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$)
= $|\hat{k}|^2 + |\hat{i}|^2 = 1+1=2$

OR

Lines
$$\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$$
 and
 $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are perpendicular if
 $a_1a_2 + b_1b_2 + c_1c_2 = 0.$
 $\Rightarrow -3(3k) + 2k + 2(-5) = 0 \Rightarrow k = -\frac{10}{2}$

4. Here
$$\alpha = 90^{\circ}$$
, $\beta = 135^{\circ}$, $\gamma = 45^{\circ}$

Direction cosines are $l = \cos \alpha = \cos 90^\circ = 0$,

$$m = \cos\beta = \cos 135^\circ = \frac{-1}{\sqrt{2}}, n = \cos\gamma = \cos 45^\circ = \frac{1}{\sqrt{2}}$$

5. Let $I = \int \frac{dx}{5 - 8x - x^2} = \int \frac{dx}{21 - (x + 4)^2}$

$$= \int \frac{dx}{(\sqrt{21})^2 - (x+4)^2} = \frac{1}{2\sqrt{21}} \log \left| \frac{\sqrt{21} + x + 4}{\sqrt{21} - x - 4} \right| + C$$

OR

Let
$$I = \int_{-\pi/4}^{\pi/4} |\sin x| dx = 2 \int_{0}^{\pi/4} \sin x dx$$

= $2 \left[-\cos x \right]_{0}^{\pi/4} = -2 \left[\frac{1}{\sqrt{2}} - 1 \right] = 2 - \sqrt{2}$

6. We have,
$$A = \begin{bmatrix} 3 & 4 & -2 \\ -4 & 5 & -3 \\ 2 & 7 & 9 \end{bmatrix} \Rightarrow A' = \begin{bmatrix} 3 & -4 & 2 \\ 4 & 5 & 7 \\ -2 & -3 & 9 \end{bmatrix}$$

$$\therefore \quad \frac{1}{2}(A - A') = \frac{1}{2} \begin{bmatrix} 0 & 8 & -4 \\ -8 & 0 & -10 \\ 4 & 10 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 4 & -2 \\ -4 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}.$$

$$\frac{3-3}{\sqrt{0^2 + (-10)^2 + (0)^2}}, \frac{-5-5}{\sqrt{0^2 + (-10)^2 + 0^2}}, \frac{4-4}{\sqrt{0^2 + (-10)^2 - 0^2}} = 0, -1, 0$$
OR

Direction ratios of the line AB = 3, -1, -2, Direction ratios of the line BC = 6, -2, -4

Now, $\frac{3}{6} = \frac{-1}{-2} = \frac{-2}{-4}$

Since the direction cosines of the line *AB* and *BC* are proportional and *B* is the common point. Hence, the points are collinear.

- 8. We have, $A \times B = \{(1, 7), (1, 9), (5, 7), (5, 9), (6, 7), (6, 9)\}$
- $\therefore R = \{(1, 7), (1, 9), (5, 7), (5, 9)\}$

9. Here, highest order derivative is $\frac{d^2y}{dx^2}$, so its order is 2 and power of $\frac{d^2y}{dx^2}$ is one, so its degree is 1.

s 2 and power of
$$\frac{d^2 y}{dx^2}$$
 is one, so its degree is 1.

OR

We have,
$$(1 + x^2)\frac{dy}{dx} = e^y$$

$$\Rightarrow \frac{dy}{e^y} = \frac{dx}{1 + x^2} \Rightarrow \int \frac{dy}{e^y} = \int \frac{dx}{1 + x^2}$$

$$\Rightarrow -e^{-y} = \tan^{-1}x + C \Rightarrow e^{-y} + \tan^{-1}x + C_1 = 0.$$

10. Let λ be the ratio in which *yz*-plane divides the line joining the points (-3, 4, -8) and (5, -6, 4). The co-ordinates of any point on the line joining the two points are $\left(\frac{5\lambda-3}{\lambda+1}, \frac{-6\lambda+4}{\lambda+1}, \frac{4\lambda-8}{\lambda+1}\right)$. If the point is

in *yz*-plane, then its *x*-coordinate should be zero.

$$\therefore \frac{5\lambda - 3}{\lambda + 1} = 0 \implies 5\lambda - 3 = 0 \implies \lambda = \frac{3}{5}$$

So, the required ratio is 3 : 5.

11. We have,
$$A^2 = A$$
 ...(i)
Now, $(I + A)^3 - 7A = I^3 + A^3 + 3A^2I + 3AI^2 - 7A$
 $= I + A^2A + 3A^2I + 3AI - 7A$
 $= I + AA + 3A + 3A - 7A$ [Using (i)]
 $= I + A^2 - A = I + A - A$ [Using (i)]
 $= I$

- 12. Let γ be the required angle. Then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \gamma = 1 - \frac{1}{2} - \frac{1}{2} = 0 \Rightarrow \cos \gamma = 0$ $\Rightarrow \gamma = \frac{\pi}{2}$ 13. Since $|P| = \begin{vmatrix} 10 & -2 \\ -5 & 1 \end{vmatrix} = 10 - 10 = 0$
- $\therefore P^{-1}$ does not exist.

14. Here,
$$\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$$

 $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$
 $\Rightarrow \vec{b} + \vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$
 \therefore Projection of $\vec{b} + \vec{c}$ on \vec{a}

$$=\frac{(\vec{b}+\vec{c})\cdot\vec{a}}{|\vec{a}|} = \frac{(3\hat{i}+\hat{j}+2\hat{k})\cdot(2\hat{i}-2\hat{j}+\hat{k})}{|2\hat{i}-2\hat{j}+\hat{k}|}$$

$$=\frac{3\times 2+1\times (-2)+2\times 1}{\sqrt{2^2+(-2)^2+1^2}}=\frac{6}{3}=2$$

- **15.** Number of one-one functions from *A* to *B* = ${}^{6}P_{4} = 6 \cdot 5 \cdot 4 \cdot 3 = 360$
- 16. Here $\alpha = 45^{\circ}$ and $\beta = \gamma$ $\therefore \cos \alpha = \frac{1}{\sqrt{2}}$ and $\cos \beta = \cos \gamma$ Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow 1/2 + \cos^2 \beta + \cos^2 \beta = 1$ $\Rightarrow 2\cos^2 \beta = 1/2 \Rightarrow \cos \beta = \frac{1}{2} \Rightarrow \beta = \gamma = 60^{\circ}$ $\therefore \alpha + \beta + \gamma = 45^{\circ} + 60^{\circ} + 60^{\circ} = 165^{\circ}$ 17. (i) (b) : Required probability $= \frac{{}^{12}C_2}{{}^{51}C_2}$ $= \frac{12 \times 11}{51 \times 50} = \frac{22}{425}$ (ii) (a) : Required probability $= \frac{{}^{13}C_2}{{}^{51}C_2} = \frac{13 \times 12}{51 \times 50} = \frac{26}{425}$

(iii) (b) : We have ,
$$P(E_1) = P(E_2) = P(E_3) = P(E_4)$$

 $= \frac{13}{52} = \frac{1}{4}$
 $P(A / E_1) = \frac{{}^{12}C_2}{{}^{51}C_2} = \frac{22}{425}$
 $P(A / E_2) = \frac{{}^{13}C_2}{{}^{51}C_2} = \frac{26}{425}$
 $P(A / E_3) = P(A / E_4) = \frac{26}{425}$
 $\therefore \sum_{i=1}^{4} P(A / E_i) = \frac{22}{425} + \frac{26}{425} + \frac{26}{425} + \frac{26}{425} = \frac{100}{425} = 0.24$
(iv) (b) : $P(\text{getting both aces}) = \frac{{}^{4}C_2}{{}^{52}C_2} = \frac{4 \times 3}{52 \times 51} = \frac{1}{221}$
(v) (a) : $P(\text{drawing a king}) = \frac{4}{52} = \frac{1}{13}$
 $\therefore P(\text{not drawing a king}) = 1 - \frac{1}{13} = \frac{12}{13}$
 $\therefore \text{ Required probability} = \frac{12}{13} \times \frac{12}{13} = \frac{144}{169}$

18. (i) (c) : Let *S* be the sum of volume of parallelopiped and sphere, then

$$S = x(2x)\left(\frac{x}{3}\right) + \frac{4}{3}\pi r^3 = \frac{2x^3}{3} + \frac{4}{3}\pi r^3 \qquad \dots (1)$$

(ii) (a) : Since, sum of surface area of box and sphere is given to be constant.

$$\therefore 2\left(x \times 2x + 2x \times \frac{x}{3} + \frac{x}{3} \times x\right) + 4\pi r^{2} = k^{2} \text{ (say)}$$

$$\Rightarrow 6x^{2} + 4\pi r^{2} = k^{2}$$

$$\Rightarrow x^{2} = \frac{k^{2} - 4\pi r^{2}}{6} \Rightarrow x = \sqrt{\frac{k^{2} - 4\pi r^{2}}{6}} \quad \dots (2)$$
(iii) (b) : From (1) and (2), we get
$$S = \frac{2}{3} \left(\frac{k^{2} - 4\pi r^{2}}{6}\right)^{3/2} + \frac{4}{3}\pi r^{3}$$

$$= \frac{2}{3 \times 6\sqrt{6}} (k^{2} - 4\pi r^{2})^{3/2} + \frac{4}{3}\pi r^{3}$$

$$\Rightarrow \frac{dS}{dr} = \frac{1}{9\sqrt{6}} \frac{3}{2} (k^{2} - 4\pi r^{2})^{1/2} (-8\pi r) + 4\pi r^{2}$$

$$= 4\pi r \left[r - \frac{1}{3\sqrt{6}} \sqrt{k^{2} - 4\pi r^{2}} \right]$$
For maximum/minimum, $\frac{dS}{dr} = 0$

$$\Rightarrow \frac{-4\pi r}{3\sqrt{6}} \sqrt{k^{2} - 4\pi r^{2}} = -4\pi r^{2}$$

$$\Rightarrow k^{2} - 4\pi r^{2} = 54r^{2}$$

$$\Rightarrow r^{2} = \frac{k^{2}}{54 + 4\pi} \Rightarrow r = \sqrt{\frac{k^{2}}{54 + 4\pi}} \qquad \dots (3)$$
(iv) (d): Since, $x^{2} = \frac{k^{2} - 4\pi r^{2}}{6} = \frac{1}{6} \left[k^{2} - 4\pi \left(\frac{k^{2}}{54 + 4\pi} \right) \right]$
[From (2) and (3)]
$$= \frac{9k^{2}}{54 + 4\pi} = 9 \left(\frac{k^{2}}{54 + 4\pi} \right) = 9r^{2} = (3r)^{2}$$

$$\Rightarrow x = 3r$$
(v) (c): Minimum volume is given by
$$V = \frac{2}{3}x^{3} + \frac{4}{3}\pi r^{3} = \frac{2}{3}(3r)^{3} + \frac{4}{3}\pi r^{3}$$

$$= 18r^{3} + \frac{4}{3}\pi r^{3} = \left(18 + \frac{4}{3}\pi \right) r^{3}$$

$$= \left(18 + \frac{4}{3}\pi \right) \left(\frac{k^{2}}{54 + 4\pi} \right)^{3/2}$$
[Using (3)]
$$= \frac{1}{3} \frac{k^{3}}{(54 + 4\pi)^{1/2}}$$
19. Given, $f(x) = 2x^{3} + 9x^{2} + 12x + 20$

 $\Rightarrow f'(x) = 6x^{2} + 9x^{2} + 12x + 20$ $\Rightarrow f'(x) = 6x^{2} + 18x + 12$ $= 6(x^{2} + 3x + 2) = 6(x + 1)(x + 2)$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow 6(x + 1)(x + 2) > 0$ $\Rightarrow (x + 1) (x + 2) > 0$ $\Rightarrow x + 1 > 0, x + 2 > 0 \text{ or } x + 1 < 0, x + 2 < 0$ $\Rightarrow x > -1 \text{ or } x < -2$ $\Rightarrow x \in (-1, \infty) \text{ or } x \in (-\infty, -2)$ $\therefore \text{ f is increasing in } (-\infty, -2) \cup (-1, \infty).$

20. Suppose \vec{r} makes an angle α with each of the axes *OX*, *OY* and *OZ*. Then, its direction cosines are $l = \cos \alpha$, $m = \cos \alpha$, $n = \cos \alpha \implies l = m = n$

Now,
$$l^2 + m^2 + n^2 = 1 \Rightarrow 3l^2 = 1 \Rightarrow l = \pm \frac{1}{\sqrt{3}}$$

 $\therefore \quad \vec{r} = |\vec{r}| (l\hat{i} + m\hat{j} + n\hat{k})$
 $\Rightarrow \quad \vec{r} = 6 \left(\pm \frac{1}{\sqrt{3}} \hat{i} \pm \frac{1}{\sqrt{3}} \hat{j} \pm \frac{1}{\sqrt{3}} \hat{k} \right) = 2\sqrt{3} (\pm \hat{i} \pm \hat{j} \pm \hat{k}).$
OR

If the vectors \vec{a} and \vec{b} are perpendicular to each other, then $\vec{a} \cdot \vec{b} = 0$.

$$\Rightarrow (2\hat{i} + \lambda\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + 3\hat{k}) = 0$$

$$\Rightarrow (2) (1) + \lambda(-2) + (1) (3) = 0$$

$$\Rightarrow -2\lambda + 5 = 0 \Rightarrow \lambda = \frac{5}{2}$$

21. We have,
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{5}$
Now, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= \frac{1}{2} + \frac{1}{5} - \left(\frac{1}{2}\right) \cdot \left(\frac{1}{5}\right) (A \text{ and } B \text{ are independent events})$
 $= \frac{3}{5}$
 $\therefore P(A / A \cup B) = \frac{P(A \cap (A \cup B))}{P(A \cup B)}$
 $= \frac{P(A)}{P(A \cup B)} = \frac{1/2}{3/5} = \frac{5}{6}$
22. Let $x = \tan^2 \theta \Rightarrow \sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$
Now, $\frac{1}{2} \cos^{-1} \left(\frac{1-x}{1+x}\right) = \frac{1}{2} \cos^{-1} \left(\frac{1-\tan^2 \theta}{1+\tan^2 \theta}\right)$
 $= \frac{1}{2} \cos^{-1} (\cos 2\theta) = \frac{1}{2} (2\theta) = \theta = \tan^{-1} \sqrt{x}$
23. Let $I = \int \frac{\sqrt{16 + (\log x)^2}}{x} dx$
Put $\log x = t \Rightarrow \frac{1}{x} dx = dt$
 $\therefore I = \int \sqrt{16 + t^2} dt$
 $= \frac{t}{2} \sqrt{16 + t^2} + \frac{16}{2} \log |t + \sqrt{16 + t^2}| + c$
 $\therefore I = \frac{1}{2} \log x \sqrt{16 + (\log x)^2}$
 $+ 8 \log |\log x + \sqrt{16 + (\log x)^2} + c$

OR

Let
$$I = \int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^2 x} dx$$

Put $\cos x = t \Rightarrow -\sin x \, dx = dt$
When $x = 0, t = 1$ and when $x = \frac{\pi}{2}, t = 0$
 $\therefore I = -\int_{1}^{0} \frac{dt}{1 + t^2} = -\left[\tan^{-1}t\right]_{1}^{0}$
 $= -\left[\tan^{-1}0 - \tan^{-1}1\right] = \frac{\pi}{4}$
24. We have, $\frac{dy}{dx} = \frac{3e^{2x} + 3e^{4x}}{e^x + e^{-x}}$
 $\Rightarrow \int dy = \int \frac{3e^{2x}(1 + e^{2x})}{e^{-x}(e^{2x} + 1)} dx$ [Integrating both sides]
 $\Rightarrow y = \int 3e^{3x} dx = \frac{3e^{3x}}{3} + c \Rightarrow y = e^{3x} + c$
167

25. (i) Since, A is a subset of B.
$$\therefore A \subset B$$

 $\Rightarrow A \cap B = A$
 $\therefore P(A \cap B) = P(A)$... (i)
Now, $P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A)}{P(A)}$ [Using (i)]
 $= 1$
(ii) If $A \cap B = \phi \Rightarrow P(A \cap B) = 0$
 $\therefore P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{0}{P(A)} = 0$
26. We have, $\frac{d}{dx} [(\sqrt{1-x^2}) \sin^{-1} x - x]$
 $= (\sqrt{1-x^2}) \cdot \frac{d}{dx} (\sin^{-1} x) + (\sin^{-1} x) \cdot \frac{d}{dx} (\sqrt{1-x^2}) - 1$
 $= (\sqrt{1-x^2}) \cdot \frac{1}{(\sqrt{1-x^2})} + (\sin^{-1} x) \cdot \frac{1}{2} (1-x^2)^{-1/2} \cdot (-2x) - 1$
 $= 1 - \frac{x \sin^{-1} x}{\sqrt{1-x^2}} - 1 = \frac{-x \sin^{-1} x}{\sqrt{1-x^2}}$

27. We have, $x^2 + y^2 = 1$, a circle with centre (0, 0) and radius = 1. Required area = area of shaded region

$$A = \int_{0}^{1} \sqrt{1 - x^{2}} dx$$

$$= \left[\frac{x}{2}\sqrt{1 - x^{2}} + \frac{1}{2}\sin^{-1}\frac{x}{1}\right]_{0}^{1}$$

$$= \left[\frac{1}{2}\sin^{-1}1\right] = \left(\frac{1}{2} \times \frac{\pi}{2}\right) = \frac{\pi}{4} \text{ sq. unit}$$

$$28. \text{ Let } A = \begin{bmatrix}2 & 0 & -1\\5 & 1 & 0\\1 & 1 & 3\end{bmatrix}$$

$$A_{11} = (-1)^{1+1} \begin{vmatrix}1 & 0\\1 & 3\end{vmatrix} = 3; A_{12} = (-1)^{1+2} \begin{vmatrix}5 & 0\\1 & 3\end{vmatrix} = -15$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix}5 & 1\\1 & 1\end{vmatrix} = 4; A_{21} = (-1)^{2+1} \begin{vmatrix}0 & -1\\1 & 3\end{vmatrix} = -1$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix}2 & -1\\1 & 3\end{vmatrix} = 7; A_{23} = (-1)^{2+3} \begin{vmatrix}2 & 0\\1 & 1\end{vmatrix} = -2;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix}0 & -1\\1 & 0\end{vmatrix} = 1; A_{32} = (-1)^{3+2} \begin{vmatrix}2 & -1\\5 & 0\end{vmatrix} = -5;$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix}2 & 0\\5 & 1\end{vmatrix} = 2$$

$$\therefore \text{ adj } A = \begin{bmatrix}3 & -15 & 4\\-1 & 7 & -2\\1 & -5 & 2\end{bmatrix} = \begin{bmatrix}3 & -1 & 1\\-15 & 7 & -5\\4 & -2 & 2\end{bmatrix}$$

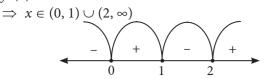
OR

The matrix is not invertible if
$$\begin{vmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{vmatrix} = 0$$

 $\Rightarrow 1(2-5) - a(1-10) + 2(1-4) = 0$
 $\Rightarrow -3 + 9a - 6 = 0 \Rightarrow a = 1$
29. We have, $f(x) = \frac{x-1}{x-2}$
For one-one : Let $x, y \in A$ and consider $f(x) = f(y)$
 $\Rightarrow \frac{x-1}{x-2} = \frac{y-1}{y-2}$
 $\Rightarrow (x-1)(y-2) = (x-2)(y-1)$
 $\Rightarrow xy - y - 2x + 2 = xy - x - 2y + 2 \Rightarrow x = y$
Thus, $f(x) = f(y) \Rightarrow x = y$ for all $x, y \in A$
So, f is one-one.
For onto : Let y be an arbitrary element of B . Then,
 $f(x) = y \Rightarrow \frac{x-1}{x-2} = y \Rightarrow (x-1) = y(x-2) \Rightarrow x = \frac{1-2y}{1-y}$
Clearly, $x = \frac{1-2y}{1-y}$ is a real number for all $y \neq 1$.
Also, $\frac{1-2y}{1-y} \neq 2$ for any y , for, if we take $\frac{1-2y}{1-y} = 2$,
then we get $1 = 2$, which is wrong.
So, f is onto. Hence, f is a bijective.
30. $f(0) = k$ (Given) ...(i)
Since, $f(x)$ is continuous at $x = 0$.
 $\therefore f(0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$
Now, $\lim_{x \to 0} f(x) = \lim_{x \to 0^{-}} \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}$
 $= \lim_{x \to 0} \frac{1 - \sin^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1} \times \frac{\sqrt{x^2 + 1} + 1}{\sqrt{x^2 + 1} + 1}$
 $= \lim_{x \to 0} -2 \frac{\sin^2 x}{x^2} . (\sqrt{x^2 + 1} + 1)$
 $= -2(\lim_{x \to 0} \frac{\sin^2 x}{x^2}) \times \lim_{x \to 0} (\sqrt{x^2 + 1} + 1)$
 $= -2(\lim_{x \to 0} \frac{\sin^2 x}{x^2}) \times \lim_{x \to 0} (\sqrt{x^2 + 1} + 1)$
 $= -2(\lim_{x \to 0} \frac{\sin^2 x}{x^2}) \times \lim_{x \to 0} (\sqrt{x^2 + 1} + 1)$
 $= -2(1)^2(1 + 1) = -4$...(ii)
From (i) and (ii), we get $k = -4$.

31. Given, $f(x) = (x(x-2))^2 = x^2(x-2)^2$, $D_f = R$. Differentiating w.r.t. *x*, we get $f'(x) = x^2 \cdot 2(x-2) + (x-2)^2 \cdot 2x$ = 2x(x-2)(x+x-2) = 2x(x-2)(2x-2) = 4x(x-1)(x-2)

Now, the given function f is (strictly) increasing iff f'(x) > 0



Further, the tangents will be parallel to x-axis iff f'(x) = 0

 $\Rightarrow x = 0, 1, 2$ The given curve is $y = x^2(x-2)^2$ When x = 0, y = 0;When x = 1, $y = 1^2(1 - 2)^2 = 1 \times (-1)^2 = 1 \times 1 = 1$; When x = 2, $y = 2^2 (2 - 2)^2 = 4 \times 0 = 0$.

:. The points on the given curve, where the tangents are parallel to *x*-axis are (0, 0), (1, 1) and (2, 0).

OR

Let *h* be height and *x* be the side of the square base of the open box.

Then its area =
$$x \times x + 4h \times x = c^2$$
 (given)
 $\Rightarrow h = \frac{c^2 - x^2}{4x}$
Now $V =$ volume of the box
 $= x^2h = x^2 \cdot \frac{c^2 - x^2}{4x} = \frac{1}{4}(c^2x - x^3)$
 $\Rightarrow \frac{dV}{dx} = \frac{1}{4}(c^2 - 3x^2) \text{ and } \frac{d^2V}{dx^2} = \frac{1}{4}(-6x) = \frac{-3}{2}x$
For maxima or minima $\frac{dV}{dx} = 0 \Rightarrow x^2 = \frac{c^2}{3}$
 $\Rightarrow x = \frac{c}{\sqrt{3}}$ ($\because x < 0$)
For this value of $x, \frac{d^2V}{dx^2} < 0$
 $\Rightarrow V$ is maximum at $x = \frac{c}{2}$ and its maximum

its maximum $\sqrt{3}$ volume is,

$$V = \frac{1}{4}x(c^{2} - x^{2}) = \frac{1}{4} \cdot \frac{c}{\sqrt{3}} \left(c^{2} - \frac{c^{2}}{3}\right) = \frac{c^{3}}{6\sqrt{3}} \text{ cubic units.}$$

32. Consider, $\int_{0}^{1} \{\tan^{-1}x + \tan^{-1}(1 - x)\} dx$
$$= \int_{0}^{1} \tan^{-1}x dx + \int_{0}^{1} \tan^{-1}(1 - x) dx$$

$$= \int_{0}^{1} \tan^{-1}x dx + \int_{0}^{1} \tan^{-1}\{1 - (1 - x)\} dx$$

$$\left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \right]$$

$$= \int_{0}^{1} \tan^{-1}x dx + \int_{0}^{1} \tan^{-1}x dx = 2\int_{0}^{1} \tan^{-1}x dx$$

$$= 2[(\tan^{-1} x) \cdot x]_{0}^{1} - 2\int_{0}^{\infty} \frac{x}{(1+x^{2})} dx$$

$$= 2[(\tan^{-1} 1) \cdot 1 - 0] - [\log(1+x^{2})]_{0}^{1}$$

$$= \left(2 \times \frac{\pi}{4}\right) - (\log 2 - \log 1) = \left(\frac{\pi}{2} - \log 2\right)$$
33. Here, $y = x \log\left(\frac{x}{a+bx}\right)$... (i)

$$\Rightarrow y = x[\log x - \log(a + bx)] = x \log x - x \log(a + bx)$$

$$\Rightarrow \frac{dy}{dx} = x \cdot \frac{1}{x} + 1 \cdot \log x - \left[1 \cdot \log(a + bx) + x \cdot \frac{1}{a+bx} \cdot b\right]$$

$$= 1 - \frac{bx}{a+bx} + \log x - \log(a + bx)$$

$$\Rightarrow \frac{dy}{dx} = \frac{a}{a+bx} + \log\left(\frac{x}{a+bx}\right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{a}{a+bx} + \log\left(\frac{x}{a+bx}\right)$$

$$(\text{Using (i)]} ...(\text{ii})$$

1

Again differentiating (ii) w.r.t. *x*, we get

x

$$\frac{d^{2}y}{dx^{2}} = a \cdot (-1)(a+bx)^{-2} \cdot b + \frac{x\frac{dy}{dx} - y}{x^{2}}$$

$$= \frac{-ab}{(a+bx)^{2}} + \frac{a}{x(a+bx)} = \frac{-abx + a(a+bx)}{x(a+bx)^{2}} = \frac{a^{2}}{x(a+bx)^{2}}$$
Now, R.H.S. $= \left(x\frac{dy}{dx} - y\right)^{2}$

$$= \left\{x \cdot \left[\frac{a}{a+bx} + \frac{y}{x}\right] - y\right\}^{2} = \left(\frac{ax}{a+bx}\right)^{2}$$
and L.H.S. $= x^{3}\frac{d^{2}y}{dx^{2}} = \frac{a^{2}x^{2}}{(a+bx)^{2}} = \left[\frac{ax}{a+bx}\right]^{2} = \text{R.H.S.}$

34. We have,
$$\frac{dy}{dx} = \frac{e^x (\sin^2 x + \sin 2x)}{y(2\log y + 1)}$$

$$\Rightarrow \int y(2\log y + 1) dy = \int e^x (\sin^2 x + \sin 2x) dx$$

$$\Rightarrow 2\int y \log y dy + \int y dy = \int e^x (\sin^2 x + \sin 2x) dx$$

$$\Rightarrow 2\left[\log|y| \cdot \frac{y^2}{2} - \int \frac{1}{y} \times \frac{y^2}{2} dy\right] + \frac{y^2}{2} = e^x \sin^2 x + C$$

$$[\because \int e^x (f(x) + f'(x)) dx = e^x f(x) + C]$$

$$\Rightarrow y^2 \log|y| - \frac{y^2}{2} + \frac{y^2}{2} = e^x \sin^2 x + C$$

$$\Rightarrow y^2 \log|y| = e^x \sin^2 x + C, \text{ which is required solution.}$$

OR

We have $\frac{dy}{y^2 - y - 2} = \frac{dx}{x^2 + 2x - 3}$

Integrating both sides, we get

$$\int \frac{dy}{y^2 - y - 2} = \int \frac{dx}{x^2 + 2x - 3}$$

$$\Rightarrow \int \frac{dy}{\left(y - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \int \frac{dx}{(x + 1)^2 - 2^2} + c$$

$$\Rightarrow \frac{1}{2 \cdot \frac{3}{2}} \log \left| \frac{y - \frac{1}{2} - \frac{3}{2}}{y - \frac{1}{2} + \frac{3}{2}} \right| = \frac{1}{2 \cdot 2} \log \left| \frac{x + 1 - 2}{x + 1 + 2} \right| + c$$

$$\Rightarrow \frac{1}{3} \log \left| \frac{y - 2}{y + 1} \right| = \frac{1}{4} \log \left| \frac{x - 1}{x + 3} \right| + c$$

35. The bounded area is as

shown in figure. Curve is $y = \log_e (x + e)$ If y = 0, then x = 1 - e $A \equiv (1 - e, 0)$ Required area is $A = \int_{-\infty}^{0} \log_e (x + e) dx$

Put $x + e = t \Rightarrow dx = dt$ and $x = 1 - e \Rightarrow t = 1$ and $x = 0 \Rightarrow t = e$

$$A = \int_{1}^{e} \log t \, dt = \left[t \log t - t \right]_{1}^{e} = e \log e - e - 0 + 1$$

= 1 sq. unit

36. Let *Q* be the image of the point $P(\hat{i} + 3\hat{j} + 4\hat{k})$ in the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$

Then, *PQ* is normal to the plane. Since *PQ* passes through *P* and is normal to the given plane, therefore equation of line *PQ* is $\vec{r} = (\hat{i} + 3\hat{j} + 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$ • *Q*

Since *Q* lies on line *PQ*, so let the position vector of *Q* be $(\hat{i} + 3\hat{j} + 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$ = $(1 + 2\lambda)\hat{i} + (3 - \lambda)\hat{j} + (4 + \lambda)\hat{k}$.

Since, R is the mid-point of PQ. Therefore, position vector of R is

$$\frac{\left[(1+2\lambda)\hat{i}+(3-\lambda)\hat{j}+(4+\lambda)\hat{k}\right]+\left[\hat{i}+3\hat{j}+4\hat{k}\right]}{2}$$
$$=(\lambda+1)\hat{i}+\left(3-\frac{\lambda}{2}\right)\hat{j}+\left(4+\frac{\lambda}{2}\right)\hat{k}$$

Since *R* lies on the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$ $\Rightarrow \left\{ (\lambda + 1)\hat{i} + \left(3 - \frac{\lambda}{2}\right)\hat{j} + \left(4 + \frac{\lambda}{2}\right)\hat{k} \right\} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$ $\Rightarrow 2\lambda + 2 - 3 + \frac{\lambda}{2} + 4 + \frac{\lambda}{2} + 3 = 0 \Rightarrow \lambda = -2$ Thus, the position vector of *Q* is $(\hat{i} + 3\hat{j} + 4\hat{k}) - 2(2\hat{i} - \hat{j} + \hat{k}) = -3\hat{i} + 5\hat{j} + 2\hat{k}.$ OR The given line is $\frac{x+2}{1} = \frac{y+1}{2} = \frac{z-3}{2}$...(i)

Let P(-2, -1, 3) lies on the line. The direction ratios of line (i) are 1, 2, 2

 $\therefore \text{ The direction cosines of line are } \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$ Equation (i) may be written as

$$\frac{x+2}{\frac{1}{3}} = \frac{y+1}{\frac{2}{3}} = \frac{z-3}{\frac{2}{3}} \qquad \dots(ii)$$

Coordinates of any point on the line (ii) may be taken

as
$$\left(\frac{1}{3}r - 2, \frac{2}{3}r - 1, \frac{2}{3}r + 3\right)$$

Let $Q \equiv \left(\frac{1}{3}r - 2, \frac{2}{3}r - 1, \frac{2}{3}r + 3\right)$

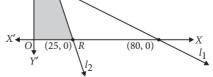
Given |r| = 2, $\therefore r = \pm 2$ Putting the values of *r*, we have

$$Q \equiv \left(-\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$$
 or $Q \equiv \left(\frac{-8}{3}, \frac{-7}{3}, \frac{5}{3}\right)$

37. We have maximize Z = 4x + 6y. Subject to constraints :

 $x + 2y \le 80$, $3x + y \le 75$ and $x \ge 0$, $y \ge 0$ Now we draw the graphs of the lines

$$u_1 : x + 2y = 80, l_2 : 3x + y = 75 \text{ and } x = 0, y = 0.$$



We obtain shaded region as the feasible region. The lines l_1 and l_2 intersect at Q(14, 33).

Thus, the vertices of the feasible region are *P*(0, 40), *Q*(14, 33), *R*(25, 0) and *O*(0, 0).

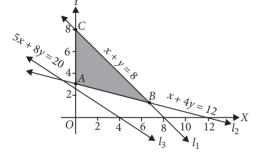
Corner Points	Value of $Z = 4x + 6y$
<i>P</i> (0, 40)	240
Q(14, 33)	254 (Maximum)
R(25, 0)	100
O(0, 0)	0

Thus, *Z* has maximum value 254 at Q(14, 33).

OR

We have minimize Z = 30x + 20y. Subject to constraints :

 $x + y \le 8$, $x + 4y \ge 12$, $5x + 8y \ge 20$, $x, y \ge 0$ Now, we draw the graphs of $l_1: x + y = 8$, $l_2: x + 4y = 12$, $l_3: 5x + 8y = 20$ and x = 0, y = 0



Shaded region *ABC* is the required feasible region. $B\left(\frac{20}{3}, \frac{4}{3}\right)$ is the point of intersection of the lines l_1 and l_2

and l_2 .

Thus, the vertices of the feasible region are

 $A(0,3), B\left(\frac{20}{3}, \frac{4}{3}\right)$ and C(0,8).

Corner Points	Value of $Z = 30x + 20y$
A(0, 3)	60 (Minimum)
B(20/3, 4/3)	226.6
<i>C</i> (0, 8)	160

 \therefore *Z* has minimum value 60 at *A*(0, 3).

38.
$$AC = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \cdot 2 + 6 \cdot (-2) + 7 \cdot 3 \\ (-6) \cdot 2 + 0 \cdot (-2) + 8 \cdot 3 \\ 7 \cdot 2 + (-8) \cdot (-2) + 0 \cdot 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 12 \\ 30 \end{bmatrix}$$
$$BC = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \cdot 2 + 1 \cdot (-2) + 1 \cdot 3 \\ 1 \cdot 2 + 0 \cdot (-2) + 2 \cdot 3 \\ 1 \cdot 2 + 2 \cdot (-2) + 0 \cdot 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ -2 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0+0 & 6+1 & 7+1 \\ -6+1 & 0+0 & 8+2 \\ 7+1 & -8+2 & 0+0 \end{bmatrix} = \begin{bmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 8 & -6 & 0 \end{bmatrix}$$
$$\therefore \quad (A + B) C = \begin{bmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 8 & -6 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \cdot 2+7 \cdot (-2)+8 \cdot 3 \\ (-5) \cdot 2+0 \cdot (-2)+10 \cdot 3 \\ 8 \cdot 2+(-6)(-2)+0 \cdot 3 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \\ 28 \end{bmatrix} \qquad \dots (i)$$

Now,
$$AC + BC = \begin{bmatrix} 9\\12\\30 \end{bmatrix} + \begin{bmatrix} 1\\8\\-2 \end{bmatrix} = \begin{bmatrix} 9+1\\12+8\\30-2 \end{bmatrix} = \begin{bmatrix} 10\\20\\28 \end{bmatrix}$$
 ...(ii)

From (i) and (ii), we get (A + B)C = AC + BC

OR
Let
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 and $C = \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix}$
Now, $|B| = 3 - 4 = -1 \neq 0$
 $|C| = 20 - 21 = -1 \neq 0$
Hence B^{-1} and C^{-1} exist.
 \therefore The given matrix equation becomes $BAC = I$
 $\Rightarrow B^{-1}(BAC) C^{-1} = B^{-1}I C^{-1} \Rightarrow IAI = B^{-1}C^{-1}$
 $\Rightarrow A = B^{-1}C^{-1}$...(i)
Now, adj $B = \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$
 $\therefore B^{-1} = \frac{1}{|B|}(adj B) = \frac{1}{-1} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$
Also, adj $C = \begin{bmatrix} 5 & -3 \\ -7 & 4 \end{bmatrix} = \begin{bmatrix} 5 & -7 \\ -3 & 4 \end{bmatrix}$
 $\therefore C^{-1} = \frac{1}{|C|}(adj C) = \frac{1}{-1} \begin{bmatrix} 5 & -7 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$
Now, from (i), $A = B^{-1}C^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$
 $= \begin{bmatrix} 15+6 & -21-8 \\ -10-3 & 14+4 \end{bmatrix} = \begin{bmatrix} 21 & -29 \\ -13 & 18 \end{bmatrix}$

Mathematics

 \odot \odot \odot \odot