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Introduction  

N ewton at the age of twenty-three is said to have seen an apple 

falling down from tree in his orchid. This was the year 1665. He started 
thinking about the role of earth's attraction in the motion of moon and 
other heavenly bodies.  

 

 

 

 

 

 

 

 

By comparing the acceleration due to gravity due to earth with the 
acceleration required to keep the moon in its orbit around the earth, he was 
able to arrive the Basic Law of Gravitation.   

  

Newton's law of Gravitation 
 

Newton's law of gravitation states that every body in this universe 

attracts every other body with a force, which is directly proportional to the 
product of their masses and inversely proportional to the square of the 
distance between their centres. The direction of the force is along the line 
joining the particles.  

Thus the magnitude of the gravitational force F that two particles of 

masses 1m  and 2m  are separated by a distance r exert on each other is 

given by 
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Vector form : According to Newton's law of gravitation  
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Here negative sign indicates that the direction of 12



F  is opposite to that 

of 21r̂ . 

Similarly
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 It is clear that 12



F = – 21



F . Which is Newton's third law of 

motion.  

Here G is constant of proportionality which is called 'Universal 
gravitational constant'. 

If 21 mm   and 1r  then FG   

i.e.  universal gravitational constant is equal to the force of 
attraction between two bodies each of unit mass whose centres are placed 

unit distance apart. 

(i) The value of G in the laboratory was first determined by 
Cavendish using the torsional balance. 

(ii) The value of G is 6.67×10–11 N–m2 kg–2 in S.I. and 6.67×10–8 dyne- 
cm2-g–22 – t–––– in C.G.S. system. 

(iii) Dimensional formula ][ 231  TLM . 

(iv) The value of G does not depend upon the nature and size of the 
bodies.  

(v) It also does not depend upon the nature of the medium between 

the two bodies.  

(vi) As G is very small, hence gravitational forces are very small, 
unless one (or both) of the mass is huge.  

 

Properties of Gravitational Force 
 

   

12r̂  = unit vector from A to B 

21r̂  = unit vector from B to A, 

12



F = gravitational force exerted on 
body A by body B  
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F = gravitational force exerted on 

body B by body A 
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(1) It is always attractive in nature while electric and magnetic force 
can be attractive or repulsive. 

(2) It is independent of the medium between the particles while 
electric and magnetic force depend on the nature of the medium between 
the particles. 

(3) It holds good over a wide range of distances. It is found true for 
interplanetary to inter atomic distances. 

(4) It is a central force i.e. acts along the line joining the centres of 

two interacting bodies.  

(5) It is a two-body interaction i.e. gravitational force between two 

particles is independent of the presence or absence of other particles; so the 
principle of superposition is valid i.e. force on a particle due to number of 
particles is the resultant of forces due to individual particles i.e.  

........321 
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While nuclear force is many body interaction  

(6) It is the weakest force in nature : As F
nuclear 

> F
 electromagnetic  

> F
 gravi ta tional 

. 

(7) The ratio of gravitational force to electrostatic force between two 

electrons is of the order of 4310 .  

(8) It is a conservative force i.e. work done by it is path independent 

or work done in moving a particle round a closed path under the action of 
gravitational force is zero.  

(9) It is an action reaction pair i.e. the force with which one body (say 

earth) attracts the second body (say moon) is equal to the force with which 
moon attracts the earth. This is in accordance with Newton's third law of 
motion. 

Note :   The law of gravitation is stated for two 

point masses, therefore for any two arbitrary finite size bodies, as shown in 
the figure, It can not be applied as there is not unique value for the 
separation.  

 

 

 

 

But if the two bodies are uniform spheres then the separation r may be 

taken as the distance between their centres because a sphere of uniform mass 
behave as a point mass for any point lying outside it. 

Acceleration Due to Gravity 

The force of attraction exerted by the earth on a body is called 
gravitational pull or gravity.  

We know that when force acts on a body, it produces acceleration. 
Therefore, a body under the effect of gravitational pull must accelerate. 

The acceleration produced in the motion of a body under the effect 
of gravity is called acceleration due to gravity, it is denoted by g. 

Consider a body of mass m is lying on the surface of earth then 

gravitational force on the body is given by 

F 
2R

GMm
     …(i) 

Where M = mass of the earth and R = radius of the earth.  

If g is the acceleration due to gravity, then the force on the body 

due to earth is given by  

Force = mass  acceleration  

or       F = mg   …(ii) 

From (i) and (ii) we have mg 
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 [As mass (M) = volume ( 3
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  GRg 
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(i) From the expression GR
R

GM
g 

3

4
2
  it is clear that its 

value depends upon the mass radius and density of planet and it is 

independent of mass, shape and density of the body placed on the surface 

of the planet. i.e. a given planet (reference body) produces same acceleration 

in a light as well as heavy body. 

(ii) The greater the value of )/( 2RM  or ,R  greater will be value 

of g for that planet.  

(iii) Acceleration due to gravity is a vector quantity and its direction 

is always towards the centre of the planet.  

(iv) Dimension [g] = [LT–2] 

(v) it’s average value is taken to be 9.8 m/s2 or 981 cm/sec2

 

or 32 

feet/sec2, on the surface of the earth at mean sea level. 

(vi) The value of acceleration due to gravity vary due to the 

following factors : (a) Shape of the earth, (b) Height above the earth 

surface, (c) Depth below the earth surface and (d) Axial rotation of 

the earth.  

Variation in g Due to Shape of Earth 
 

 Earth is elliptical in shape. It is 

flattened at the poles and bulged out at 
the equator. The equatorial radius is 
about 21 km longer than polar radius, 

from 
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 From (i) and (ii) 
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Therefore the weight of body increases as it is taken from equator to 
the pole. 

 

Variation in g With Height 

 Acceleration due to gravity at the surface of the earth   

 
2R
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g        …(i) 

 Acceleration due to gravity at height h from the surface of the earth 
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 From (i) and (ii) 
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  [As r = R + h] 

(i) As we go above the surface of the earth, the value of g decreases 

because 
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(ii) If r  then 0g , i.e., at infinite distance from the earth, 

the value of g becomes zero. 

(iii) If Rh   i.e., height is negligible in comparison to the radius 
then from equation (iii) we get 
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  [As Rh  ] 

(iv) If Rh   then decrease in the value of g with height :  
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Variation in g With Depth 
 

Acceleration due to gravity at the surface of the earth 

GR
R
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2
   …(i)  

Acceleration due to gravity at depth d from the surface of the earth 
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(i) The value of g decreases on going below the surface of the earth. 

From equation (ii) we get )( dRg  . 

So it is clear that if d increase, the value of g decreases. 

(ii) At the centre of earth Rd   0 g , i.e., the acceleration due 

to gravity at the centre of earth becomes zero. 

(iii) Decrease in the value of g with depth 

Absolute decrease 
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(iv) The rate of decrease of gravity outside the earth ( Rh if ) is 

double to that of inside the earth. 

Variation in g Due to Rotation of Earth 
 

As the earth rotates, a body placed 
on its surface moves along the circular path 
and hence experiences centrifugal force, due 

to it, the apparent weight of the body 
decreases.  

Since the magnitude of centrifugal 
force varies with the latitude of the place, 
therefore the apparent weight of the body 
varies with latitude due to variation in the 
magnitude of centrifugal force on the body. 

If the body of mass m lying at point P, whose latitude is , then due 

to rotation of earth its apparent weight can be given by cFmggm   

or  )180cos(2)()( 22  cc FmgFmggm   

 )cos(cos2)cos()( 2222   RmmgRmmggm  

[As  cos22 RmrmFc  ] 

By solving we get  22 cosRgg   

Note :  The latitude at a point on the surface of the 

earth is defined as the angle, which the line joining that point to the centre 

of earth makes with equatorial plane. It is denoted by  .  

  For the poles o90  and for equator o0  

(i) Substituting o90  in the above expression we get 

o
pole Rgg 90cos22   

 ggpole     …(i) 

i.e., there is no effect of rotational motion of the earth on the value 

of g  at the poles. 

(ii) Substituting o0  in the above expression we get 

o
eqator Rgg 0cos22  

  Rggequator
2    …(ii) 

i.e., the effect of rotation of earth on the value of g  at the equator 

is maximum. 

From equation (i) and (ii)  

22 /034.0 smRgg equatorpole    

(iii) When a body of mass m  is moved from the equator to the 

poles, its weight increases by an amount 
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Rmggm ep
2)(   

(iv) Weightlessness due to rotation of earth : As we know that apparent 
weight of the body decreases due to rotation of earth. If   is the angular 

velocity of rotation of earth for which a body at the equator will become 
weightless 

 22 cosRgg   

 oRg 0cos0 22      [As o0  for equator] 

  02  Rg    

 
R

g
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or time period of rotation of earth 
g

R
T 




2

2
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Substituting the value of mR 3106400  and     2/10 smg   

we get  

sec

rad31025.1
800

1  and  .40.15.5026 hrsecT   

Note :  This time is about 
17

1
 times the present time 

period of earth. Therefore if earth starts rotating 17 times faster then all 
objects on equator will become weightless.  

  If earth stops rotation about its own axis then at the 

equator the value of g  increases by R2  and consequently the weight of 

body lying there increases by Rm 2 . 

 After considering the effect of rotation and elliptical 

shape of the earth, acceleration due to gravity at the poles and equator are 
related as 

2/018.0034.0 smgg ep      2/052.0 smgg ep   

Mass and Density of Earth 
 

Newton’s law of gravitation can be used to estimate the mass and 

density of the earth. 

As we know 
2R
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g  , so we have 
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and as we know GRg 
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Inertial and Gravitational Masses 
 

(1) Inertial mass : It is the mass of the material of the body, which 

measures its inertia. 

If an external force F acts on a body of mass m
i

, then according to 

Newton’s second law of motion 

amF i  or 
a

F
m i   

Hence inertial mass of a body may be measured as the ratio of the 

magnitude of the external force applied on it to the magnitude of 

acceleration produced in its motion.  

(i) It is the measure of ability of the body to oppose the production of 

acceleration in its motion by an external force.  

(ii) Gravity has no effect on inertial mass of the body. 

(iii) It is proportional to the quantity of matter contained in the 

body. 

(iv) It is independent of size, shape and state of body. 

(v) It does not depend on the temperature of body. 

(vi) It is conserved when two bodies combine physically or 

chemically. 

(vii) When a body moves with velocity v , its inertial mass is given 

by  

2

2

0

1
c

v

m
m



 , where m
0

 = rest mass of body, c = velocity of light 

in vacuum,  

(2) Gravitational Mass : It is the mass of the material of body, which 

determines the gravitational pull acting upon it. 

If M is the mass of the earth and R is the radius, then gravitational 

pull on a body of mass gm  is given by  

2R

GMm
F

g
  or 

I

F

RGM

F
mg 

2/
 

Here gm  is the gravitational mass of the body, if 1I  then 

Fmg   

Thus the gravitational mass of a body is defined as the gravitational 
pull experienced by the body in a gravitational field of unit intensity, 

(3) Comparison between inertial and gravitational mass 

(i) Both are measured in the same units. 

(ii) Both are scalar. 

(iii) Both do not depend on the shape and state of the body 

(iv) Inertial mass is measured by applying Newton’s second law of 
motion where as gravitational mass is measured by applying Newton’s law 
of gravitation. 

(v) Spring balance measure gravitational mass and inertial balance 
measure inertial mass. 

(4) Comparison between mass and weight of the body  
 

Mass (m) Weight (W) 

It is a quantity of matter 
contained in a body. 

It is the attractive force exerted 
by earth on any body. 

Its value does not change with g Its value changes with g. 

Its value can never be zero for 
any material particle. 

At infinity and at the centre of 
earth its value is zero. 

Its unit is kilogram and its Its unit is Newton or kg-wt and 
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dimension is [M]. dimension are [ 2MLT ] 

It is determined by a physical 
balance. 

It is determined by a spring 
balance. 

It is a scalar quantity. It is a vector quantity. 

 

Gravitational Field 
 

The space surrounding a material body in which gravitational force 

of attraction can be experienced is called its gravitational field. 

Gravitational field intensity : The intensity of the gravitational field 

of a material body at any point in its field is defined as the force 
experienced by a unit mass (test mass) placed at that point, provided the 
unit mass (test mass) itself does not produce any change in the field of the 
body. 

So if a test mass m  at a point in a gravitational field experiences a 

force F  then 

m

F
I   

 (i) It is a vector quantity and is always directed towards the centre 
of gravity of body whose gravitational field is considered. 

(ii) Units : Newton/kg or m/s2  

(iii) Dimension : [M0LT–2]  

(iv) If the field is produced by a point mass M  and the test mass 
m  is at a distance r  from it then by Newton’s law of gravitation 

2r

GMm
F  , then intensity of gravitational field  

m

rGMm

m

F
I

2/
  

  
2r

GM
I   

(v) As the distance )(r  of test mass from the point mass )(M , 

increases, intensity of gravitational field decreases 

 
2r
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I  ;   

  
2

1

r
I   

(vi) Intensity of gravitational field 0I , when r . 

(vii) Intensity at a given point (P) due to the combined effect of 
different point masses can be calculated by vector sum of different 
intensities  

 ........321  IIIInet   

(viii) Point of zero intensity : If two bodies A and B of different 

masses 1m  and 2m  are d  distance apart. 

Let P  be the point of zero intensity i.e., the intensity at this point 

is equal and opposite due to two bodies A  and B  and if any test mass 

placed at this point it will not experience any force. 

 

 

 

 

For point P, 021  II     0
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By solving  
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(ix) Gravitational field line is a line, straight or curved such that a 
unit mass placed in the field of another mass would always move along this 
line. Field lines for an isolated mass m  are radially inwards. 

 

 

 

 

(x) As 
2r

GM
I   and also 

2R

GM
g   gI    

Thus the intensity of gravitational field at a point in the field is 

equal to acceleration of test mass placed at that point. 

Gravitational Field Intensity for Different Bodies 
 

(1) Intensity due to uniform solid sphere 
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(2) Intensity due to spherical shell 
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(3) Intensity due to uniform circular ring  
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At a point on its axis At the centre of the ring 

2/322 )( ra

GMr
I


  

I = 0 

(4) Intensity due to uniform disc  

 

 

 

 
 

At a point on its axis At the centre of the disc 
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Gravitational Potential 

At a point in a gravitational field potential V  is defined as negative 

of work done per unit mass in shifting a test mass from some reference 
point (usually at infinity) to the given point i.e., 

m

W
V  

m

rdF.
  rdI .  [As I

m

F
 ] 

  
dr

dV
I   

 i.e., negative gradient of potential gives intensity of field or 
potential is a scalar function of position whose space derivative gives 
intensity. Negative sign indicates that the direction of intensity is in the 
direction where the potential decreases. 

(i) It is a scalar quantity because it is defined as work done per unit 
mass. 

(ii) Unit : Joule/kg or m2/sec2 

(iii) Dimension : [M0L2T–2] 

(iv) If the field is produced by a point mass then 

 drIV dr
r

GM
 










2
        [As 

2r

GM
I  ] 

 c
r

GM
V               [Here c = constant of integration] 

Assuming reference point at   and potential to be zero there we 

get     
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
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GM

 

  Gravitational potential 
r

GM
V   

(v) Gravitational potential difference : It is defined as the work done 
to move a unit mass from one point to the other in the gravitational field. 
The gravitational potential difference in bringing unit test mass m from 
point A to point B under the gravitational influence of source mass M is 
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(vi) Potential due to large numbers of particle is given by scalar 
addition of all the potentials. 
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Gravitational Potential for Different Bodies 
 

 (1) Potential due to uniform ring  

 

 

 

 

 

 

At a point on its axis At the centre 

22 ra

GM
V



  

 

a

GM
V   

 

 (2) Potential due to spherical shell 
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 (3) Potential due to uniform solid sphere 
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Outside the 

surface 
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Gravitational Potential Energy 
  

 The gravitational potential energy of a body at a point is defined as 
the amount of work done in bringing the body from infinity to that point 

against the gravitational force. 
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 This work done is stored inside the body as its gravitational potential 

energy 

 
r

GMm
U   

(i) Potential energy is a scalar quantity. 

(ii) Unit : Joule 

(iii) Dimension : [ML2T–2] 

(iv) Gravitational potential energy is always negative in the 

gravitational field because the force is always attractive in nature. 

(v) As the distance r  increases, the gravitational potential energy 

becomes less negative i.e., it increases. 

(vi) If r  then it becomes zero (maximum) 

(vii) In case of discrete distribution of masses 

Gravitational potential energy  
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(viii) If the body of mass m  is moved from a point at a distance 1r  

to a point at distance )( 212 rrr   then change in potential energy 
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As 1r  is greater than 2r , the change in potential energy of the body 

will be negative. It means that if a body is brought closer to earth it's 
potential energy decreases. 

(ix) Relation between gravitational potential energy and potential 
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(x) Gravitational potential energy at the centre of earth relative to 
infinity.  
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(xi) Gravitational potential energy of a body at height h from the 
earth surface is given by  
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Work Done Against Gravity 

 If the body of mass m  is moved from the surface of earth to a 

point at distance h  above the surface of earth, then change in potential 
energy or work done against gravity will be  
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 (i) When the distance h  is not negligible and is comparable to radius 
of the earth, then we will use above formula.  

(ii) If nRh   then 




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
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n
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(iii) If Rh   then mgRW
2

1
  

(iv) If h  is very small as compared to radius of the earth then term 

Rh /  can be neglected 
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Escape Velocity 

The minimum velocity with which a body must be projected up so 

as to enable it to just overcome the gravitational pull, is known as escape 
velocity. 

The work done to displace a body from the surface of earth (r = R) 
to infinity ( r ) is  

dx
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This work required to project the body so as to escape the 
gravitational pull is performed on the body by providing an equal amount 
of kinetic energy to it at the surface of the earth. 

If ev  is the required escape velocity, then kinetic energy which 

should be given to the body is 2

2

1
emv  

 
R

GMm
mv e 2

2

1


R

GM
ve

2
  

     gRve 2   [As 2gRGM  ]s 

or RGRve  
3

4
2   GRve

3

8
  

     [As GRg 
3

4
 ] 

(i) Escape velocity is independent of the mass and direction of 
projection of the body. 

(ii) Escape velocity depends on the reference body. Greater the value 

of )/( RM  or )(gR  for a planet, greater will be escape velocity. 

(iii) For the earth as 2/8.9 smg   and kmR 6400  

sec/2.11104.68.92 6 kmve   

(iv) A planet will have atmosphere if the velocity of molecule in its 

atmosphere 













M

RT
vrms

3
 is lesser than escape velocity. This is why 

earth has atmosphere (as at earth erms vv  ) while moon has no 

atmosphere (as at moon erms vv  ) 

(v) If a body projected with velocity lesser than escape velocity 

( evv  ), it will reach a certain maximum height and then may either move 

in an orbit around the planet or may fall down back to the planet. 

(vi) Maximum height attained by body : Let a projection velocity of 

body (mass m ) is v , so that it attains a maximum height h . At maximum 

height, the velocity of particle is zero, so kinetic energy is zero. 

By the law of conservation of energy 

Total energy at surface = Total energy at height h . 
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(vii) If a body is projected with velocity greater than escape velocity 

)( evv   then by conservation of energy. 

Total energy at surface = Total energy at infinite 

0)(
2

1

2

1 22  vm
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  22
evvv   

i.e, the body will move in interplanetary or inter stellar space with 

velocity 22
evv  . 

(viii) Energy to be given to a stationary object on the surface of earth so 
that its total energy becomes zero, is called escape energy. 

Total energy at the surface of the earth 
R

GMm
PEKE  0  

 Escape energy 
R

GMm
  

(ix) If the escape velocity of a body is equal to the velocity of light 
then from such bodies nothing can escape, not even light. Such bodies are 
called black holes. 

The radius of a black hole is given as  

2

2

C

GM
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[As 
R

GM
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2
 , where C  is the velocity of light] 

Kepler’s Laws of Planetary Motion 

Planets are large natural bodies rotating around a star in definite 

orbits. The planetary system of the star sun called solar system consists of 
nine planets, viz., Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 
Neptune and Pluto. Out of these planets Mercury is the smallest and closest 
to the sun and so hottest. Jupiter is largest and has maximum moons (12). 
Venus is closest to Earth and brightest. Kepler after a life time study, work 
out three empirical laws which govern the motion of these planets and are 
known as Kepler’s laws of planetary motion. These are, 

(1) The law of Orbits : Every planet moves around the sun in an 
elliptical orbit with sun at one of the foci. 

(2) The law of Area : The line joining the sun to the planet sweeps 
out equal areas in equal interval of time. i.e. areal velocity is constant. 
According to this law planet will move slowly when it is farthest from sun 

and more rapidly when it is nearest to sun. It is similar to law of 
conservation of angular momentum. 
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(3) The law of periods : The square of period of revolution )(T  of 

any planet around sun is directly proportional to the cube of the semi-major 

axis of the orbit. 
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212 rra     
2

21 rr
a


   

 

 

 

 

 

where  a = semi-major axis  

1r  Shortest distance of planet from sun (perigee).  

2r  Largest distance of planet from sun (apogee). 

Important data 
 

Planet Semi-major 

axis 

a (1010 meter) 

Period 

T(year) 

T2/a3 

(10–34 year2/meter3) 

Mercury 5.79 0.241 2.99 

Venus 10.8 0.615 3.00 

Earth 15.0 1.00 2.96 

Mars 22.8 1.88 2.98 

Jupiter 77.8 11.9 3.01 

Saturn 143 29.5 2.98 

Uranus 287 84.0 2.98 

Neptune 450 165 2.99 

Pluto 590 248 2.99 

Note :  Kepler's laws are valid for satellites also.  

 

 

 

 

 

 

 

 

 

 

 

Velocity of a Planet in Terms of Eccentricity 

Applying the law of conservation of angular momentum at perigee 

and apogee 
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Applying the conservation of mechanical energy at perigee and 
apogee 
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Thus the speeds of planet at apogee and perigee are  
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Note::  The gravitational force is a central force so torque 

on planet relative to sun is always zero, hence angular momentum of a 
planet or satellite is always constant irrespective of shape of orbit. 

Some Properties of the Planet 
 

 Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto 

Mean distacne from sun, 106 km 57.9 108 150 228 778 1430 2870 4500 5900 

Period of revolution, year 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248 

Orbital speed, km/s 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74 

Equatiorial diameter, km 4880 12100 12800 6790 143000 120000 51800 49500 2300 

Mass (Earth =1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002 

Density (Water =1) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 1.67 2.03 

Surface value of g, m/s2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.5 

Escape velocity, km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.1 

Known satellites 0 0 1 2 16+ring 18+rings 17+rings 8+rings 1 
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Orbital Velocity of Satellite 
 

Satellites are natural or artificial bodies describing orbit around a 
planet under its gravitational attraction. Moon is a natural satellite while 
INSAT-1B is an artificial satellite of earth. Condition for establishment of 
artificial satellite is that the 
centre of orbit of satellite must 
coincide with centre of earth or 
satellite must move around 
great circle of earth. 

Orbital velocity of a 
satellite is the velocity required 
to put the satellite into its orbit 
around the earth. 

For revolution of 
satellite around the earth, the 
gravitational pull provides the 
required centripetal force. 
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[As 2gRGM   and hRr  ] 

(i) Orbital velocity is independent of the mass of the orbiting body 
and is always along the tangent of the orbit i.e., satellites of diferent masses 
have same orbital velocity, if they are in the same orbit. 

(ii) Orbital velocity depends on the mass of central body and radius 
of orbit. 

(iii) For a given planet, greater the radius of orbit, lesser will be the 

orbital velocity of the satellite  rv /1 . 

(iv) Orbital velocity of the satellite when it revolves very close to the 

surface of the planet  
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(v) Close to the surface of planet  
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v   i.e., orbitalescape vv 2  

It means that if the speed of a satellite orbiting close to the earth is 

made 2  times (or increased by 41%) then it will escape from the 

gravitational field. 

(vi) If the gravitational force of attraction of the sun on the planet 

varies as 
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F
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  then the orbital velocity varies as 
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 Time Period of Satellite 

It is the time taken by satellite to go once around the earth. 
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(i) From 
GM

r
T

3

2 , it is clear that time period is independent 

of the mass of orbiting body and depends on the mass of central body and 
radius of the orbit 
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This is in accordance with Kepler’s third law of planetary motion r  

becomes a (semi major axis) if the orbit is elliptic. 

(iii) Time period of nearby satellite, 
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For earth kmR 6400  and 2/8.9 smg   

hrT 4.1minute6.84   

(iv) Time period of nearby satellite in terms of density of planet can 
be given as  
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(v) If the gravitational force of attraction of the sun on the planet 

varies as 
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  then the time period varies as 2
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(vi) If there is a satellite in the equatorial plane rotating in the 

direction of earth’s rotation from west to east, then for an observer, on the 

earth, angular velocity of satellite will be )( ES   . The time interval 

between the two consecutive appearances overhead will be 
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If ES   , T  i.e. satellite will appear stationary relative to 

earth. Such satellites are called geostationary satellites. 
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Fig. 8.26 
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Height of Satellite 

As we know, time period of satellite 
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By knowing the value of time period we can calculate the height of 

satellite from the surface of the earth. 

Geostationary Satellite 

The satellite which appears stationary relative to earth is called 
geostationary or geosynchronous satellite, communication satellite. 

A geostationary satellite always stays over the same place above the 
earth such a satellite is never at rest. Such a satellite appears stationary due 
to its zero relative velocity w.r.t. that place on earth.  

The orbit of a geostationary satellite is known as the parking orbit. 

(i) It should revolve in an orbit concentric and coplanar with the 
equatorial plane. 

(ii) Its sense of rotation should be same as that of earth about its 

own axis i.e., in anti-clockwise direction (from west to east). 

(iii) Its period of revolution around the earth should be same as 

that of earth about its own axis. 

  sec8640024  hrT  

 (iv) Height of geostationary satellite  
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Substituting the value of G  and M  we get 

RkmrhR 742000   

 height of geostationary satellite from the surface of earh 

kmRh 360006   

 (v) Orbital velocity of geo stationary satellite can be calculated by 

r

GM
v   

 Substituting the value of G  and M  we get 

sec/08.3 kmv   

Angular Momentum of Satellite 

Angular momentum of satellite mvrL   

  r
r

GM
mL   [As 

r

GM
v  ] 

    GMrmL 2  

i.e., Angular momentum of satellite depends on both the mass of 

orbiting and central body as well as the radius of orbit. 

(i) In case of satellite motion, force is central so torque = 0 and 

hence angular momentum of satellite is conserved i.e., L constant 

 

 

 

(ii) In case of satellite motion as areal velocity 
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 But as L  constant,  areal velocity (dA/dt) = constant which is 

Kepler’s II law 

i.e., Kepler’s II law or constancy of areal velocity is a consequence of 

conservation of angular momentum. 

Energy of Satellite 

When a satellite revolves around a planet in its orbit, it possesses both 

potential energy (due to its position against gravitational pull of earth) and 

kinetic energy (due to orbital motion). 

(1) Potential energy : 
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(2) Kinetic energy : 
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(3) Total energy :  
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(i) Kinetic energy, potential energy or total energy of a satellite 

depends on the mass of the satellite and the central body and also on the 
radius of the orbit. 

(ii) From the above expressions we can say that 

Kinetic energy (K) = – (Total energy) 

Potential energy (U) = 2 (Total energy) 

Potential energy (K) = – 2 (Kinetic energy) 

(iii) Energy graph for a satellite    

(iv) Energy distribution in elliptical orbit 

 

 

 

 

 

 

dA 
r 

v dt 

Sun 

Fig. 8.27 

K 

U 

E 

O 

+ 

– 

E
n
er

gy
 

r 

(A) 
(B) 

Semi major 

axis 

r 

r
min 

Apogee 
K.E. = min 
P.E. = max 

Perigee 
K.E. = max 

P.E. = min 

Satellite 

Focus a 

r
max 

Fig. 8.28 



400 Gravitation 

 

 

(v) If the orbit of a satellite is elliptic then  

(a) Total energy 



a

GMm
E

2
)(  constant ;  where a is semi-major 

axis . 

(b) Kinetic energy )(K  will be maximum when the satellite is 

closest to the central body (at perigee) and minimum when it is farthest 

from the central body (at apogee) 

(c) Potential energy )(U  will be minimum when kinetic energy = 

maximum i.e., the satellite is closest to the central body (at perigee) and 

maximum when kinetic energy = minimum i.e., the satellite is farthest from 

the central body (at apogee). 

(vi) Binding Energy : Total energy of a satellite in its orbit is negative. 

Negative energy means that the satellite is bound to the central body by an 
attractive force and energy must be supplied to remove it from the orbit to 
infinity. The energy required to remove the satellite from its orbit to infinity is 
called Binding Energy of the system, i.e., 

Binding Energy (B.E.) 
r

GMm
E

2
  

Change in the Orbit of Satellite 

 When the satellite is transferred to a higher orbit )( 12 rr   then 

variation in different quantities can be shown by the following table 

Quantities Variation Relation with r 

Orbital velocity   Decreases 

r
v

1
  

Time period  Increases 2/3rT   

Linear momentum Decreases 

r
P

1
  

Angular momentum Increases 
rL   

Kinetic energy  
  

Decreases 

r
K

1
  

Potential energy  Increases 

r
U

1
  

Total energy Increases 

r
E

1
  

Binding energy  Decreases 

r
BE

1
  

 

Note::  Work done in changing the orbit 
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 Weightlessness 

The weight of a body is the force with which it is attracted towards 

the centre of earth. When a body is stationary with respect to the earth, its 
weight equals the gravity. This weight of the body is known as its static or 
true weight. 

We become conscious of our weight, only when our weight (which is 

gravity) is opposed by some other object. Actually, the secret of measuring 
the weight of a body with a weighing machine lies in the fact that as we 
place the body on the machine, the weighing machine opposes the weight of 
the body. The reaction of the weighing machine to the body gives the 
measure of the weight of the body. 

The state of weightlessness can be observed in the following 
situations. 

(1) When objects fall freely under gravity : For example, a lift falling 
freely, or an airship showing a feat in which it falls freely for a few seconds 
during its flight, are in state of weightlessness. 

(2) When a satellite revolves in its orbit around the earth : 
Weightlessness poses many serious problems to the astronauts. It becomes 

quite difficult for them to control their movements. Everything in the 
satellite has to be kept tied down. Creation of artificial gravity is the answer 
to this problem. 

(3) When bodies are at null points in outer space : On a body 

projected up, the pull of the earth goes on decreasing, but at the same time 
the gravitational pull of the moon on the body goes on increasing. At one 
particular position, the two gravitational pulls may be equal and opposite 
and the net pull on the body becomes zero. This is zero gravity region or 
the null point and the body in question is said to appear weightless. 

Weightlessness in a Satellite 

A satellite, which does not produce its own gravity moves around 

the earth in a circular orbit under the action of gravity. The acceleration of 

satellite is 
2r

GM
 towards the centre of earth. 

If a body of mass m placed on a surface inside a satellite moving 
around the earth. Then force on the body are 

 

 

 

 

 

 

 

 

 

(i) The gravitational pull of earth 
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(ii) The reaction by the surface R  
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Thus the surface does not exert any force on the body and hence its 
apparent weight is zero. 

A body needs no support to stay at rest in the satellite and hence all 
position are equally comfortable. Such a state is called weightlessness. 

(i) One will find it difficult to control his movement, without weight 

he will tend to float freely. To get from one spot to the other he will have 
to push himself away from the walls or some other fixed objects. 

(ii) As everything is in free fall, so objects are at rest relative to each 

other, i.e., if a table is withdrawn from below an object, the object will 
remain where it was without any support. 

(iii) If a glass of water is tilted and glass is pulled out, the liquid in 
the shape of container will float and will not flow because of surface 
tension. 

(iv) If one tries to strike a match, the head will light but the stick 
will not burn. This is because in this situation convection currents will not 
be set up which supply oxygen for combustion 

(v) If one tries to perform simple pendulum experiment, the 

pendulum will not oscillate. It is because there will not be any restoring 

torque and so  )/(2 gLT  .     [As 0g ]  

(vi) Condition of weightlessness can be experienced only when the 
mass of satellite is negligible so that it does not produce its own gravity. 

e.g. Moon is a satellite of earth but due to its own weight it applies 

gravitational force of attraction on the body placed on its surface and hence 
weight of the body will not be equal to zero at the surface of the moon. 

 

 
 
 
 

 
 

 The reference frame attached to the earth is non-inertial, because 

the earth revolves about its own axis as well as about the sun. 

 Gravity holds the atmosphere around to the earth. 

 If the earth were at one fourth the present distance from the sun, 

the duration of the year will be one eighth of the present year. 

 If a packet is just released from an artificial satellite, it does not fall 

to the earth. On the other hand it will continue orbiting along with the 

satellite. 

 Astronauts orbiting around the earth cannot use a pendulum clock. 

however, they can use spring clock 

 To the astronauts in space, the sky appears black due to the 

absence of atmosphere above them. 

 The gravitational force is much smaller than the electrical force 

because the value of G is very very small. 

 The dimensional formula of gravitational field is same as that of 

acceleration due to gravity. 

 A body in gravitational field has maximum binding energy when it 

is at rest. 

 The moon is the natural satellite of the earth, but a man does not 

feel weightlessness on the surface of the moon. This is because, the mass 

of the moon is very large and it exerts a gravitational force on the man. 

On the other hand, the mass of the artificial satellite is very small and it 

exerts negligible or no gravitational force on the astronaut, so astronaut 

feels weightlessness in the artificial satellite but not on the moon. 

 The planets are heavenly bodies revolving around the sun. The sun 

and the nine planets, revolving around it, constitute the solar system. 

 All other planets except mercury and pluto revolve around the sun 

in almost circular orbits. 

 If the radius of planet decreases by x% keeping the mass constant. 

The acceleration due to gravity on its surface increases by 2x%.  

 If the mass of a planet increases by x% keeping radius constant, the 

acceleration due to gravity on its surface increases by x%. 

 If the density of the planet decreases by x%, keeping the radius 

constant, the acceleration due to gravity decreases by x%. 

 If the radius of the planet decreases by x%, keeping the density 

constant, the acceleration due to gravity decreases by x%.  

 For the planets orbiting around the sun, angular speed, linear 

speed, kinetic energy etc. change with time but angular momentum 

remains constant. 

 The ratio of inertial mass to gravitational mass is 1. 

 Inertial mass m becomes infinite if the body moves with velocity of 

light. 

 Intensity of gravitational field inside a shell is zero. 

 If two spheres of same material, mass and radius are put in contact, 

the gravitational attraction between them is directly proportional to the 

fourth power of their radius. 

 (a) There is no atmosphere on the moon because escape velocity on 

the moon is less than the rms velocity of the gas molecules. 

(b) Two satellites are orbiting in circular orbits of radii r
1

 and r
2

. Their 

orbital speeds are in the ratio : 
2/1

1221 )/(/ rrvv  . It is independent to 

their masses 

 Planets describe equal area around the sun in equal intervals of 

time. 

 If the gravitational attraction of the sun on the planets varies as nth 

power of distance (of the planet from the sun), then year of the planet 

will be proportional to R(n+1)/2. 

 An object will experience weightlessness at equator, if the angular 

speed of the earth about its axis becomes more than (1/800) rad s–1. 

 Orbital velocity very near the surface of the earth is about 7.92 

kms–1. 

 Greater the height of the satellite, smaller is the orbital velocity. 

 Orbital velocity independent of the mass of the satellite. 

 Orbital velocity is depends on the mass of the planet as well as 

radius of the orbit. 

 If the altitude of the satellite is n times the radius of the earth, then 

the orbital velocity will be )1/1( n  times the orbital velocity near the 

surface of the earth. 

 If the radius of the orbit of a sattelite is n times the radius of the 

earth, then its orbital velocity will be )/1( n  the orbital velocity near 

the surface of the earth. 

 The centripetal acceleration of the satellite is equal to the 
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acceleration due to gravity. 

 The gravitational potential energy of a satellite of mass m is  

,/ rGMmUp  where r is the radius of the orbit of satellite. 

 Kinetic energy of the satellite 
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2
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 Total energy of the satellite 
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 When velocity of the satellite increases, its kinetic energy increases 

and hence total energy becomes less negative. That is the satellite begins 

to revolve in orbit of greater radius. 

 If the total energy of the satellite becomes +ve, the satellite escapes 

from the gravitational pull of the earth. 

 When the satellite is taken to greater height the potential energy 

increases (becomes less negative) and kinetic energy decreases. 

 For the orbiting satellite, the kinetic energy is less than potential 

energy. When KE = PE, the satellite escapes away from the gravitation 

pull of the earth. 

 No energy is dissipated in keeping the satellite in orbit around a 

planet 

 Time period of the satellite very near the surface of the earth is 

about 84.6 minutes or 1.4 hr. 

 Geo-stationary satellite is a satellite which appear stationary to the 

observers on the earth. It is also called geosynchronous satellite. 

 The orbit of a geostationery satellite is known as the parking orbit. 

 To throw an ant or an elephant out of the gravitational field, the 

required velocity of projection is same ! 

 Escape velocity depends on the mass and size of the planet. That is 

why escape velocity on the planet Jupiter is more than on the earth and 

escape velocity on the Moon is less than that on the earth.  

 If a body is orbiting around the earth, then it will escape away, 

when its velocity is increased by 41.8%. 

 If the radius of earth is doubled keeping the density unchanged the 

escape velocity will be doubled. 

 Escape velocity  2 orbital velocity. 

 If the body is at a height h above the surface of the earth, then 

escape velocity is given by  

)(2 hRgves   

 It is the least velocity required by a body to escape away from the 

gravitational pull of the earth. 

 Escape velocity from the surface of the earth 

120.112  kmsgR  

 Body does not return to the earth when fired with escape velocity, 

irrespective of the angle of projection 

 The escape velocity from the moon is 2.4 kms–1. 

 When a projectile is fired with velocity less than the escape velocity, 

the sum of its gravitational potential and kinetic energy is negative. 

 If ratio of the radii of two planets is r and the ratio of the 

acceleration due to gravity on the their surface is a, then ratio of escape 

velocities is ar . 

 If the radius of the earth is doubled keeping the mass unchanged, 

the escape velocity will becomes )2/1(  times the present value 

 If a body falls freely from infinite height, then it reaches the surface 

of the earth with velocity 11.2 km/s 

 When a body falls from a height h to the surface of the earth, its 

velocity on reaching the surface of the earth is given by  
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When h << R, we find : ghv 2  

 The tail of the comets points away from the sun due to the 

radiation pressure the sun. 
 


