EXPONENTS

If 'm' is a positive integer, then a \times a \times a..... up to 'm' terms is written as a^m , where 'a' is the base and 'm' is the power.

LAWS OF INDICES

- 1ST LAW (Product Law) : $a^m \times a^n = a^{m+n}$
- 2nd LAW (Quotient Law) : $\frac{a^m}{a^n}=a^{m-n}$ where m>n ; $\frac{a^m}{a^n}=\frac{1}{a^{n-m}}$ where n>m
- 3rd LAW (Power Law): $(a^m)^n = a^{m \times n}$

MORE ABOUT EXPONENTS

- $(a \times b)^m = a^m \times b^m$
- $\bullet \quad (\frac{a}{b})^m = \frac{a^m}{b^m}$
- If a \neq 0 and 'n' is a positive integer, then $\sqrt[n]{a} = a^{1/n}$
- $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ where $a \neq 0$ and $n \in N$
- For any non zero number a, $a^n = \frac{1}{a^{-n}}$ and $a^{-n} = \frac{1}{a^n}$
- A non zero number raised to the power zero is always equal to unity (i.e. 1)

KNOW THIS

- $a^0 = 1$
- $a^1 = a$
- $\bullet \quad a^1 \ a^{-1} = 1$
- $0^m = 0$
- $(-a)^m = a^m$; if m is even number