

	Contents		
	Permutations		
5.1	The factorial		
5.2	Exponent of prime <i>p</i> in <i>n</i> !		
5.3	Fundamental principles of counting		
5.4	Definition of permutation		
5.5	Number of permutations without repetition		
5.6	Number of permutations with repetition		
5.7	Conditional permutations		
5.8	Circular permutations		
Combinations			
5.9	Definition		
5.10	Number of combinations without repetition		
5.11	Number of combinations with repetition and all possible selections		
5.12	Conditional combinations		
5.13	Division into groups		
5.14	Derangement		
5.15	Some important results for geometrical problems		
5.16	Multinomial theorem		
5.17	Number of divisors		
	Assignment (Basic and Advance Level)		
	Answer Sheet of Assignment		

The concepts of permutations and combinations can be traced back to the advent of Jainism in India and perhaps even earlier. Among the Jains, Mahavira, (around 850 A.D.) is perhaps the world's first mathematician credited with providing the general formulae for permutations and combinations.

Bhaskaracharya (born 1114 A.D.) treated the subject matter of permutations and combinations under the name Anka Pasha in his famous work Lilavati. In addition to the general formulae for ${}^{n}C_{r}$ and ${}^{n}P_{r}$ already provided by Mahavira,

Outside India, the subject matter of permutations and combinations had its humble beginnings in China in the famous book I-King (Book of changes). The first book which gives a comkplete treatment of the subject matter of permutations and combinations is Ars conjectandi written by a Swiss, Jacob Bernouli (1654-1705 A.D.) posthumously published in 1713 A.D. This book contains essentially the theory of permutations and combinations as is known today.

Permutations

5.1 The Factorial

Factorial notation: Let *n* be a positive integer. Then, the continued product of first *n* natural numbers is called factorial n, to be denoted by n ! or n. Also, we define 0 ! = 1.

when *n* is negative or a fraction, *n* ! is not defined.

Thus, $n != n (n - 1) (n - 2) \dots 3.2.1$. **Deduction:** $n != n(n - 1) (n - 2) (n - 3) \dots 3.2.1$ $= n[(n - 1)(n - 2)(n - 3) \dots 3.2.1] = n[(n - 1)!]$ Thus, $5!= 5 \times (4!), 3!= 3 \times (2!)$ and $2!= 2 \times (1!)$ Also, $1!= 1 \times (0!) \Rightarrow 0!= 1$.

5.2 Exponent of Prime *p* in *n* !

Let *p* be a prime number and *n* be a positive integer. Then the last integer amongst 1, 2, 3,(*n* – 1), *n* which is divisible by *p* is $\left[\frac{n}{p}\right]p$, where $\left[\frac{n}{p}\right]$ denote the greatest integer less than or equal to $\frac{n}{p}$

For example: $\left[\frac{10}{3}\right] = 3$, $\left[\frac{12}{5}\right] = 2$, $\left[\frac{15}{3}\right] = 5$ etc.

Let $E_p(n)$ denotes the exponent of the prime p in the positive integer n. Then,

$$E_{p}(n!) = E_{p}(1.2.3...(n-1)n) = E_{p}\left(p.2p.3p...\left[\frac{n}{p}\right]p\right) = \left[\frac{n}{p}\right] + E_{p}\left(1.2.3..\left[\frac{n}{p}\right]\right)$$

[\because Remaining integers between 1 and *n* are not divisible by *p*]

Now the last integer amongst 1, 2, 3,.... $\left[\frac{n}{p}\right]$ which is divisible by p is $\left[\frac{n/p}{p}\right] = \left[\frac{n}{p^2}\right] = \left[\frac{n}{p}\right] + E_p\left(p, 2p, 3p..., \left[\frac{n}{p^2}\right]p\right)$ because the remaining natural numbers from 1 to $\left[\frac{n}{p}\right]$ are not divisible by $p = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + E_p\left(1.2.3..., \left[\frac{n}{p^2}\right]\right)$

Similarly we get
$$E_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots \left[\frac{n}{p^s}\right]$$

where *S* is the largest natural number. Such that $p^{S} \le n < p^{S+1}$.

5.3 Fundamental Principles of Counting

(1) Addition principle : Suppose that A and B are two disjoint events (mutually exclusive); that is, they never occur together. Further suppose that A occurs in m ways and B in n ways. Then A or B can occur in m + n ways. This rule can also be applied to more than two mutually exclusive events.

 Example: 1
 A college offers 7 courses in the morning and 5 in the evening. The number of ways a student can select exactly one course, either in the morning or in the evening

 (a) 27
 (b) 15
 (c) 12
 (d) 35

 Solution: (c)
 The student has seven choices from the morning courses out of which he can select one course in 7 ways.
 For the evening course, he has 5 choices out of which he can select one course in 5 ways.

Hence he has total number of 7 + 5 = 12 choices.

(2) **Multiplication principle** : Suppose that an event X can be decomposed into two stages A and B. Let stage A occur in m ways and suppose that these stages are unrelated, in the sense that stage B occurs in n ways regardless of the outcome of stage A. Then event X occur in mn ways. This rule is applicable even if event X can be decomposed in more than two stages.

Note : The above principle can be extended for any finite number of operations and may be stated as under :

If one operation can be performed independently in *m* different ways and if second operation can be performed independently in *n* different ways and a third operation can be performed independently in *p* different ways and so on, then the total number of ways in which all the operations can be performed in the stated order is $(m \times n \times p \times)$

- **Example: 2** In a monthly test, the teacher decides that there will be three questions, one from each of exercise 7, 8 and 9 of the text book. If there are 12 questions in exercise 7, 18 in exercise 8 and 9 in exercise 9, in how many ways can three questions be selected
- (a) 1944 (b) 1499 (c) 4991 (d) None of these
 Solution: (a) There are 12 questions in exercise 7. So, one question from exercise 7 can be selected in 12 ways. Exercise 8 contains 18 questions. So, second question can be selected in 18 ways. There are 9 questions in exercise 9. So, third question can be selected in 9 ways. Hence, three questions can be selected in 12 × 18 × 9 = 1944 ways.

5.4 Definition of Permutation

The ways of arranging or selecting a smaller or an equal number of persons or objects at a time from a given group of persons or objects with due regard being paid to the order of arrangement or selection are called the (different) *permutations*.

For example : Three different things a, b and c are given, then different arrangements which can be made by taking two things from three given things are ab, ac, bc, ba, ca, cb.

Therefore the number of permutations will be 6.

5.5 Number of Permutations without Repetition

(1) Arranging n objects, taken r at a time equivalent to filling r places from n things

<u>r</u> - (r*r*-places : Number of choices : The number of ways of arranging = The number of ways of filling *r* places. $= n(n-1)(n-2)\dots(n-r+1) = \frac{n(n-1)(n-2)\dots(n-r+1)((n-r)!)}{(n-r)!} = \frac{n!}{(n-r)!} = {n \choose n} P_r$ (2) The number of arrangements of *n* different objects taken all at a time = ${}^{n}P_{n} = n!$ ${}^{n}P_{0} = \frac{n!}{n!} = 1; {}^{n}P_{r} = n. {}^{n-1}P_{r-1}$ Note : 🗆 $\Box 0!=1; \frac{1}{(-r)!}=0 \text{ or } (-r)!=\infty \ (r \in N)$ Example: 3 If ${}^{n}P_{4}: {}^{n}P_{5} = 1:2$, then n =[MP PET 1987; Rajasthan PET 1996] (a) 4 (c) 6 (d) 7 $\frac{{}^{n}P_{4}}{{}^{n}P_{5}} = \frac{1}{2} \implies \frac{n!}{(n-4)!} \times \frac{(n-5)!}{n!} = \frac{1}{2} \implies n-4 = 2 \implies n=6.$ **Solution:** (c) Example: 4 In a train 5 seats are vacant then how many ways can three passengers sit [Rajasthan PET 1985; MP PET 2003] (a) 20 (c) 60 (d) 10 **Solution:** (c) Number of ways are = ${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{120}{2} = 60$. How many words comprising of any three letters of the word "UNIVERSAL" can be formed Example: 5 (a) 504 (b) 405 (d) 450 (c) 540 Required numbers of words = ${}^{9}P_3 = \frac{9!}{(9-3)!} = \frac{9!}{6!} = 504$. **Solution:** (a) Example: 6 How many numbers of five digits can be formed from the numbers 2, 0, 4, 3, 8 when repetition of digit is not allowed [MP PET 2000] (c) 144 (a) 96 (b) 120 (d) 14 Solution: (a) Given numbers are 2, 0, 4, 3, 8 Numbers can be formed = {Total – Those beginning with O} $= \{5! - 4!\} = 120 - 24 = 96.$ How many numbers can be made with the help of the digits 0, 1, 2, 3, 4, 5 which are greater than Example: 7 3000 (repetition is not allowed) (d) 1500 (a) 180 (b) 360 (c) 1380 **Solution:** (c) All the 5 digit numbers and 6 digit numbers are greater than 3000. Therefore number of 5 digit numbers $= {}^{6}P_{5} - {}^{5}P_{5} = 600$. {Since the case that 0 will be at ten thousand place should be omit}. Similarly number of 6 digit numbers 6 ! - 5 ! = 600.

Now the numbers of 4 digit numbers which are greater than 3000, having 3, 4 or 5 at first place, this can be done in 3 ways and remaining 3 digit may be filled from remaining 5 digits *i.e.*, required number of 4 digit numbers are ${}^{5}P_{3} \times 3 = 180$.

Hence total required number of numbers = 600 + 600 + 180 = 1380.

5.6 Number of Permutations with Repetition

(1) The number of permutations (arrangements) of n different objects, taken r at a time, when each object may occur once, twice, thrice,.....upto r times in any arrangement = The number of ways of filling r places where each place can be filled by any one of n objects.

r – plac	es :	1 2 3 4	r		
Number	r of choices :	n n n n	n		
The nur	nber of permuta	tions = The number	of ways of filling	r places = $(n)^r$	
(2) The	number of arr	angements that can	be formed using	n objects out of which	p are
identical (ar	nd of one kind) o	l are identical (and	of another kind),	r are identical (and of an	other
kind) and th	e rest are distin	t is $\frac{n!}{p!q!r!}$.			
Example: 8	The number of arra	angement of the letters o	f the word "CALCUTT	A" [MP PE]	[1984]
	(a) 2520	(b) 5040	(c) 10080	(d) 40320	
Solution: (b)	Required number o	f ways $=\frac{8!}{2!2!2!}=5040$.	[since here 2C's, 2T's	and 2A's]	
Example: 9	The number of 5 di	git telephone numbers h	aving at least one of t	heir digits repeated is	
	(a) 90,000	(b) 100,000	(c) 30,240	(d) 69,760	
Solution: (d)	Using the digits O,	1, 2,,9 the number o	f five digit telephone	numbers which can be formed i	s 10 ⁵ .
	(since repetition is	allowed)			
	The number of five	digit telephone number	s which have none of t	the digits repeated = ${}^{10}P_5 = 3024$	0
	∴ The required nu	mber of telephone numb	$ers = 10^5 - 30240 = 6976$	50.	
Example: 10 1986]	How many words c	an be made from the let	ters of the word 'COM	MITTEE' [MP PET 2002;	RPET
	(a) $\frac{9!}{(2!)^2}$	(b) $\frac{9!}{(2!)^3}$	(c) $\frac{9!}{2!}$	(d) 9 !	
Solution: (b)	Number of words =	$\frac{9!}{2!2!2!} = \frac{9!}{(2!)^3}$ [Since here	e total number of lette	rs is 9 and 2 <i>M</i> 's, 2 <i>T's</i> and 2 <i>E's</i>]	I

5.7 Conditional Permutations

(1) Number of permutations of *n* dissimilar things taken *r* at a time when *p* particular things always occur $= {}^{n-p}C_{r-p} r!$

(2) Number of permutations of *n* dissimilar things taken *r* at a time when *p* particular things never occur $= {}^{n-p}C_r r!$

(3) The total number of permutations of *n* different things taken not more than *r* at a time, when each thing may be repeated any number of times, is $\frac{n(n^r - 1)}{n - 1}$.

(4) Number of permutations of *n* different things, taken all at a time, when *m* specified things always come together is $m! \times (n - m + 1)!$

(5) Number of permutations of *n* different things, taken all at a time, when *m* specified things never come together is $n!-m! \times (n-m+1)!$

(6) Let there be *n* objects, of which *m* objects are alike of one kind, and the remaining (n-m) objects are alike of another kind. Then, the total number of mutually distinguishable permutations that can be formed from these objects is $\frac{n!}{(m!) \times (n-m)!}$.

Note : \Box The above theorem can be extended further *i.e.*, if there are *n* objects, of which p_1 are alike of one kind; p_2 are alike of another kind; p_3 are alike of 3^{rd} kind;.....: p_r are alike of *r*th kind such that $p_1 + p_2 + \dots + p_r = n$; then the number of permutations of these *n* objects is

 $\frac{n!}{(p_1!)\times(p_2!)\times\ldots\times(p_r!)}.$

Important Tips

- *Gap method* : Suppose 5 males A, B, C, D, E are arranged in a row as $\times A \times B \times C \times D \times E \times$. There will be six gaps between these five. Four in between and two at either end. Now if three females P, Q,R are to be arranged so that no two are together we shall use gap method i.e., arrange them in between these 6 gaps. Hence the answer will be ${}^{6}P_{3}$.
- Together : Suppose we have to arrange 5 persons in a row which can be done in 5 ! = 120 ways. But if two particular persons are to be together always, then we tie these two particular persons with a string. Thus we have 5 2 + 1 (1 corresponding to these two together) = 3 +1 = 4 units, which can be arranged in 4! ways. Now we loosen the string and these two particular can be arranged in 2 ! ways. Thus total arrangements = 24 × 2 = 48.

Never together = Total - Together = 120 - 48 = 72.

Example: 11	All the letters of arrangement in w	of the word hich two vov	'EAMCET' a vels are not	are arranged i adjacent to eac	in all possible ch other is	ways. The	number of such
	[EAMCET 1987; DC	E 2000]		-			
	(a) 360	(b) 1	14	(c) 72		(d) 54	
Solution: (c)	First we arrange	3 consonants	in 3 ! ways	and then at fo	ur places (two p	laces betwe	en them and two
places on two sides) 3 vowels can be placed in ${}^{4}P_{3} \times \frac{1}{2!}$ ways.							
	Hence the require	ed ways = 3 !	$\times {}^4P_3 \times \frac{1}{2!} = $	72.			
Example: 12	The number of w	ords which o	can be made	e out of the let	ters of the word	d 'MOBILE'	when consonants
-	always occupy od	d places is					
	(a) 20	- (b) 3	36	(c) 30		(d) 720	

Solution: (b)	The word 'MOBILE' has three even places and three odd places. It has 3 consonants and 3 vowels. In three odd places we have to fix up 3 consonants which can be done in ${}^{3}P_{2}$ ways. Now remaining three			
	places we have to fix up	remaining three places	which can be done in ${}^{3}P_{2}$	ways.
	The total number of way	$s = {}^{3}P_{2} \times {}^{3}P_{2} = 36$	5	
Example: 13	The number of 4 digit n number contain digit 1 is	umber that can be form	ned from the digits 0, 1,	2, 3, 4, 5, 6, 7 so that each
	(a) 1225	(b) 1252	(c) 1522	(d) 480
Solution: (d)	After fixing 1 at one pos	ition out of 4 places, 3	places can be filled by $^{\rm 7}$	P_3 ways. But some numbers
	whose fourth digit is zer	o, so such type of ways	$= {}^{6}P_{2}$	
	\therefore Total ways = $^7P_3 - ^6P_2$	= 480 .		
Example: 14	<i>m</i> men and <i>n</i> women are number of ways in which	e to be seated in a row, In they can be seated is	so that no two women si	t together. If $m > n$, then the
	(a) $\frac{m!(m+1)!}{(m-n+1)!}$	(b) $\frac{m!(m-1)!}{(m-n+1)!}$	(c) $\frac{(m-1)!(m+1)!}{(m-n+1)!}$	(d) None of these
Solution: (a)	First arrange <i>m</i> men, in a	a row in <i>m</i> ! ways. Since	n < m and no two women	n can sit together, in any one
	of the m ! arrangement ,	there are $(m + 1)$ places	s in which <i>n</i> women can b	e arranged in ${}^{m+1}P_n$ ways.
	\therefore By the fundamental th	eorem, the required nu	mber of arrangement = m	! $^{m+1}P_n = \frac{m!(m+1)!}{(m-n+1)!}$.
Example: 15	If the letters of the word	l 'KRISNA' are arranged	in all possible ways and	these words are written out
	as in a dictionary, then t	he rank of the word 'KR	ISNA' is	
	(a) 324	(b) 341	(c) 359	(d) None of these
Solution: (a)	Words starting from A and M	re 5! = 120;	Words starting from <i>I</i> ar	e 5! = 120
	Words starting from KN	are $4! = 24;$	Words starting from KR	41e 4 = 24
	Words starting from KRI	$a_1 \in 4 : -24,$	Words starting from KR	$\frac{1}{2} = \frac{1}{2}$
	Words starting from KRI	S are 1 ! = 1	Words starting from KR	SNA are 1! = 1
	Hence rank of the word I	KRISNA is 324	0	
Example: 16	We are to form differen	it words with the lette	rs of the word 'INTEGER	. Let m_1 be the number of
	words in which I and N	are never together, and	m_2 be the number of w	ords which begin with I and
	end with R. Then m_1/m_2	is equal to	2	-
	1 2	•		[AMU 2000]
	(a) 30	(b) 60	(c) 90	(d) 180
Solution: (a)	We have 5 letters other t	than 'I' and 'N' of which	n two are identical (<i>E</i> 's).	We can arrange these letters
	in a line in $\frac{5!}{2!}$ ways. In	any such arrangement	'I' and 'N' can be placed	d in 6 available gaps in 6P_2
	ways, so required numbe	$\operatorname{er} = \frac{5!}{2!} {}^{6} P_2 = m_1.$		
	Now, if word start with $\frac{5!}{2!} = m_2$.	I and end with R then th	ne remaining letters are 5	. So, total number of ways =
	$\therefore \ \frac{m_1}{m_2} = \frac{5!}{2!} \cdot \frac{6!}{4!} \cdot \frac{2!}{5!} = 30 \ .$			
Example: 17	An <i>n</i> digit number is a p are to be formed using possible is	oositive number with ex only the three digits 2	actly <i>n</i> digits. Nine hund , 5 and 7. The smallest [IIT 1998]	red distinct n -digit numbers value of n for which this is
	- (a) 6	(b) 7	(c) 8	(h)
	(4) 0			

Solution: (b)	Since at any place, any	of the digits 2, 5 and	7 can be used total num	ber of such positive <i>n</i> -digit	
	numbers are 3^n . Since w	ve have to form 900 dist	tinct numbers, hence $3^n \ge 3^n$	$900 \Rightarrow n = 7$.	
Example: 18	The number of numbers that can be formed with the help of the digits 1, 2, 3, 4, 3, 2, 1 so that odd digits always occupy odd places, is				
	(a) 24	(b) 18	(c) 12	(d) 30	
Solution: (b)	The 4 odd digits 1, 3, 3, 2	I can be arranged in the	4 odd places, in $\frac{4!}{2!} = 6$ v	ways and 3 even digits 2, 4, 2	

can be arranged in the three even places $\frac{3!}{2!} = 3$ ways. Hence the required number of ways = 6 × 3 = 18.

5.8 Circular Permutations

So far we have been considering the arrangements of objects in a line. Such permutations are known as linear permutations.

Instead of arranging the objects in a line, if we arrange them in the form of a circle, we call them, circular permutations.

In circular permutations, what really matters is the position of an object relative to the others.

Thus, in circular permutations, we fix the position of the one of the objects and then arrange the other objects in all possible ways.

There are two types of circular permutations :

(i) The circular permutations in which clockwise and the anticlockwise arrangements give rise to different permutations, e.q. Seating arrangements of persons round a table.

(ii) The circular permutations in which clockwise and the anticlockwise arrangements give rise to same permutations, e.g. arranging some beads to form a necklace.

Look at the circular permutations, given below :

ce. They have been arranged in Suppose A, B, C, D ar clockwise and anticlockwise directions in the first and second arrangements respectively.

Now, if the necklace in the first arrangement be given a turn, from clockwise to anticlockwise, we obtain the second arrangement. Thus, there is no difference between the above two arrangements.

(1) Difference between clockwise and anticlockwise arrangement : If anticlockwise and clockwise order of arrangement are not distinct *e.g.*, arrangement of beads in a necklace, arrangement of flowers in garland etc. then the number of circular permutations of *n* distinct items is $\frac{(n-1)!}{2}$

(2) Theorem on circular permutations

Theorem 1 : The number of circular permutations of n different objects is (n - 1)!

Theorem 2 : The number of ways in which *n* persons can be seated round a table is (n-1)!

Theorem 3 : The number of ways in which *n* different beads can be arranged to form a necklace, is $\frac{1}{2}(n-1)!$.

Wole : \Box When the positions are numbered, circular arrangement is treated as a linear arrangement.

 $\hfill\square$ In a linear arrangement, it does not make difference whether the positions are numbered or not.

Example: 19	In how many ways a garland can be made from exactly 10 flowers [MP PET 1984]				
	(a) 10 !	(b) 9 !	(c) 2 (9!)	(d) $\frac{9!}{2}$	
Solution: (d)	A garland can be made f	from 10 flowers in $\frac{1}{2}(9)$) ways [$:: n$ flower's gar	land can be made in $\frac{1}{2}(n-1)!$	
	ways]				
Example: 20	In how many ways can 5	boys and 5 girls sit in a	a circle so that no boys sit	together	
	(a) 5! × 5!	(b) 4! × 5 !	(c) $\frac{5! \times 5!}{2}$	(d) None of these	
Solution: (b)	Since total number of wa	ays in which boys can o	ccupy any place is $(5-1)!=$	= 4! and the 5 girls can be sit	
	accordingly in 5! ways. H	Ience required number	of ways are $4 ! \times 5 !$.		
Example: 21	The number of ways in v	which 5 beads of differen	nt colours form a necklace	e is	
	(a) 12	(b) 24	(c) 120	(d) 60	
Solution: (a)	The number of ways in necklace are	which 5 beads of diff	erent colours can be arr	anged in a circle to form a	
	= (5-1)! = 4!.				
	But the clockwise and a turned over one gives r $\frac{1}{2}$ (4) = 12	nticlockwise arrangem ise to another). Hence	ent are not different (be the total number of way	ecause when the necklace is ys of arranging the beads =	
	$\frac{-}{2}(4!) = 12$.				
Example: 22	The number of ways in round table so that the t	which 5 male and 2 fer wo female are not seate	nale members of a comm d together is	ittee can be seated around a	
	(a) 480	(b) 600	(c) 720	(d) 840	
Solution: (a)	Fix up a male and the p together and as such the male and number of arr	remaining 4 male can e 2 female are to be an rangement will be ${}^{5}P_{2}$.	be seated in 4! ways. No rranged in five empty sea Hence by fundamental t	ow no two female are to sit ats between two consecutive heorem the total number of	
	$13 - 7: \land 1_2 - 24 \land 2$	0 – 400 Ways.			

Combinations

5.9 Definition

Each of the different groups or selections which can be formed by taking some or all of a number of objects, irrespective of their arrangements, is called a combination.

Suppose we want to select two out of three persons A, B and C.

We may choose *AB* or *BC* or *AC*.

Clearly, *AB* and *BA* represent the same selection or group but they give rise to different arrangements.

Clearly, in a group or selection, the order in which the objects are arranged is immaterial.

Notation: The number of all combinations of *n* things, taken *r* at a time is denoted by $C(n,r) \exp \left[\frac{n}{r} C \right] \exp \left[\frac{n}{r} C \right]$

C(n,r) or ${}^{n}C_{r}$ or $\binom{n}{r}$.

(1) **Difference between a permutation and combination :** (i) In a combination only selection is made whereas in a permutation not only a selection is made but also an arrangement in a definite order is considered.

(ii) In a combination, the ordering of the selected objects is immaterial whereas in a permutation, the ordering is essential. For example *A*, *B* and *B*, *A* are same as combination but different as permutations.

(iii) Practically to find the permutation of n different items, taken r at a time, we first select r items from n items and then arrange them. So usually the number of permutations exceeds the number of combinations.

(iv) Each combination corresponds to many permutations. For example, the six permutations *ABC*, *ACB*, *BCA*, *BAC*, *CBA* and *CAB* correspond to the same combination *ABC*.

Mole : Generally we use the word 'arrangements' for permutations and word "selection" for combinations.

5.10 Number of Combinations without Repetition

The number of combinations (selections or groups) that can be formed from *n* different objects taken $r(0 \le r \le n)$ at a time is ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

Let the total number of selections (or groups) = x. Each group contains r objects, which can be arranged in r ! ways. Hence the number of arrangements of r objects = $x \times (r!)$. But the number of arrangements = ${}^{n}P_{r}$.

$$\Rightarrow x \times (r!) = {^n}P_r \Rightarrow x = \frac{{^n}P_r}{r!} \Rightarrow x = \frac{n!}{r!(n-r)!} = {^n}C_r.$$

Important Tips

 $C_{r} = {}^{n}C_{r} \text{ is a natural number.}$ $C_{r} = {}^{n}C_{n-r}$ $C_{r} = {}^{n}C_{n-r}$ $C_{r} = {}^{n}C_{y} \Leftrightarrow x = y \text{ or } x + y = n$ $T \text{ If n is even then the greatest value of } {}^{n}C_{r} \text{ is } {}^{n}C_{n/2}.$ $\frac{{}^{n}C_{n+1}}{2} \text{ or } \frac{{}^{n}C_{n-1}}{2}.$ $C_{r} = {}^{n}C_{r} = {}^{n}C_{r-1}.$ $C_{r} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$

$${}^{\mathscr{F}} {}^{n}C_{0} = {}^{n}C_{n} = 1, {}^{n}C_{1} = n$$

$${}^{\mathscr{F}} {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

$${}^{\mathscr{F}} {}^{n}. {}^{n-1}C_{r-1} = (n-r+1)^{n}C_{r-1}$$

 \mathscr{F} If n is odd then the greatest value of ${}^{n}C_{r}$ is

$$\overset{\circ}{=} \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

$$\overset{\circ}{=} {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$$

		Per	rmutations and Comt	oinations 215
$\overset{\text{\tiny (PP)}}{=} \qquad \frac{2n+1}{C_0} + \frac{2}{C_0} + \frac{2}{C_$	$^{n+1}C_1 + ^{2n+1}C_2 + \dots + ^{2n+1}C_n = 2^{2n}$	${}^{\circ} {}^{n}C_{n} + {}^{n+1}C_{n} + {}^{n+2}C_{n}$	$C_n + {}^{n+3}C_n + \dots + {}^{2n-1}C_n = {}^{2n}C_n$	n+1
Note : (☐ Number of combinations	of <i>n</i> dissimilar t	hings taken all	at a time
${}^{n}C_{n} = \frac{1}{n!(n!)}$	$\frac{n!}{(n-n)!} = \frac{1}{0!} = 1 , (\because 0! = 1).$			
Example: 23	If ${}^{15}C_{3r} = {}^{15}C_{r+3}$, then the value of <i>r</i> is	[IIT 1967; Raja:	sthan PET 1991; MP PET	1998; Karnataka
	(a) 3 (b) 4	(c) 5	(d) 8	
Solution: (a)	$^{15}C_{3r} = ^{15}C_{r+3} \implies ^{15}C_{15-3r} = ^{15}C_{r+3} \implies 15 - 15$	$3r=r+3 \implies r=3$.		
Example: 24	$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} =$			[MP PET 1984]
	(a) $\frac{n-r}{r}$ (b) $\frac{n+r-1}{r}$	(c) $\frac{n-r+1}{r}$	(d) $\frac{n-r-1}{r}$	
Solution: (c)	$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n!}{\frac{r!(n-r)!}{\frac{n!}{(r-1)!(n-r+1)!}}} \implies \frac{n!}{r!(n-r)!} \times \frac{(r-1)!}{\frac{n!}{(r-1)!(n-r+1)!}}$	$\frac{(n-r+1)!(n-r+1)!}{n!} = (n-r+1)(r-1)!(r-1)$	$\frac{(n-r)!(n-r)!}{(n-r)!} = \frac{(n-r+1)}{r}.$	
Example: 25	If $^{n+1}C_3 = 2^n C_2$, then $n =$			[MP PET 2000]
	(a) 3 (b) 4	(c) 5	(d) 6	
Solution: (c)	$^{n+1}C_3 = 2.^n C_2$			
	$\Rightarrow \frac{(n+1)!}{3!(n-2)!} = 2 \cdot \frac{n!}{2!(n-2)!} \Rightarrow \frac{n+1}{3\cdot 2!} = \frac{2}{2!} \Rightarrow$	$n+1=6 \Rightarrow n=5$.		
Example: 26	If ${}^{n}C_{r-1} = 36$, ${}^{n}C_{r} = 84$ and ${}^{n}C_{r+1} = 126$ t	hen the value of <i>r</i> is	[IIT 19]	79; Pb. CET 1993;
	DCE 1999; MP PET 2001]			
	(a) 1 (b) 2	(c) 3	(d) None of	these
Solution: (c)	Here $\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{36}{84}$ and $\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{84}{126}$			
	3n-10r = -3 and $4n-10r = 6$; on solving	ng we get $n = 9$ and $r = 3$.		
Example: 27	In a conference of 8 persons, if eac number of shake hands shall be	ch person shake hand wit	th the other one only	, then the total
	(a) 64 (b) 56	(c) 49	(d) 28	
Solution: (d)	Total number of shake hands when	each person shake hands	with the other once of	only = ${}^{8}C_{2} = 28$
ways.				
Example: 28	How many words of 4 consonants and (a) 75000(b) 756000	3 vowels can be formed fi (c) 75600	rom 6 consonants and 9 (d) None of	5 vowels. [Rajastha these
Solution: (b)	Required number of words = ${}^{6}C_{4} \times {}^{5}C_{4}$	₃ ×7! = 756000		
	[Selection can be made in ${}^6C_4 \times {}^5C_3$ v	while the 7 letters can be a	rranged in 7!]	
Example: 29	To fill 12 vacancies there are 25 ca vacancies are reserved for scheduled of ways in which the selection can be	ndidates of which five a caste candidates while the made	re from scheduled ca e rest are open to all, t	ste. If 3 of the hen the number
	-		[Raj	asthan PET 1981]

(a) ${}^{5}C_{3} \times {}^{22}C_{9}$ (b) ${}^{22}C_{9} - {}^{5}C_{3}$ (c) ${}^{22}C_{3} + {}^{5}C_{3}$ (d) None of these

Solution: (a) The selection can be made in ${}^{5}C_{3} \times {}^{22}C_{9}$ [since 3 vacancies filled from 5 candidates in ${}^{5}C_{3}$ ways and now remaining candidates are 22 and remaining seats are 9, then remaining vacancies filled by ${}^{22}C_{9}$ ways. Hence total number of ways ${}^{5}C_{3} \times {}^{22}C_{9}$.

5.11 Number of Combinations with Repetition and All Possible Selections

(1) The number of combinations of n distinct objects taken r at a time when any object may be repeated any number of times.

= coefficient of x^r in $(1 + x + x^2 + \dots + x^r)^n$ = coefficient of x^r in $(1 - x)^{-n} = x^{n+r-1}C_r$

(2) The total number of ways in which it is possible to form groups by taking some or all of n things at a time is $2^{n} - 1$.

(3) The total number of ways in which it is possible to make groups by taking some or all out of $n = (n_1 + n_2 + ...)$ things, when n_1 are alike of one kind, n_2 are alike of second kind, and so on is $\{(n_1 + 1)(n_2 + 1)....\} - 1$.

(4) The number of selections of *r* objects out of *n* identical objects is 1.

(5) Total number of selections of zero or more objects from n identical objects is n + 1.

(6) The number of selections taking at least one out of $a_1 + a_2 + a_3 + \dots + a_n + k$ objects, where a_1 are alike (of one kind), a_2 are alike (of second kind) and so on..... a_n are alike (of nth kind) and *k* are distinct = $[(a_1 + 1)(a_2 + 1)(a_3 + 1).....(a_n + 1)]2^k - 1$.

Example: 30	30 There are 10 lamps in a hall. Each one of them can be switched on independently. The numb ways in which the hall can be illuminated is					
	(a) 10^2	(b) 1023	(c) 2^{10}	(d) 10 !		
Solution: (b)	Number of ways are = 2	$L^{10} - 1 = 1023$				
	[– 1 corresponds to none	e of the lamps is being s	witched on.]			
Example: 31	10 different letters of English alphabet are given. Out of these letters, words of 5 letters are formed. How many words are formed when atleast one letter is repeated					
	(a) 99748	(b) 98748	(c) 96747	(d) 97147		
Solution: (a)	Number of words of 5 le	tters in which letters ha	ave been repeated any time	$es = 10^5$		
	But number of words on taking 5 different letters out of 10 = ${}^{10}C_5 = 252$					
	\therefore Required number of v	words = $10^5 - 252 = 9972$	48.			
Example: 32	A man has 10 friends. In	how many ways he can	invite one or more of the	m to a party		
	(a) 10 !	(b) 2^{10}	(c) 10!-1	(d) $2^{10} - 1$		
Solution: (d)	Required number of frie	nd = $2^{10} - 1$ (Since the c	ase that no friend be invite	ed <i>i.e.</i> , ${}^{10}C_0$ is excluded)		
Example: 33	Numbers greater than 1 4 (repetition of digits is	000 but not greater tha allowed), are	n 4000 which can be form	ned with the digits 0, 1, 2, 3,		
	(a) 350	(b) 375	(c) 450	(d) 576		
Solution: (b)	Numbers greater than 1 (except 1000) or 2 or 3	000 and less than or ea in the first place with 0	qual to 4000 will be of 4 in each of remaining place	digits and will have either 1 es.		
	After fixing 1 st place, the be filled up in 5 ways ar	e second place can be fi nd 4 th place can be filled	lled by any of the 5 numbe up in 5 ways. Thus there	ers. Similarly third place can will be $5 \times 5 \times 5 = 125$ ways		

in which 1 will be in first place but this include 1000 also hence there will be 124 numbers having 1 in the first place. Similarly 125 for each 2 or 3. One number will be in which 4 in the first place and *i.e.*, 4000. Hence the required numbers are 124 + 125 + 125 + 1 = 375 ways.

5.12 Conditional Combinations

(1) The number of ways in which r objects can be selected from n different objects if k particular objects are

- (i) Always included = ${}^{n-k}C_{r-k}$ (ii) Never included = ${}^{n-k}C_r$
- (2) The number of combinations of *n* objects, of which *p* are identical, taken *r* at a time is

$$= {}^{n-p}C_r + {}^{n-p}C_{r-1} + {}^{n-p}C_{r-2} + \dots + {}^{n-p}C_0 \text{ if } r \le p \text{ and}$$

 $= {}^{n-p}C_r + {}^{n-p}C_{r-1} + {}^{n-p}C_{r-2} + \dots + {}^{n-p}C_{r-p} \text{ if } r > p$

In the 13 cricket players 4 are bowlers, then how many ways can form a cricket team of 11 players in Example: 34 which at least 2 bowlers included (a) 55 (b) 72 (c) 78 (d) None of these The number of ways can be given as follows: **Solution:** (c) 2 bowlers and 9 other players = ${}^{4}C_{2} \times {}^{9}C_{9}$; 3 bowlers and 8 other players = ${}^{4}C_{3} \times {}^{9}C_{8}$ 4 bowlers and 7 other players = ${}^{4}C_{4} \times {}^{9}C_{7}$ Hence required number of ways = $6 \times 1 + 4 \times 9 + 1 \times 36 = 78$. In how many ways a team of 10 players out of 22 players can be made if 6 particular players are Example: 35 always to be included and 4 particular players are always excluded (b) ${}^{18}C_3$ (a) ${}^{22}C_{10}$ (c) ${}^{12}C_4$ (d) ${}^{18}C_4$ 6 particular players are always to be included and 4 are always excluded, so total number of **Solution:** (c) selection, now 4 players out of 12. Hence number of ways = ${}^{12}C_4$. **Example : 36** In how many ways can 6 persons to be selected from 4 officers and 8 constables, if at least one officer is to be included [Roorkee 1985; MP PET 2001] (b) 672 (c) 896 (d) None of these (a) 224

Solution: (c) Required number of ways = ${}^{4}C_{1} \times {}^{8}C_{5} + {}^{4}C_{2} \times {}^{8}C_{4} + {}^{4}C_{3} \times {}^{8}C_{3} + {}^{4}C_{4} \times {}^{8}C_{2} = 4 \times 56 + 6 \times 70 + 4 \times 56 + 1 \times 28$ = 896.

5.13 Division into Groups

Case I: (1) The number of ways in which *n* different things can be arranged into *r* different groups is ${}^{n+r-1}P_n$ or $n ! {}^{n-1}C_{r-1}$ according as blank group are or are not admissible.

(2) The number of ways in which n different things can be distributed into r different group is

$$r^{n} - {}^{r}C_{1}(r-1)^{n} + {}^{r}C_{2}(r-2)^{n} - \dots + (-1)^{n-1} {}^{n}C_{r-1}$$
 or Coefficient of x^{n} is $n ! (e^{x} - 1)^{r}$

Here blank groups are not allowed.

(3) Number of ways in which $m \times n$ different objects can be distributed equally among n persons (or numbered groups) = (number of ways of dividing into groups) × (number of groups) ! = $\frac{(mn)!n!}{(m!)^n n!} = \frac{(mn)!}{(m!)^n}$.

Case II: (1) The number of ways in which (m+n) different things can be divided into two groups which contain *m* and *n* things respectively is, ${}^{m+n}C_m \cdot {}^nC_n = \frac{(m+n)!}{m!n!}, m \neq n$.

Corollary: If m = n, then the groups are equal size. Division of these groups can be given by two types.

Type I : If order of group is not important : The number of ways in which 2*n* different things can be divided equally into two groups is $\frac{(2n)!}{2!(n!)^2}$

Type II : If order of group is important : The number of ways in which 2n different things can be divided equally into two distinct groups is $\frac{(2n)!}{2!(n!)^2} \times 2! = \frac{2n!}{(n!)^2}$

(2) The number of ways in which (m + n + p) different things can be divided into three groups which contain m, n and p things respectively is ${}^{m+n+p}C_m . {}^{n+p}C_n . {}^pC_p = \frac{(m+n+p)!}{m!n!p!}, m \neq n \neq p$

Corollary: If m = n = p, then the groups are equal size. Division of these groups can be given by two types.

Type I : If order of group is not important : The number of ways in which 3*p* different things can be divided equally into three groups is $\frac{(3p)!}{3!(p!)^3}$

Type II : If order of group is important : The number of ways in which 3*p* different things can be divided equally into three distinct groups is $\frac{(3p)!}{3!(p!)^3}t3!=\frac{(3p)!}{(p!)^3}$

Wole: If order of group is not important : The number of ways in which mn different things can be divided equally into m groups is $\frac{mn!}{(n!)^m m!}$

□ If order of group is important: The number of ways in which *mn* different things can be divided equally into *m* distinct groups is $\frac{(mn)!}{(n!)^m m!} \times m! = \frac{(mn)!}{(n!)^m}$.

Example: 37 In how many ways can 5 prizes be distributed among four students when every student can take one or more prizes

			םן	TI Kalicili 1990; Kajastilali PET	1900, 97]
	(a) 1024	(b) 625	(c) 120	(d) 60	
Solution: (a)	The required nun	nber of ways = $4^5 = 1024$	[since each prize can	be distributed by 4 ways]	
Example: 38	The number of w	ays in which 9 persons c	an be divided into thre	e equal groups is	
	(a) 1680	(b) 840	(c) 560	(d) 280	

Solution: (d)	Total ways = $\frac{9!}{(3!)^3} = \frac{9}{32}$	$\frac{\times 8 \times 7 \times 6 \times 5 \times 4}{\times 2 \times 3 \times 2 \times 3 \times 2} = 280.$		
Example: 39	The number of ways d	ividing 52 cards amoi	ngst four players equally	, are [IIT 1979]
	(a) $\frac{52!}{(13!)^4}$	(b) $\frac{52!}{(13!)^2 4!}$	(c) $\frac{52!}{(12!)^4 4!}$	(d) None of these
Solution: (a)	Required number of w	vays = ${}^{52}C_{13} \times {}^{39}C_{13} \times {}^{26}C_{13}$	$C_{13} \times {}^{13}C_{13} = \frac{52!}{39!13!} \times \frac{39!}{26!13!}$	$\times \frac{26!}{13!!3!} \times \frac{13!}{13!} = \frac{52!}{(13!)^4} .$
Example: 40	A question paper is di ways in which a candi (a) 80	vided into two parts a date can answer 6 qu (b) 100	A and B and each part co estions selecting at least (c) 200	ontains 5 questions. The number of t two questions from each part is (d) None of these
Solution: (c)	The number of ways the 2 questions from <i>A</i> and 4 questions from <i>A</i> and	hat the candidate may ad 4 from $B = {}^{5}C_{2} \times {}^{5}C_{2}$ d 2 from $B = {}^{5}C_{4} \times {}^{5}C_{2}$	y select 4; 3 questions form A ar . Hence total number of	nd 3 from $B = {}^5C_3 \times {}^5C_3$
	1 1			

5.14 Derangement

Any change in the given order of the things is called a derangement.

If *n* things form an arrangement in a row, the number of ways in which they can be

deranged so that no one of them occupies its original place is $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \cdot \frac{1}{n!}\right)$.

Example: 41There are four balls of different colours and four boxes of colurs same as those of the balls. The
number of ways in which the balls, one in each box, could be placed such that a ball doesn't go to box
of its own colour is[IIT 1992](a) 8(b) 7(c) 9(d) None of these

Solution: (c) Number of derangement are = 4 ! $\left\{\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!}\right\} = 12 - 4 + 1 = 9$.

(Since number of derangements in such a problem is given by $n!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{2!}+\frac{1}{4!$

5.15 Some Important Results for Geometrical Problems

(1) Number of total different straight lines formed by joining the *n* points on a plane of which *m* (< *n*) are collinear is ${}^{n}C_{2} - {}^{m}C_{2} + 1$.

(2) Number of total triangles formed by joining the *n* points on a plane of which *m* (< *n*) are collinear is ${}^{n}C_{3} - {}^{m}C_{3}$.

(3) Number of diagonals in a polygon of *n* sides is ${}^{n}C_{2} - n$.

(4) If *m* parallel lines in a plane are intersected by a family of other *n* parallel lines. Then total number of parallelograms so formed is ${}^{m}C_{2} \times {}^{n}C_{2}$ *i.e* $\frac{mn(m-1)(n-1)}{4}$

(5) Given *n* points on the circumference of a circle, then

(i) Number of straight lines = ${}^{n}C_{2}$ (ii) Number of triangles = ${}^{n}C_{3}$ (iii) Number of quadrilaterals = ${}^{n}C_{4}$.

(6) If *n* straight lines are drawn in the plane such that no two lines are parallel and no three lines are concurrent. Then the number of part into which these lines divide the plane is = $1 + \Sigma n$.

(7) Number of rectangles of any size in a square of $n \times n$ is $\sum_{r=1}^{n} r^3$ and number of squares of any size is $\sum_{r=1}^{n} r^2$.

(8) In a rectangle of $n \times p$ (n < p) number of rectangles of any size is $\frac{np}{4}(n+1)(p+1)$ and number of squares of any size is $\sum_{i=1}^{n} (n+1-r)(p+1-r)$.

Example: 42	The number of diagonals in a octagon will be			[MP PET 1984; Pb. Cl	ET 1989,			
	2000] (a) 28	(b) 20	(c) 10	(d) 16				
Solution: (b)	Number of diagon	$als = {}^{8}C_{2} - 8 = 28 - 8 =$	20.					
Example: 43	The number of straight lines joining 8 points on a circle is							
	(a) 8	(b) 16	(c) 24	(d) 28				
Solution: (d)	Number of straigh	Number of straight line = ${}^{8}C_{2}$ = 28.						
Example: 44	The number of tri which lie on the s	angles that can be form ame straight line, is [Ro	ed by choosing the vert orkee 1989, 2000; BIT Ra	ices from a set of 12 points, nchi 1989; MP PET 1995; Pb. CE	seven of CT 1997; DCE 20			
	(a) 185	(b) 175	(c) 115	(d) 105				
Solution: (a)	Required number	of ways = ${}^{12}C_3 - {}^7C_3 = 2$	220 - 35 = 185.					
Example: 45	Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. The number of (i) straight lines (ii) triangles which can be formed by joining them							
	(i) (a) 140	(b) 142	(C) 144	(d) 146				
	(ii) (a) 816	(b) 806	(c) 800	(d) 750				
Solution: (c, b)Out of 18 points, 5	5 are collinear						
	(i) Number of stra	aight lines = ${}^{18}C_2 - {}^5C_2 +$	1 = 153 - 10 + 1 = 144					
	(ii) Number of tria	angles = ${}^{18}C_3 - {}^5C_3 = 816$ -	-10 = 806 .					

5.16 Multinomial Theorem

Let x_1, x_2, \dots, x_m be integers. Then number of solutions to the equation $x_1 + x_2 + \dots + x_m = n$(i)

Subject to the condition $a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, \dots, a_m \le x_m \le b_m$ (ii)

is equal to the coefficient of x^n in

 $(x^{a_1} + x^{a_1+1} + \dots + x^{b_1})(x^{a_2} + x^{a_2+1} + \dots + x^{b_2})\dots(x^{a_m} + x^{a_{m+1}} + \dots + x^{b_m})$

.....(iii)

This is because the number of ways, in which sum of m integers in (i) equals n, is the same as the number of times x^n comes in (iii).

(1) Use of solution of linear equation and coefficient of a power in expansions to find the number of ways of distribution : (i) The number of integral solutions of $x_1 + x_2 + x_3 + \dots + x_r = n$ where $x_1 \ge 0, x_2 \ge 0, \dots, x_r \ge 0$ is the same as the number of ways to distribute *n* identical things among *r* persons.

This is also equal to the coefficient of x^n in the expansion of $(x^0 + x^1 + x^2 + x^3 +)^r$

= coefficient of
$$x^n$$
 in $\left(\frac{1}{1-x}\right)^r$ = coefficient of x^n in $(1-x)^{-r}$

$$= \text{ coefficient of } x^{n} \text{ in } \left\{ 1 + rx + \frac{r(r+1)}{2!}x^{2} + \dots + \frac{r(r+1)(r+2)\dots(r+n-1)}{n!}x^{n} + \dots \right.$$
$$= \frac{r(r+1)(r+2)\dots(r+n-1)}{n!} = \frac{(r+n-1)!}{n!(r-1)!} = {n+r-1 \choose r-1}C_{r-1}$$

(ii) The number of integral solutions of $x_1 + x_2 + x_3 + \dots + x_r = n$ where $x_1 \ge 1, x_2 \ge 1, \dots, x_r \ge 1$ is same as the number of ways to distribute *n* identical things among *r* persons each getting at least 1. This also equal to the coefficient of x^n in the expansion of $(x^1 + x^2 + x^3 +)^r$

$$= \text{ coefficient of } x^{n} \text{ in } \left(\frac{x}{1-x}\right)^{r} = \text{ coefficient of } x^{n} \text{ in } x^{r}(1-x)^{-r}$$

$$= \text{ coefficient of } x^{n} \text{ in } x^{r} \left\{1 + rx + \frac{r(r+1)}{2!}x^{2} + \dots + \frac{r(r+1)(r+2)\dots(r+n-1)}{n!}x^{n} + \dots\right\}$$

$$= \text{ coefficient of } x^{n-r} \text{ in } \left\{1 + rx + \frac{r(r+1)}{2!}x^{2} + \dots + \frac{r(r+1)(r+2)\dots(r+n-1)}{n!}x^{n} + \dots\right\}$$

$$= \frac{r(r+1)(r+2)\dots(r+n-r-1)}{(n-r)!} = \frac{r(r+1)(r+2)\dots(n-1)}{(n-r)!} = \frac{(n-1)!}{(n-r)!(r-1)!} = {n-1 \choose r-1}C_{r-1}.$$

Example: 46 A student is allowed to select utmost n books from a collection of (2n + 1) books. If the total number of ways in which he can select one book is 63, then the value of *n* is [IIT 1987; Rajasthan PET 1999] (a) 2 (b) 3 (d) None of these (c) 4 Since the student is allowed to select utmost *n* books out of (2n+1) books. Therefore in order to select Solution: (b) one book he has the choice to select one, two, three,....., *n* books.

Thus, if T is the total number of ways of selecting one book then $T = {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n = 63$.

Again the sum of binomial coefficients

$${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n + {}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + \dots + {}^{2n+1}C_{2n+1} = (1+1)^{2n+1} = 2^{2n+1}$$

or,
$${}^{2n+1}C_0 + 2({}^{2n-1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n) + {}^{2n+1}C_{2n+1} = 2^{2n+1}$$

$$\Rightarrow 1 + 2(T) + 1 = 2^{2n+1} \Rightarrow 1 + T = \frac{2^{2n+1}}{2} = 2^{2n} \Rightarrow 1 + 63 = 2^{2n} \Rightarrow 2^6 = 2^{2n} \Rightarrow n = 3 .$$

Example: 47 If x, y and r are positive integers, then ${}^{x}C_{r} + {}^{x}C_{r-1} C_{1} + {}^{x}C_{r-2} C_{2} + \dots + {}^{y}C_{r} =$

[Karnataka CET 1993; Rajasthan PET 2001]

(a)
$$\frac{x!y!}{r!}$$
 (b) $\frac{(x+y)!}{r!}$ (c) $x+y C_r$ (d) $xy C_r$

Solution: (c) The result $^{x+y}C_r$ is trivially true for r=1,2 it can be easily proved by the principle of mathematical induction that the result is true for r also.

5.17 Number of Divisors

. .

Let $N = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \dots \cdot p_k^{\alpha_k}$, where $p_1, p_2, p_3, \dots \cdot p_k$ are different primes and $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_k$ are natural numbers then :

(1) The total number of divisors of N including 1 and N is = $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)...(\alpha_k + 1)$

(2) The total number of divisors of N excluding 1 and N is = $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)....(\alpha_k + 1) - 2$

(3) The total number of divisors of N excluding 1 or N is = $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)....(\alpha_k + 1) - 1$

(4) The sum of these divisors is = $(p_1^0 + p_2^1 + p_3^2 + \dots + p_1^{\alpha_1})(p_2^0 + p_2^1 + p_2^2 + \dots + p_2^{\alpha_2})\dots(p_k^0 + p_k^1 + p_k^2 + \dots + p_k^{\alpha_k})$

(5) The number of ways in which N can be resolved as a product of two factors is

$$\begin{cases} \frac{1}{2}(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1), \text{ If } N \text{ is not a perfect square} \\ \frac{1}{2}[(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1) + 1], \text{ If } N \text{ is a perfect square} \end{cases}$$

(6) The number of ways in which a composite number N can be resolved into two factors which are relatively prime (or co-prime) to each other is equal to 2^{n-1} where n is the number of different factors in N.

Important Tips

All the numbers sum of whose digits are divisible by 3, is divisible by 3 e.g. 534. Sum of the digits is 12, which are divisible by 3, and hence 534 is also divisible by 3.

All those numbers whose last two-digit number is divisible by 4 are divisible by 4 e.g. 7312, 8936, are such that 12, 36 are divisible by 4 and hence the given numbers are also divisible by 4.

All those numbers, which have either 0 or 5 as the last digit, are divisible by 5.

a All those numbers, which are divisible by 2 and 3 simultaneously, are divisible by 6. e.g., 108, 756 etc.

All those numbers whose last three-digit number is divisible by 8 are divisible by 8.

All those numbers sum of whose digit is divisible by 9 are divisible by 9.

All those numbers whose last two digits are divisible by 25 are divisible by 25 e.g., 73125, 2400 etc.

Example: 48	The number of divisors of 9600 including 1 and 9600 are					
	(a) 60	(b) 58	(c) 48	(d) 46		
Solution: (c)	Since 9600 = $2^7 \times 3^1 \times 5^2$					
	Hence number of divisors	s = (7 + 1)(1 + 1)(2 + 1) = 48				
Example: 49	Number of divisors of <i>n</i> =	= 38808 (except 1 and <i>n</i>)	is			
	(a) 70	(b) 68	(c) 72	(d) 74		
Solution: (a)	Since $38808 = 8 \times 4851 = 8 \times 9 \times 539 = 8 \times 9 \times 7 \times 7 \times 11 = 2^3 \times 3^2 \times 7^2 \times 11$					
	So, number of divisors = $(3 + 1)(2 + 1)(2 + 1)(1 + 2) - 2 = 72 - 2 = 70$.					

All the numbers whose last digit is an even number 0, 2, 4, 6 or 8 are divisible by 2.

		Fur	ndamental concept and Perr	nutations without repetition
			Basic Level	
1.	$(n-r+1)^n P_{r-1} =$			
	(a) $^{n-1}P_r$	(b) $^{n+1}P_r$	(c) ${}^{n}P_{r}$	(d) ${}^{n}P_{r-1}$
2.	If ${}^{5}P_{r} = 120$, then	the value of <i>r</i> is		
	(a) 2	(b) 3+	(c) 5	(d) 4
3.	If ${}^{n}P_{5}: {}^{n}P_{3} = 2:1$, t	then the value of <i>n</i> is		[Rajasthan PET 1989]
	(a) 2	(h) 3	(c) 4	(d) 5
1	The value of n^{n-1}	P is		[DCF 1008]
4.		$(h) n^{-1} p$	(-2) $n+1$ D	
	(a) P_r	(b) P_{r-1}	(c) P_{r+1}	(d) P_r
5۰	If ${}^{m+n}P_2 = 56$ and	$^{m-n}P_2 = 12$, then <i>m</i> , <i>n</i> are equal	to	
	(a) 5, 1	(b) 6, 2	(c) 7, 3	(d) 9, 6
6.	If $^{K+5}P_{K+1} = \frac{11(K-5)}{2}$	$(1)_{K+3}P_K$ then the values of <i>K</i> a	re	
	(a) 2 and 6	(b) 2 and 11	(c) 7 and 11	(d) 6 and 7
7.	There are 5 road the town and ret	s leading to a town from a vil urn back, is	lage. The number of different v	ways in which a villager can go to
	(a) 25	(b) 20	(c) 10	(d) 5
8.	How many words	s can be formed from the letter	rs of the word BHOPAL	
	(a) 124	(b) 240	(c) 360	(d) 720
9.	How many numb	ers can be formed from the dig	gits1, 2, 3, 4 when the repetition	n is not allowed
	(a) ${}^{4}P_{4}$	(b) ${}^{4}P_{3}$	(c) ${}^{4}P_{1} + {}^{4}P_{2} + {}^{4}P_{3}$	(d) ${}^{4}P_{1} + {}^{4}P_{2} + {}^{4}P_{3} + {}^{4}P_{4}$
10.	How many numb the digits are not	ers lying between 500 and 60 to be repeated	00 can be formed with the help	of the digits 1, 2, 3, 4, 5, 6 when
	(a) 20	(b) 40	(c) 60	(d) 80
11.	4 buses runs bet Gwalior by anoth	ween Bhopal and Gwalior. If a new second	a man goes from Gwalior to Bl ways are	nopal by a bus and comes back to
	(a) 12	(b) 16	(c) 4	(d) 8
12.	In how many way	ys can 10 true-false questions	be replied	
	(a) 20	(b) 100	(c) 512	(d) 1024
13.	There are 8 gates	s in a hall. In how many ways a	a person can enter in the hall a	nd come out from a different gate
	(a) 7	(b) 8 × 8	(c) 8 + 7	(d) 8 × 7
14.	P, Q, R and S hav	e to give lectures to an audien	ce. The organiser can arrange t	he order of their presentation in [BIT Ranchi 1991; Pb. CET 1991]
	(a) 4 ways	(b) 12 ways	(c) 256 ways	(d) 24 ways
15	The product of a	ny <i>r</i> consecutive natural numb	ers is always divisible by	

(b) r^2 (a) r! (c) r^n (d) None of these The number of ways in which first, second and third prizes can be given to 5 competitors is 16. (b) 60 (a) 10 (c) 15 (d) 125 17. In a railway compartment there are 6 seats. The number of ways in which 6 passengers can occupy these 6 seats is [Karnataka CET 2001] (a) 36 (c) 720 (b) 30 (d) 120 If any number of flags are used, how many signals can be given with the help of 6 flags of different colours 18. (d) None of these (a) 1956 (b) 1958 (c) 720 The number of ways of painting the faces of a cube with six different colours is 19. (a) 1 (b) 6 (c) 6! (d) None of these Advance Level 20. The value of 2^{n} {1.3.5....(2n-3)(2n-1)} is (b) $\frac{(2n)!}{2^n}$ (a) $\frac{(2n)!}{n!}$ (c) $\frac{n!}{(2n)!}$ (d) None of these If ${}^{56}P_{r+6}: {}^{54}P_{r+3} = 30800: 1$, then r =21. [Roorkee 1983; Kurukshetra CEE 1998] (b) 41 (c) 51 (d) None of these (a) 31 22. The value of ${}^{n}P_{r}$ is equal to (a) ${}^{n-1}P_r + r {}^{n-1}P_{r-1}$ (b) $n {}^{n-1}P_r + {}^{n-1}P_{r-1}$ (c) $n(^{n-1}P_r + ^{n-1}P_{r-1})$ (d) ${}^{n-1}P_{r-1} + {}^{n-1}P_r$ The exponent of 3 in 100 ! is 23. (c) 48 (d) 52 (a) 33 (b) 44 The number of positive integral solutions of abc = 30 is [UPSEAT 2001] 24. (a) 30 (b) 27 (c) 8 (d) None of these The number of 4 digit even numbers that can be formed using 0, 1, 2, 3, 4, 5, 6 without repetition is 25. (a) 120 (b) 300 (c) 420 (d) 20 The number of five digits numbers that can be formed without any restriction is 26. (d) None of these (a) 990000 (b) 100000 (c) 90000 How many numbers less than 1000 can be made from the digits 1, 2, 3, 4, 5, 6 (repetition is not allowed) 27. (a) 156 (b) 160 (c) 150 (d) None of these How many even numbers of 3 different digits can be formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 (repetition is 28. not allowed) (a) 224 (b) 280 (c) 324 (d) None of these A five digit number divisible by 3 has to formed using the numerals 0, 1, 2, 3, 4 and 5 without repetition. The 29. total number of ways in which this can be done is (a) 216 (b) 240 (c) 600 (d) 3125 In a circus there are ten cages for accommodating ten animals. Out of these four cages are so small that five out 30. of 10 animals cannot enter into them. In how many ways will it be possible to accommodate ten animals in these ten cages [Roorkee 1989] (a) 66400 (d) None of these (b) 86400 (c) 96400 How many numbers can be made with the digits 3, 4, 5, 6, 7, 8 lying between 3000 and 4000 which are 31. divisible by 5 while repetition of any digit is not allowed in any number (a) 60 (b) 12 (c) 120 (d) 24

32.	All possible four di number of even nu	git numbers are formed usin mbers among them is	ng the digits 0, 1, 2, 3 so that	no number has repeated digits. The
	(a) 9	(b) 18	(c) 10	(d) None of these
33.	The total number o	f seven digit numbers the su	m of whose digits is even is	
	(a) 9000000	(b) 4500000	(c) 8100000	(d) None of these
34.	The sum of all 4 dig is	git numbers that can be form	ned by using the digits 2, 4, 6,	, 8 (repetition of digits not allowed)
	(a) 133320	(b) 533280	(c) 53328	(d) None of these
35.	How many number	s greater than 24000 can be	formed by using digits 1, 2, 3	8, 4, 5 when no digit is repeated [Rajastl
	(a) 36	(b) 60	(c) 84	(d) 120
36.	How many number repeated	s greater than hundred and [AMU 1999]	divisible by 5 can be made fro	om the digits 3, 4, 5, 6, if no digit is
	(a) 6	(b) 12	(c) 24	(d) 30
37.	The sum of all num number is	mbers greater than 1000 fo [AMU 1997]	rmed by using the digits 1,	3, 5, 7 no digit is repeated in any
	(a) 106656	(b) 101276	(c) 117312	(d) 811273
38.	3 copies each of 4 shelf is	different books are availab	le. The number of ways in w	which these can be arranged on the
				[Karnataka CET 1996]
	(a) 12 !	(b) $\frac{12!}{3!4!}$	(c) $\frac{12!}{(3!)4}$	(d) 369,000
39.	Eleven books consi possible ways of ar	isting of 5 Mathematics, 4 rranging them on the assump	Physics and 2 Chemistry are tion that the books of the sar	e placed on a shelf. The number of ne subject are all together is
	(a) 4 ! 2!	(b) 11!	(c) 5! 4! 3! 2!	(d) None of these
40.	The number of pos using each digit no	sitive integers which can be t more than once in each nur	formed by using any numbe nber is	er of digits from 0, 1, 2, 3, 4, 5 but
	(a) 1200	(b) 1500	(c) 1600	(d) 1630
41.	Let <i>A</i> be a set of <i>n</i> (two coordinates are	≥3) distinct elements. The n e equal is	number of triplets (x, y, z) of	the elements of <i>A</i> in which at least
	(a) ${}^{n}P_{3}$	(b) $n^3 - {}^n P_3$	(c) $3n^2 - 2n$	(d) $3n^2(n-1)$
42.	The number of dist	inct rational numbers x such	that $0 < x < 1$ and $x = \frac{p}{q}$, where	ere $p,q \in \{1,2,3,4,5,6\}$ is
	(a) 15	(b) 13	(c) 12	(d) 11
43 .	The total number o	f 5 digit numbers of differen	t digits in which the digit in t	the middle is the largest is
	(a) $\sum_{n=4}^{9} {}^{n}P_{4}$	(b) 33 (3!)	(c) 30 (3 !)	(d) None of these
44.	Two teams are to p number of people f matches. The smal people, where <i>n</i> is	play a series of 5 matches be forecast the result of each m lest group of people in whic	tween them. A match ends in atch and no two people make ch one person forecasts corre	a win or loss or draw for a team. A e the same forecast for the series of ectly for all matches will contain <i>n</i>
	(a) 81	(b) 243	(c) 486	(d) None of these
			Number of 1	Permutations with Repetition
			Number Of I	

45. The number of permutations of the letters $x^2y^4z^3$ will be

224 Permutations and Combinations (a) $\frac{9!}{2!4!}$ (c) $\frac{5}{4!3!}$ 9! (b) $\frac{5}{2!4!3!}$ (d) 9! How many numbers consisting of 5 digits can be formed in which the digits 3, 4 and 7 are used only once and 46. the digit 5 is used twice (b) 60 (d) 90 (a) 30 (c) 45 The number of different arrangements which can be made from the letters of the word SERIES taken all 47. together is (b) $\frac{6!}{4!}$ 6! (c) 6! (a) (d) None of these 2!2! 48. How many words can be formed with the letters of the word MATHEMATICS by rearranging them (b) $\frac{11!}{2!}$ (c) $\frac{11!}{2!2!2!}$ (d) 11 ! (a) 2!2! How many words can be made out from the letters of the word INDEPENDENCE, in which vowels always come 49. together [Roorkee 1989] (a) 16800 (b) 16630 (c) 1663200 (d) None of these 50. In how many ways 5 red, 4 blue and 1 green balls can be arranged in a row (a) 1260 (b) 2880 (c) 9! (d) 10 ! Using 5 conveyances, the number of ways of making 3 journeys is 51. (b) 3^5 (d) $5^3 - 1$ (c) 5^3 (a) 3×5 The total number of permutations of the letters of the word "BANANA" is [Rajasthan PET 1997, 2000] 52. (a) 60 (b) 120 (c) 720 (d) 24The number of 7 digit numbers which can be formed using the digits 1, 2, 3, 2, 3, 3, 4 is 53. (b) 840 (d) 5040 (a) 420 (c) 2520 The number of 3 digit odd numbers, that can be formed by using the digits 1, 2, 3, 4, 5, 6 when the repetition is 54. allowed, is [Pb. CET 1999] (a) 60 (b) 108 (c) 36 (d) 30 How many different nine-digit numbers can be formed from the digits of the number 223355888 by 55. rearrangement of the digits so that the odd digits occupy even places [IIT] Screening 2000; Karnataka CET 2002] (a) 16 (b) 36 (c) 60 (d) 180 Using all digits 2, 3, 4, 5, 6 how many even numbers can be formed 56. (a) 24 (b) 48 (c) 72 (d) 120 Let *S* be the set of all functions from the set *A* to the set *A*. If n(A) = k then n(S) is 57. (c) $2^k - 1$ (d) 2^k (a) k! (b) k^{k} The number of ways in which 6 rings can be worn on the four fingers of one hand is 58. [AMU 1983] (a) 4^6 (b) ${}^{6}C_{4}$ (c) 6^4 (d) None of these In how many ways can 4 prizes be distributed among 3 students, if each student can get all the 4 prizes 59. (d) 3^3 (b) 3^4 (c) $3^4 - 1$ (a) 4 ! In how many ways 3 letters can be posted in 4 letter-boxes, if all the letters are not posted in the same letter-60. box (a) 63 (b) 60 (c) 77 (d) 81 61. There are 4 parcels and 5 post-offices. In how many different ways the registration of parcel can be made (d) $5^4 - 4^5$ (b) 4^5 (c) 5^4 (a) 20 Advance Level

62.	How many numbers is allowed)	lying between 10 and 100	0 can be formed from the digits	1, 2, 3, 4, 5, 6, 7, 8, 9 (repetition
	(a) 1024	(b) 810	(c) 2346	(d) None of these
63.	Ten different letters	of an alphabet are given. V	Words with five letters are form	ed from these given letters. Then
	the number of words	which have at least one le 99: DCE 2001	etter repeated is	
	(a) 69760	(b) 30240	(c) 99748	(d) None of these
64.	Six identical coins a	re arranged in a row. Th	e number of ways in which the	e number of tails is equal to the
	number of heads is	0	-	-
	(a) 20	(b) 9	(c) 120	(d) 40
65.	The total number of	permutations of $n(>1)$ dif	ferent things taken not more th	han r at a time, when each thing
	may be repeated any	number of times is		
	(n) $n(n^n-1)$	(b) $n^r - 1$	$n(n^r-1)$	(d) None of these
	$\binom{a}{n-1}$	$(0) \frac{1}{n-1}$	(c) $\frac{n-1}{n-1}$	(d) None of these
66.	How many number le	ess than 10000 can be mad	le with the eight digits 1, 2, 3, 4,	5, 6, 7, 0 (digits may repeat)
	(a) 256	(b) 4095	(c) 4096	(d) 4680
67.	The total number of	natural numbers of six dig	gits that can be made with digits	s 1, 2, 3, 4, if the all digits are to
	appear in the same n	umber at least once, is		
	(a) 1560	(b) 840	(c) 1080	(d) 480
68.	A library has a copie	es of one book, b copies o	of each of two books, c copies o	f each of three books and single
	copies of <i>d</i> books. Th	e total number of ways in	which these books can be distrib	outed is
	(a) $\frac{(a+b+c+d)!}{a!b!c!}$	(b) $\frac{(a+2b+3c+d)!}{a!(b!)^2(c!)^3}$	(c) $\frac{(a+2b+3c+d)!}{a!b!c!}$	(d) None of these
69.	The number of wav	s of arranging 2 <i>m</i> white	counters and 2 <i>n</i> red counter	s in a straight line so that the
	arrangement is symm	netrical with respect to a c	central mark	
	(a) $(m+n)!$	(b) $\frac{(m+n)!}{m!n!}$	(c) $\frac{2(m+n)!}{m!n!}$	(d) None of these
7 0 .	Total number of four	digit odd numbers that ca	n be formed using 0, 1, 2, 3, 5, 7	are [AIEEE 2002]
	(a) 216	(b) 375	(c) 400	(d) 720
71.	The number of ways	of arranging the letter AA	AAA BBB CCC D EE F in a row wh	nen no two C's are together is
,	151	151 131	12 l ¹³ P	121
	(a) $\frac{13!}{5!3!3!2!} - 3!$	(b) $\frac{13!}{5!3!3!2!} - \frac{13!}{5!3!2!}$	(c) $\frac{12!}{5!3!2!} \times \frac{1_3}{3!}$	(d) $\frac{12!}{5!3!2!} \times {}^{13}P_3$
	The number of (dist	t		
72.	identical, is	it numbers that can be ma	de with the digits 1, 2, 3, 4 and	5 in which at least two digits are
	(a) $4^5 - 5!$	(b) 505	(c) 600	(d) None of these
				Conditional Permutations
		_	Pasic Loval	
			Daste Level	
73.	The number of word occur together, is	s which can be formed fro	om the letters of the word MAX	IMUM, if two consonants cannot
	(a) 4 !	(b) 3 ! × 4 !	(c) 7 !	(d) None of these
74.	The number of ways occur together is	in which the letters of th	e word TRIANGLE can be arran	ged such that two vowels do not
	(a) 1200	(b) 2400	(c) 14400	(d) None of these
75.	How many words ca	n be formed form the let	ters of the word COURTESY, wh	nose first letter is C and the last
	(a) 6 !	(b) 8 !	(c) 2 (6) !	(d) 2 (7) !

76.	How many words o	can be made from the letters	of the word DELHI, if L comes	in the middle in every word
	(a) 12	(b) 24	(c) 60	(d) 6
77.	The number of way together is	ys in which the letters of th	e word ARRANGE can be arrai	nged such that both R do not come
				[MP PET 1993]
	(a) 360	(b) 900	(c) 1260	(d) 1620
78.	How many words o	can be made from the letters	of the word BHARAT in which	<i>B</i> and <i>H</i> never come together[IIT 1977]
	(a) 360	(b) 300	(c) 240	(d) 120
7 9 .	How many words o	can be made from the letters	of the word INSURANCE, if all	l vowels come together
0	(a) 18270	(b) 17280	(c) 12780	(d) None of these
80.	row such that no ty	wo of the three girls are toge	ether is	s in which they can be seated in a
	(a) $7 ! \times {}^{6}P_{3}$	(b) $7 ! \times {}^{8}P_{3}$	(c) 7!×3!	(d) $\frac{10!}{3!7!}$
81.	In how many ways	can 5 boys and 5 girls stand	l in a row so that no two girls r	nay be together
	(a) $(5!)^2$	(b) 5!×4!	(c) $5! \times 6!$	(d) $6 \times 5!$
82.	The number of arra	angements of the letters of t	he word BANANA in which two	N's do not appear adjacently is [IIT Scr
	(a) 40	(b) 60	(c) 80	(d) 100
83.	The number of way	ys in which 5 boys and 3 girl	s can be seated in a row so tha	t each girl in between two boys [Kerala
	(a) 2880	(b) 1880	(c) 3800	(d) 2800
84.	The number of wor places is	rds that can be formed out o	f the letters of the word ARTIC	CLE so that the vowels occupy even
				[Karnataka CET 2003]
85.	(a) 36 The number of way	(b) 574 ys in which three students of he same grade is	(c) 144 of a class may be assigned a gi	(d) 754 rade of <i>A</i> , <i>B</i> , <i>C</i> or <i>D</i> so that no two
	(a) 3 ⁴	(b) 4^3	(c) ${}^{4}P_{2}$	(d) ${}^{4}C_{2}$
86.	The number of way	rs lawn tennis mixed double o	can be made up from seven mar	ried couples if no husband and wife
	(a) 210	(b) 420	(c) 840	(d) None of these
		A	dvance Level	
87.	How many number	rs greater 40000 can be form	ned from the digits 2, 4, 5, 5, 7	
	(a) 12	(b) 24	(c) 36	(d) 48
88.	In how many ways	<i>n</i> books can be arranged in	a row so that two specified boo	oks are not together
	(a) $n! - (n-2)!$	(b) $(n-1)!(n-2)$	(c) $n!-2(n-1)$	(d) $(n-2)n!$
89.	How many number appearing not more	rs between 5000 and 10,000 e than once in each number	o can be formed using the digi	ts 1, 2, 3, 4, 5, 6, 7, 8, 9 each digit
	(a) $5 \times^{8} P_{3}$	(b) $5 \times {}^{8}C_{3}$	(c) $5! \times {}^{8}P_{3}$	(d) $5! \times {}^{8}C_{3}$
90.	Find the total num	ber of 9 digit numbers whicl	h have all the digits different	[IIT 1982]
	(a) 9 × 9 !	(b) 9 !	(c) 10 !	(d) None of these
91.	Four dice (six face	d) are rolled. The number of	possible outcomes in which at	least one die shows 2 is
	(a) 1296	(b) 625	(c) 671	(d) None of these
92.	How many number	rs, lying between 99 and 10	00 be made from the digits 2.	3, 7, 0, 8, 6 when the digits occur
J - •	only once in each r	number		[MP PET 1984]

			Permi	itations and Combinations 227
	(a) 100	(b) 90	(c) 120	(d) 80
93.	The sum of the dig	its in the unit place of all n	umbers formed with the help o	f 3, 4, 5, 6 taken all at a time is [Pb. (
	(a) 18	(b) 432	(c) 108	(d) 144
94.	All letters of the with meaning) are writh	word AGAIN are permuted en as in dictionary, then th	in all possible ways and the te 50 th word is	words so formed (with or without
	(a) NAAGI	(b) IAANG	(c) NAAIG	(d) INAGA
95.	Eight chairs are nu choose the chairs remaining. The nu	Imbered 1 to 8. Two wome from amongst the chairs 1 mber of possible arrangeme	en and three men wish to occu marked 1 to 4 and then men s ents is	py one chair each. First the women select the chairs from amongst the
	(a) ${}^{6}C_{3} \times {}^{4}C_{2}$	(b) ${}^{4}C_{2} \times {}^{4}P_{3}$	(c) ${}^{4}P_{2} \times {}^{4}P_{3}$	(d) None of these
96.	If a denotes the nut things taken 11 at $a = 182bc$, then the	The second seco	x + 2 things taken all at a time, r of permutations of $x - 11$ th	b the number of permutations of x ings taken all at a time such that
	(a) 15	(b) 12	(c) 10	(d) 18
9 7.	The number of way	ys in which ten candidates	A_1, A_2, \dots, A_{10} can be ranked such	ch that A_1 is always above A_{10} is
				1
	(a) 5 !	(b) 2 (5 !)	(c) 10 !	(d) $\frac{1}{2}(10!)$
98.	A dictionary is prin If the words are pr word CRICKET is	nted consisting of 7 lettered rinted at the alphabetical o [Orissa JEE 2003]	d words only that can be made rder, as in an ordinary diction I	with a letter of the word CRICKET. ary, the number of word before the
	(a) 530	(b) 480	(c) 531	(d) 481
99.	Seven different lec three of the lecture lecture before B, an	turers are to deliver lectur ers. The number of ways in nd B before C, is	res in seven periods of a class a which a routine for the day ca	on a particular day. <i>A</i> , B and C are an be made such that A delivers his
	(a) 420	(b) 120	(c) 210	(d) None of these
100.	Let $A = \{x : x \text{ is a } \}$	prime number and $x < 30$.	The number of different ratio	nal numbers whose numerator and
	denominator belon	g to A is		
	(a) 90	(b) 180	(c) 91	(d) None of these
101.	The number of nur than the digit in th	mbers of 9 different non-z e middle and all the digits	ero digits such that all the dig in the last four places are great	gits in the first four places are less ter than that in the middle is
	(a) 2 (4 !)	(b) $(4!)^2$	(c) 8 !	(d) None of these
102.	How many ways ar	e there to arrange the lette	ers in the word GARDEN with tl	he vowels in alphabetical order[AIEE
	(a) 480	(b) 240	(c) 360	(d) 120
				Circular Permutations
		<	Basic Level	
103.	If eleven members then the number of	of a committee sit at a ro f arrangement is	und table so that the president	and secretary always sit together,
	(a) 10 ! × 2	(b) 10 !	(c) 9!×2	(d) None of these
104.	In how many ways	can 5 keys be put in a ring		
-	(-) 4!	(h) 5!		
	(a) $\frac{-}{2}$	(b) $\frac{1}{2}$	(c) 4!	(a) 5!
105.	In how many way together	s can 12 gentlemen sit arc	ound a round table so that thr	ree specified gentlemen are always
	(a) 9 !	(b) 10 !	(c) 3!10!	(d) 3!9!

106.	n gentlemen can be mad	e to sit on a round table in		[MP PET 1982]
	(a) $\frac{1}{2}(n+1)!$ ways	(b) $(n-1)!$ ways	(c) $\frac{1}{2}(n-1)!$ ways	(d) $(n+1)!$ ways
107.	In how many ways 7 me together	en and 7 women can be seated	d around a round table such	n that no two women can sit
			[EAMCET 1990; MP PET :	2001; DCE 2001; UPSEAT 2002]
	(a) $(7!)^2$	(b) 7!×6!	(c) $(6!)^2$	(d) 7 !
108.	The number of circular p	permutations of <i>n</i> different obje	ects is	
	(a) n!	(b) <i>n</i>	(c) $(n-2)!$	(d) $(n-1)!$
		Advance	Level	
109.	In how many ways can side of the Chairman and	15 members of a council sit alo d the Deputy secretary on the o	ong a circular table, when t ther side	he Secretary is to sit on one
	(a) 2×12!	(b) 24	(c) 2 × 15 !	(d) None of these
110.	20 persons are invited table, if the two particul	for a party. In how many diffe lar persons are to be seated on (rent ways can they and the either side of the host	host be seated at a circular
	(a) 20!	(b) 2.18!	(c) 18 !	(d) None of these
111.	12 persons are to be arra the total number of arra	anged to a round table. If two p ngements is	particular persons among the	em are not to be side by side,
	(a) 9(10 !)	(b) 2 (10 !)	(c) 45 (8 !)	(d) 10 !
112.	The number of ways tha	t 8 beads of different colours be	e string as a necklace is	[EAMCET 2002]
	(a) 2520	(b) 2880	(c) 5040	(d) 4320
113.	The number of ways in v is given by	which 6 men and 5 women can	dine at a round table if no ty	wo women are to sit together
			[AIE	EEE 2003; Rajasthan PET 2003]
11.4	(a) 6 ! × 5 !	(b) 30	(c) $5! \times 4!$	(a) $7! \times 5!$
114.	In now many ways can i	(b) to us flue a l	10^{10} C 10^{10} C 10^{10} C	Sit off the other round table (1) $\frac{10}{2}$ $G_{\rm eff}$ $= 10$ $G_{\rm eff}$
	(a) 5! × 3!	(b) $10 \times 5! \times 3!$	(c) $C_6 \times 5! \times 3!$	(a) $C_6 \times 5! \times 3! \times 2!$
115.	There are 20 persons an a circle so that there is	nong whom two are brothers . T exactly one person between the	The number of ways in which two brothers , is	n we can arrange them round
	(a) 18 !	(b) 2 (18!)	(c) 2 (19 !)	(d) None of these
116.	A family has 8 members months 8 members can t	a. Four members take food two take food by sitting in different	times a day on two identical orders (1 month = 30 days)	round tables. For how many
	(a) 42 months	(b) 21 months	(c) $\frac{21}{2}$ months	(d) None of these
		Fundamenta	al concept and Number o	f Combinations without
		Basic Lo	evel	
117.	If <i>n</i> is even and the value	e of ${}^{n}C_{r}$ is maximum, then $r =$		
	(a) $\frac{n}{2}$	(b) $\frac{n+1}{2}$	(c) $\frac{n-1}{2}$	(d) None of these

118.	$^{47}C_4 + \sum_{r=1}^{5} {}^{52-r}C_3 =$			[IIT 1980; Rajasthan PET 2002; UPSEAT
	2000]			
	(a) ${}^{47}C_6$	(b) ${}^{52}C_5$	(c) ${}^{52}C_4$	(d) None of these
119.	If ${}^{n}C_{3} = 220$, then $n =$			
	(a) 10	(b) 12	(c) 15	(d) 8
120.	If $2 \times {}^{n}C_{5} = 9 \times {}^{n-2}C_{5}$, then t	the value of n will be		
	(a) 7	(b) 10	(c) 9	(d) 5
121.	The number of combinat	ions of <i>n</i> different objects taken	r at a time will	l be
	(a) ${}^{n}P_{r}$	(b) ${}^{n}P_{r}r!$	(c) $\frac{{}^{n}P_{r}}{r!}$	(d) None of these
122.	$^{n^2-n}C_2 = ^{n^2-n}C_{10}$, then $n =$			
	(a) 12	(b) 4 only	(c) - 3 only	(d) 4 or - 3
123.	${}^{n}C_{r} + {}^{n}C_{r-1}$ is equal to 2002]			[MP PET 1984; Kerala (Engg.)
	(a) $^{n+1}C_r$	(b) ${}^{n}C_{r+1}$	(c) $^{n+1}C_{r+1}$	(d) $^{n-1}C_{r-1}$
124.	If ${}^{8}C_{r} = {}^{8}C_{r+2}$, then the va	lue of ${}^{r}C_{2}$ is		[MP PET 1984; Rajasthan PET
	1987]			
	(a) 8	(b) 3	(c) 5	(d) 2
125.	If ${}^{20}C_{n+2} = {}^{n}C_{16}$, then the	value of <i>n</i> is		[MP PET 1984]
-	(a) 7	(b) 10	(c) 13	(d) No value
126.	The value of ${}^{13}C_3 + {}^{13}C_{13}$	is	15	
	(a) ${}^{16}C_3$	(b) ${}^{30}C_{16}$	(c) $^{15}C_{10}$	(d) $^{15}C_{15}$
127.	If ${}^{10}C_r = {}^{10}C_{r+2}$, then 5C_r	equals		
	(a) 120	(b) 10	(c) 360	(d) 5
128.	If ${}^{n}C_{r} = 84, {}^{n}C_{r-1} = 36$ and	${}^{n}C_{r+1} = 126$, then <i>n</i> equals		[Rajasthan PET 1997; MP PET
	2001] (a) 8	(h) 9	(c) 10	(d) 5
129.	If ${}^{n}C_{2} + {}^{n}C_{4} > {}^{n+1}C_{2}$, then		(0) 10	[Rajasthan PET 1999]
2	(a) $n > 6$	(b) $n > 7$	(c) <i>n</i> < 6	(d) None of these
130.	Value of <i>r</i> for which ${}^{15}C_r$	$_{r+3} = {}^{15}C_{2r-6}$ is		[Pb. CET 1999]
	(a) 2	(b) 4	(c) 6	(d) - 9
131.	For $2 \le r \le n$, $\binom{n}{r} + 2\binom{n}{r-1} + 2\binom{n}{r-1} + \frac{n}{r-1}$	$\binom{n}{r-2}$ is equal to		[IIT Screening 2000]
	(a) $\binom{n+1}{r-1}$	(b) $2\binom{n+1}{r+1}$	(c) $2\binom{n+2}{r}$	(d) $\binom{n+2}{r}$
132.	$^{n-1}C_3 + ^{n-1}C_4 > ^nC_3$ then th	e value of <i>n</i> is		[Rajasthan PET 2000]
	(a) 7	(b) < 7	(c) > 7	(d) None of these
133.	$\binom{n}{n-r} + \binom{n}{r+1}$, whenever	$0 \le r \le n-1$ is equal to		[AMU 2000]
	(a) $\binom{n}{r-1}$	(b) $\binom{n}{r}$	(c) $\binom{n}{r+1}$	(d) $\binom{n+1}{r+1}$

134.	If ${}^{43}C_{r-6} = {}^{43}C_{3r+1}$, then	the value of r is		[Kerala (Engg.) 2002]
	(a) 12	(b) 8	(c) 6	(d) 10
135.	The least value of natu	ral number <i>n</i> satisfying <i>C</i> (<i>n</i> , 5)	5) + C(n,6) > C(n+1,5) is	[EAMCET 2002]
	(a) 11	(b) 10	(c) 12	(d) 13
136.	If ${}^{n}C_{r}$ denotes the	number of combinations	of <i>n</i> things taken <i>r</i>	at a time, then the expression
	${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$, eq	uals		
				[AIEEE 2003]
	(a) $^{n+2}C_r$	(b) $^{n+2}C_{r+1}$	(c) $^{n+1}C_r$	(d) $^{n+1}C_{r+1}$
137.	${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5}$	is equal to		[Rajasthan PET 1989]
	(a) 30	(b) 31	(c) 32	(d) 33
138.	If $C(n, 12) = C(n, 8)$, then	the value of $C(22,n)$ is		[Rajasthan PET 1993]
	(a) 924	(b) 308	(c) 462	(d) 231
139.	If ${}^{20}C_r = {}^{20}C_{r-10}$, then 18	C_r is equal to		[Rajasthan PET 1988]
	(a) 816	(b) 1632	(c) 4896	(d) None of these
140.	If ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in A.	P. then the value of <i>n</i> is		[AMU 1989]
-	(a) 14 or 7	(b) 11	(c) 17	(d) 8
141.	There are 12 volleybal	ll players in all in a college	, out of which a team	of 9 players is to be formed. If the
	captain always remain	s the same, then in how man	y ways can the team be	formed
	(a) 36	(b) 108	(c) 99	(d) 165
142.	There are 16 vacancies clerks be appointed	s for clerks in a certain offic	ce, 20 applications are	received. In how many ways can the
	(a) 3800	(b) 3876	(c) 969	(d) 4845
143.	In how many ways a co	mmittee of 5 members can be	e formed out of 8 gentlen	nen and 4 ladies, if one particular lady
	is always to be taken			
	(a) 140	(b) 330	(c) 560	(d) None of these
144.	How many words can t	$\frac{5}{2}$ $\frac{4}{3}$ $\frac{1}{2}$	ants and 2 vowers out o	f 5 consonants and 4 vowers
	(a) ${}^{5}C_{3} \times {}^{4}C_{2}$	(b) $\frac{{}^{5}C_{3} \times {}^{4}C_{2}}{5}$	(c) ${}^{5}C_{3} \times {}^{4}C_{3}$	(d) $({}^{5}C_{3} \times {}^{4}C_{2})(5)!$
145.	A male and a female ty	pist are needed in an institu	tion. If 10 ladies and 15	gentlemen apply, then in how many
	ways can the selection	be made		
	(a) 125	(b) 145	(c) 150	(d) None of these
146.	Everybody in a room number of persons in t	shakes hand with everyboo he room is	ly else. The total numl	per of hand shakes is 66. The total
	(a) 11	(b) 12	(c) 13	(d) 14
147.	There are 9 chairs in a	a room on which 6 persons a	are to be seated, out of	which one is guest with one specific
	chair. In how many wa	ys they can sit		
	(a) 6720	(b) 60480	(c) 30	(d) 346
148.	students in the class, the	pawali festival each student hen the total number of gree	of a class sends greetin ting cards exchanged by	the students is
	(a) $^{20}C_2$	(b) $2.^{20}C_2$	(c) $2.^{20} P_2$	(d) None of these
149.	A father with 8 childre	en takes them 3 at a time to t	the Zoological gardens,	as often as he can without taking the
	same 3 children togeth	er more than once. The num	ber of times he will go t	o the garden is
	(a) 336	(b) 112	(c) 56	(d) None of these
150.	In how many ways can	5 red and 4 white balls be d	rawn trom a bag contair	ning 10 red and 8 white balls

			Permi	utations and Combinations 231
				[EAMCET 1991; Pb. CET 2000]
	(a) ${}^{8}C_{5} \times {}^{10}C_{4}$	(b) ${}^{10}C_5 \times {}^8C_4$	(c) $^{18}C_9$	(d) None of these
151.	There are 15 person	ns in a party and each persor	n shake hand with another, th	en total number of hand shakes is [Raj
	(a) $^{15}P_2$	(b) $^{15}C_2$	(c) 15!	(d) 2(15!)
152.	A fruit basket conta from among the fru	ains 4 oranges, 5 apples and 1its in the basket is	6 mangoes. The number of w	vays person make selection of fruits
	(a) 210	(b) 209	(c) 208	(d) None of these
153.	In a cricket champi	ionship there are 36 matches	. The number of teams if eacl	h plays one match with other are [Karn
	(a) 8	(b) 9	(c) 10	(d) None of these
		Ad	vance Level	
154.	If ${}^{2n}C_3: {}^{n}C_2 = 44:3$,	then for which of the follow	ing values of <i>r</i> , the values of	${}^{n}C_{r}$ will be 15
	(a) $r = 3$	(b) $r = 4$	(c) $r = 6$	(d) $r = 5$
155.	${}^{n}C_{r} + {}^{n-1}C_{r} + \dots + {}^{r}C_{r}$	=		[AMU 2002]
	(a) $^{n+1}C_r$	(b) $^{n+1}C_{r+1}$	(c) $^{n+2}C_r$	(d) 2^{n}
156	The solution set of	$^{10}C > 2 ^{10}C$ is		
1.50.	(a) $\begin{cases} 1 & 2 & 2 \\ 2 & 3 \end{cases}$	$(b) \{4 \in 6\}$	(c) $\{8, 0, 10\}$	(d) $\{0, 10, 11\}$
157.	$\sum_{n=1}^{m} \sum_{j=1}^{n+r} C_{j} = 0$	(0) (4, 5, 0)	(0) (8, 9, 10)	(u) (9, 10, 11)
-3/1	$\sum_{r=0}^{\infty}$			
	(a) $^{n+m+1}C_{n+1}$	(b) $^{n+m+2}C_n$	(c) $^{n+m+3}C_{n-1}$	(d) None of these
158.	If $\alpha = {}^{m}C_2$, then ${}^{\alpha}C_2$	is equal to		
	(a) $^{m+1}C_4$	(b) $^{m-1}C_4$	(c) $3^{m+2}C_4$	(d) $3^{m+1}C_4$
159.	¹⁴ $C_4 + \sum_{j=1}^4 {}^{18-j}C_3$ is e	equal to		
	(a) $^{18}C_3$	(b) $^{18}C_4$	(c) $^{14}C_7$	(d) None of these
160.	If $a_n = \sum_{r=0}^n \frac{1}{{}^n C_r}$ then	$\sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} \text{equals}$		[IIT 1998]
	(a) $(n-1)a_n$	(b) <i>na_n</i>	(c) $\frac{1}{2}na_n$	(d) None of these
161.	In a football champ number of teams pa 1998]	pionship, there were played articipating in the champion	153 matches. Every team play ship is [Wes	yed one match with each other. The at Bengal JEE 1992; Kurukshetra CEE
	(a) 17	(b) 18	(c) 9	(d) 13
162.	Ten persons, amon if A wants to speak	gst whom are A, B and C to s before B and B wants to spe	speak at a function. The num ak before C is	ber of ways in which it can be done
	(a) $\frac{10!}{6}$	(b) 3!7!	(c) ${}^{10}P_3.7!$	(d) None of these
163.	The number of time	es the digit 5 will be written	when listing the integers from	m 1 to 1000 is
	(a) 271	(b) 272	(c) 300	(d) None of these
164.	All possible two fac total obtained whic	ctors products are formed fr ch are multiples of 5 is	om numbers 1, 2, 3, 4, 20	0. The number of factors out of the

232	2 Permutations and Co	mbinations		
	(a) 5040	(b) 7180	(c) 8150	(d) None of these
165.	A car will hold 2 in the ways in which the car car	front seat and 1 in the rear se an be filled is	eat. If among 6 persons 2 ca	an drive, then the number of
	(a) 10	(b) 20	(c) 30	(d) None of these
166.	The expression $^{n+1}C_2 + 2c_2$	$C_{2}^{2}C_{2} + C_{2}^{3}C_{2} + \dots + C_{2}^{n}$ can be reduce	ced to	
	(a) $\frac{n(n+1)}{2}$	(b) $\frac{n(n-1)}{2}$	(c) $\frac{n(n+1)(2n+1)}{6}$	(d) $\frac{n(2n+1)}{3}$
167.	The value of $({}^{7}C_{0} + {}^{7}C_{1}) + ({}^{7}C_{1}) + ($	$C_{1}^{7}C_{1} + C_{2}^{7} + \dots + (C_{6}^{7} + C_{7}^{7})$ is		[AMU 1990, 92]
	(a) $2^7 - 1$	(b) $2^8 - 2$	(c) $2^8 - 1$	(d) 2^8
168.	The expression ${}^{n}C_{r} + 4.{}^{n}C_{r}$	$C_{r-1} + 6.{}^{n}C_{r-2} + 4.{}^{n}C_{r-3} + {}^{n}C_{r-4}$ equa	ls	[AMU 1993, 91]
	(a) $^{n+4}C_r$	(b) $2 \cdot C_{r-1}^{n+4} = C_{r-1}$	(c) $4.{}^{n}C_{r}$	(d) $11.^{n}C_{r}$
		Number of Combinat	tions with Repetition and	l All possible Selections
		Basic L	evel	
169.	Ramesh has 6 friends. In	n how many ways can he invite	one or more of them at a dir	nner
	(a) 61	(b) 62	(c) 63	(d) 64
170.	Out of 10 white, 9 blac made, is	k and 7 red balls, the number	of ways in which selection	of one or more balls can be
	(a) 881	(b) 891	(c) 879	(d) 892
171.	Out of 6 books, in how r	nany ways can a set of one or m	nore books be chosen	[MP PET 1984]
150	(a) 64	(D) 63	(C) 62	(d) 65
172.	in which a student can f 2001]	fail to get all answers correct, is	stions and each question has	[Pb. CET 1990; UPSEAT
	(a) 11	(b) 12	(c) 27	(d) 63
173.	The total number of dif word 'MISSISSIPPI' is	ferent combinations of one or	more letters which can be	made from the letters of the
	(a) 150	(b) 148	(c) 149	(d) None of these
174.	The total number of way paise coins is	ys of selecting six coins out of 2	20 one rupee coins, 10 fifty j	paise coins and 7 twenty five
	(a) 28	(b) 56	(c) ${}^{37}C_6$	(d) None of these
		Advance	Level	
175.	In an election there are candidates but not great	e 8 candidates, out of which 5 a ter then the number to be chose	are to be chosen. If a voter on, then in how many ways c	may vote for any number of an a voter vote
	(a) 216	(b) 114	(c) 218	(d) None of these
176.	In an election the number of ways, then the number of	per of candidates is 1 greater the formation of candidates is	nan the persons to be electe	a. If a voter can vote in 254
4	(a) 7	(b) 10	(c) 8	(d) 6
177.	fourth player just one ca	aividing 52 cards amongst four ard, is	players so that three player	's nave 17 cards each and the
	(a) $\frac{52!}{(17!)^3}$	(b) 52 !	(c) $\frac{52!}{17!}$	(d) None of these

178. In a city no two persons have identical set of teeth and there is no person without a tooth. Also no person has more than 32 teeth. If we disregard the shape and size of tooth and consider only the positioning of the teeth, then the maximum population of the city is (d) 2^{32-1} (b) $(32)^2 - 1$ (c) $2^{32} - 1$ (a) 2^{32} **179.** The number of ways in which four letters of the word 'MATHEMATICS' can be arranged is given by [Kurukshetra CEE 1996; Pb. CET 1995] (a) 136 (b) 192 (c) 1680 (d) 2454 **180.** A person is permitted to select at least one and at most n coins from a collection of 2n+1 (distinct) coins. If the total number of ways in which he can select coins is 255, then *n* equals (a) 4 (b) 8 (c) 16 (d) 32 **181.** The total number of ways of selecting five letters from the letters of the word 'INDEPENDENT' is (d) None of these (a) 70 (b) 3320 (c) 120 **182.** There are *n* different books and *p* copies of each in a library. The number of ways in which one or more books can be selected is (a) $p^n + 1$ (b) $(p+1)^n - 1$ (c) $(p+1)^n - p$ (d) p^n Conditional Combinations, Derangement, Division into groups **Basic** Level 183. In how many ways can 21 English and 19 Hindi books be placed in a row so that no two Hindi books are together (a) 1540 (b) 1450 (c) 1504 (d) 1405 **184.** The number of ways in which five identical balls can be distributed among ten identical boxes such that no box contains more than one ball, is (b) $\frac{10!}{5!}$ (c) $\frac{10!}{(5!)^2}$ (d) None of these (a) 10 ! **185.** In how many ways can two balls of the same colour be selected out of 4 black and 3 white balls (b) 6 (d) 8 (a) 5 (c) 9 186. Ten persons are arranged in a row. The number of ways of selecting four persons so that no two persons sitting next to each other are selected is (a) 34 (b) 36 (c) 35 (d) None of these **187.** In a touring cricket team there are 16 players in all including 5 bowlers and 2 wicket-keepers. How many teams of 11 players from these, can be chosen, so as to include three bowlers and one wicket-keeper (a) 650 (b) 720 (c) 750 (d) 800 **188.** A total number of words which can be formed out of the letters *a*, *b*, *c*, *d*, *e*, *f* taken 3 together such that each word contains at least one vowel, is (d) None of these (a) 72 (b) 48 (c) 96 189. Out of 6 boys and 4 girls, a group of 7 is to be formed. In how many ways can this be done if the group is to have a majority of boys [MP PET 1994] (a) 120 (b) 90 (c) 100 (d) 80 **190.** Let *A* be a set containing 10 distinct elements. Then the total number of distinct functions from *A* to *A*, is **(b)** 10¹⁰ (c) 2^{10} (d) $2^{10} - 1$ (a) 10 ! 191. A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends, if two of the friends will not attend the party together is (a) 112 (b) 140 (d) None of these (c) 164 **192.** The number of ways in which *mn* students can be distributed equally among *n* sections is

	(a) $(mn)^n$	(b) $\frac{(mn)!}{(m!)^n}$	(c) $\frac{mn}{m!}$	(d) $\frac{mn}{m!n!}$
193.	There are 3 candidates f votes can be given is	or a post and one is to be selec	ted by the votes of 7 men. T	The number of ways in which
	(a) 7 ³	(b) 3^7	(c) 7C_3	(d) None of these
194.	In how many ways can 1	0 balls be divided between two	boys, one receiving two and	l the other eight balls
	(a) 45	(b) 75	(c) 90	(d) None of these
195.	The number of ways in number of apples, is	which thirty five apples can b	be distributed among 3 boy	s so that each can have any
	(a) 1332	(b) 666	(c) 333	(d) None of these
196.	The number of ways in least one prize is	which six different prizes can	be distributed among thre	e children each receiving at
	(2) 270	(b) 540	(c) 1080	[JMIEEE 1997]
	(a) 2/0	(0) 540	(0) 1000	(u) 2100
		Advance	Level	
197.	In how many ways can F	s. 16 be divided into 4 person v	when none of them get less t	han Rs. 3
_	(a) 70	(b) 35	(c) 64	(d) 192
198.	Two packs of 52 cards a he does not get two card	re shuffled together. The numb	er of ways in which a man on nomination is	can be dealt 26 cards so that
	(a) ${}^{52}C_{26}.2^{20}$	(b) $^{104}C_{26}$	(c) $2.{}^{32}C_{26}$	(d) None of these
199.	Choose the correct num of books	ber of ways in which 15 differe	nt books can be divided into	o five heaps of equal number
				[MP PET 1982]
	151	151		
	(a) $\frac{15!}{5!(3!)^5}$	(b) $\frac{15!}{(3!)^5}$	(c) $^{15}C_5$	(d) $^{15}P_5$
200.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num	(c) ${}^{15}C_5$ nent. Every participant play between themselves proved ober of participants is	(d) $^{15}P_5$ red two games with the other l to exceed by 66 the number
200.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved ober of participants is (c) 13	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these
200. 201.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can w	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 plours are to be placed in three ve place the balls so that no box	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved ober of participants is (c) 13 boxes of different sizes. Eac c remains empty	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these ch box can hold all five balls.
200. 201.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can w (a) 50	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The nun (b) 11 plours are to be placed in three we place the balls so that no box (b) 100	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved ober of participants is (c) 13 boxes of different sizes. Each c remains empty (c) 150	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these ch box can hold all five balls. (d) 200
200. 201. 202.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can v (a) 50 A box contains two whit	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved aber of participants is (c) 13 boxes of different sizes. Eac c remains empty (c) 150 ur red balls. In how many w	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) box can hold all five balls. (d) 200 rays can three balls be drawn
200. 201. 202.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can w (a) 50 A box contains two whit from the box if at least of (a) 64	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The nun (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for one black ball is to be included i	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved ober of participants is (c) 13 boxes of different sizes. Each c remains empty (c) 150 ur red balls. In how many w in the draw	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these
200. 201. 202. 203.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can w (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for one black ball is to be included i (b) 45 a committee be formed of 5 men	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved ober of participants is (c) 13 boxes of different sizes. Each c remains empty (c) 150 ur red balls. In how many w in the draw (c) 46 mbers from 6 men and 4 wo	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at
200. 201. 202. 203.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can v (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 blours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for one black ball is to be included i (b) 45 a committee be formed of 5 met	(c) ${}^{15}C_5$ ment. Every participant play between themselves proved aber of participants is (c) 13 boxes of different sizes. Eac c remains empty (c) 150 ur red balls. In how many w in the draw (c) 46 mbers from 6 men and 4 wo	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at
200. 201. 202. 203.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can w (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women (a) 186	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for one black ball is to be included i (b) 45 a committee be formed of 5 men (b) 246	(c) ${}^{15}C_5$ nent. Every participant play between themselves proved ober of participants is (c) 13 boxes of different sizes. Eac c remains empty (c) 150 ur red balls. In how many w in the draw (c) 46 mbers from 6 men and 4 wo (c) 252	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at [Rajasthan PET 1987; IIT 1968] (d) None of these
200. 201. 202. 203. 204.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can v (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women (a) 186 Six '+' and four '-' sign number of ways are	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The nun (b) 11 blours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for one black ball is to be included i (b) 45 a committee be formed of 5 men (b) 246 s are to placed in a straight lin	(c) ${}^{15}C_5$ nent. Every participant play between themselves proved aber of participants is (c) 13 boxes of different sizes. Each c remains empty (c) 150 ur red balls. In how many w in the draw (c) 46 mbers from 6 men and 4 wo (c) 252 ne so that no two '-' signs c	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at [Rajasthan PET 1987; IIT 1968] (d) None of these come together, then the total
200. 201. 202. 203. 204.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can v (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women (a) 186 Six '+' and four '-' sign number of ways are (a) 15	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and fo one black ball is to be included i (b) 45 a committee be formed of 5 men (b) 246 s are to placed in a straight lin (b) 18	(c) ${}^{15}C_5$ nent. Every participant play between themselves proved aber of participants is (c) 13 boxes of different sizes. Each c remains empty (c) 150 ur red balls. In how many w in the draw (c) 46 mbers from 6 men and 4 wo (c) 252 the so that no two '-' signs c (c) 35	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at [Rajasthan PET 1987; IIT 1968] (d) None of these ome together, then the total [IIT 1988] (d) 42
200. 201. 202. 203. 204. 205.	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can v (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women (a) 186 Six '+' and four '-' sign number of ways are (a) 15 The number of groups to balls, if at least 1 green	 (b) 15!/(3!)⁵ participating in a chess tournaries of games that the men played layed with the women. The num (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and for one black ball is to be included i (b) 45 a committee be formed of 5 met (b) 246 s are to placed in a straight line (b) 18 hat can be made from 5 differe and 1 blue ball is to be included 	(c) ${}^{15}C_5$ nent. Every participant play between themselves proved aber of participants is (c) 13 boxes of different sizes. Each c remains empty (c) 150 ur red balls. In how many w in the draw (c) 46 mbers from 6 men and 4 wo (c) 252 te so that no two '-' signs c (c) 35 nt green balls, 4 different b	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at [Rajasthan PET 1987; IIT 1968] (d) None of these come together, then the total [IIT 1988] (d) 42 olue balls and 3 different red
 200. 201. 202. 203. 204. 205. 	(a) $\frac{15!}{5!(3!)^5}$ There were two women participants. The number of games that the men p (a) 6 Five balls of different co In how many ways can w (a) 50 A box contains two whit from the box if at least of (a) 64 In how many ways can a least one women (a) 186 Six '+' and four '-' sign number of ways are (a) 15 The number of groups to balls, if at least 1 green (a) 3700	(b) $\frac{15!}{(3!)^5}$ participating in a chess tournar er of games that the men played layed with the women. The num (b) 11 plours are to be placed in three we place the balls so that no box (b) 100 e balls, three black balls and fo one black ball is to be included i (b) 45 a committee be formed of 5 men (b) 246 s are to placed in a straight lin (b) 18 hat can be made from 5 differe and 1 blue ball is to be included (b) 3720	 (c) ¹⁵ C₅ nent. Every participant play between themselves proved there of participants is (c) 13 boxes of different sizes. Each cremains empty (c) 150 ur red balls. In how many with the draw (c) 46 mbers from 6 men and 4 work (c) 252 a so that no two '-' signs constrained to the signed of the signe	 (d) ¹⁵ P₅ red two games with the other d to exceed by 66 the number (d) None of these (d) 200 rays can three balls be drawn (d) None of these omen if the committee has at [Rajasthan PET 1987; IIT 1968] (d) None of these come together, then the total [IIT 1988] (d) 42 olue balls and 3 different red (d) None of these

		(h.) C -		
קו	(a) 125	(b) 60 s to be formed from 0 wom	(C) 10 en and 8 men in which at least	(d) 25
•/•	committee. Then th	e number of committees in	which the women are in maj	ority and men are in majority are
	respectively		[IIT 1994]	
	(a) 4784, 1008	(b) 2702, 3360	(c) 6062, 2702	(d) 2702, 1008
8.	The number of way that two particular	s in which 10 persons can persons will not go in the s	go in two boats so that there a ame boat is	may be 5 on each boat, supposing
	(a) $\frac{1}{2} ({}^{10}C_5)$	(b) $2({}^{8}C_{4})$	(c) $\frac{1}{2}({}^{8}C_{5})$	(d) None of these
9.	There are 10 person arrange them in a li	ns named <i>A, B,J</i> . We have ne if <i>A</i> is must and <i>G</i> and <i>H</i>	e the capacity to accommodate I must not be included in the tea	only 5. In how many ways can we am of 5
	(a) ${}^{8}P_{5}$	(b) 7P_5	(c) ${}^7C_3(4!)$	(d) ${}^7C_3(5!)$
ο.	The number of way even numbers is	s in which we can select th	nree numbers from 1 to 30 so a	as to exclude every selection of all
	(a) 4060	(b) 3605	(c) 455	(d) None of these
ι.	In a steamer there a to be shipped. They	are stalls for 12 animals and can be loaded in	d there are horses, cows and ca	alves (not less than 12 each) ready
	(a) $3^{12} - 1$	(b) 3^{12}	(c) $(12)^3 - 1$	(d) None of these
2.	There are $(n+1)$ where $n = 1$	hite and $(n+1)$ black balls e	each set numbered 1 to $n+1$.	The number of ways in which the
	balls can be arrange	ed in a row so that the adjac	cent balls are of different colou	rs is $(P_{1}, Q_{1}, Q_{2}, Q_{3})$
	(a) $(2n+2)!$	(b) $(2n+2)! \times 2$	(c) $(n+1)! \times 2$	(d) $2\{(n+1)!\}^2$
3.	Sixteen men compe if there were altoge	te with one another in run ther 6 prizes of different va	ning, swimming and riding. Ho alues one for running, 2 for swi	ow many prize lists could be made mming and 3 for riding
	(a) $16^3 \times 15 \times 14^2$	(b) $16^3 \times 15^2 \times 14$	(c) $16 \times 15 \times 14$	(d) None of these
4.	The number of way the committee cont	s in which a committee of a ains at least 3 ladies is	6 members can be formed from	n 8 gentlemen and 4 ladies so that
	(a) 252	(b) 672	(c) 444	(d) 420
5.	A student is to answer first five questions.	The number of choices ava	in an examination such that he ilable to him is	e must choose at least 4 from the
6	(a) 140 The number of way	(D) 196	(c) 280	(0) 346
).	(a) ${}^{8}C_{3}$	(b) 21	(c) 3^8	(d) 5
7.	In the next World C play a match again each team will pla where each team v where they will pla	up of cricket there will be 1 st each other. From each g y against others once. Fou vill play against the others y the best of three matches.	2 teams, divided equally in two group 3 top teams will qualify r top teams of this round will s once. Two top teams of this . The minimum number of matc	o groups. Teams of each group will for the next round. In this round l qualify for the semifinal round, round will go to the final round, thes in the next World Cup will be
	(a) 54	(b) 53	(c) 38	(d) None of these
8.	Let $a = \hat{i} + \hat{j} + \hat{k}$ and	r be a variable vector su	ch that $r.i, r.j$ and $r.k$ are positive	itive integers. If $r.a \le 12$ then the
	number of values of	r is		
	(a) ${}^{12}C_9 - 1$	(b) ${}^{12}C_3$	(c) $^{12}C_9$	(d) None of these
9.	A man has 7 relativ ways can they invit (a) 485 (c) 468	ves, 4 women and 3 men. H e 3 women and 3 men so th	His wife also has 7 relatives, 3 at 3 of them are the man's relat (b) 484 (d) None of these	women and 4 men. In how many tives and 3 his wife's
20.	A person wishes to consists of the same	make up as many differe e number of persons. The nu	nt parties as he can out of his umber of friends he should invi	s 20 friends such that each party te at a time is
	(a) 5	(D) 10	(C) 8	(a) None of these

221.	The number of triangle	es that can be formed by 5 point	ts in a line and 3 point	s on a parallel line is							
	(a) ${}^{8}C_{3}$	(b) ${}^{8}C_{3} - {}^{5}C_{3}$	(c) ${}^{8}C_{3} - {}^{5}C_{3} - 1$	(d) None of these							
222.	The maximum number	r of points of intersection of 20	straight lines will be								
	(a) 190	(b) 220	(c) 200	(d) None of these							
223.	If a polygon has 44 dia	agonals, then the number of its s	sides are	[MP PET 1998; Pb. CET 1996]							
	(a) 7	(b) 11	(c) 8	(d) None of these							
224.	How many triangles ca	an be drawn by means of 9 non-	collinear points								
	(a) 84	(b) 72	(c) 144	(d) 126							
225.	The number of diagon	als in a polygon of <i>m</i> sides is	[BIT Ranchi 19	92; MP PET 1999; UPSEAT 1999; DCE 1999]							
	(a) $\frac{1}{2!}m(m-5)$	(b) $\frac{1}{2!}m(m-1)$	(c) $\frac{1}{2!}m(m-3)$	(d) $\frac{1}{2!}m(m-2)$							
226.	In a plane there are 10 joining these points ar	o points out of which 4 are coll re	inear, then the numbe	er of triangles that can be formed by							
				[Rajasthan PET 1990]							
	(a) 60	(b) 116	(c) 120	(d) None of these							
227.	There are 16 points in	a plane out of which 6 are coll	inear, then how many	lines can be drawn by joining these							
	points			[Rajasthan PET 1986; MP PET 1987]							
	(a) 106	(b) 105	(c) 60	(d) 55							
228.	The number of paralle	elograms that can be formed fr	om a set of four para	llel lines intersecting another set of							
	three parallel lines is										
	(-) ([West	t Bengal JEE 1993; Rajasthan PET 2001]							
	(a) o	(D) 18	(C) 12	(0) 9							
229.	(a) 22	(b) 64	(a) $\pi \epsilon$								
220	(d) 32 Thora are 16 points in	(0) 04	(C) 70	(0) 104							
230.	The number of triangles that can be formed by joining them equals										
	(a) $EO4$	(b) 552	(c) = 50	(d) 1120							
221	(a) 504 Let T denote the num	ber of triangles which can be f	ormed using the vertic	(u) 1120 res of a regular polygon of n sides. If							
231.	T = T = 21 then n constraints	vola	Since using the vertic	tes of a regular polygon of <i>n</i> sides. If							
	$I_{n+1} - I_n = 21$ then <i>n</i> eq	uals									
	(a) 5	(b) 7	(c) 6	(d) 4							
232.	Out of 10 points in a p	plane 6 are in a straight line. Th	e number of triangles	formed by joining these points are [Rajast							
	(a) 100	(b) 150	(c) 120	(d) None of these							
233.	The number of straigh	It lines that can be formed by jo	ining 20 points no thr	ree of which are in the same straight							
	line except 4 of them v	which are in the same line									
	(a) 183	(b) 186	(c) 197	(d) 185							
234.	There are <i>n</i> distinct p	oints on the circumference of a	circle. The number of	t pentagons that can be formed with							
	these points as vertice	es is equal to the number of poss	sible triangles. Then the	ne value of n 1S							
	(a) 7	(b) 8	(c) 15	(d) 30							
235.	is [AMU 2002]	ts of lengths 2, 3, 4, 5, 6, 7 units	s, the number of trian	gle that can be formed by these lines							
	(a) ${}^{6}C_{3}-7$	(b) ${}^{6}C_{3} - 6$	(c) ${}^{6}C_{3}-5$	(d) ${}^{6}C_{3}-4$							
236.	A polygon has 35 diago	onals, then the number of its sid	les is								
	(a) 8	(b) 9	(c) 10	(d) 11							
237.	If 5 parallel straight liformed is	ines are intersected by 4 parall	el straight lines, then	the number of parallelograms thus							

Permutations and Combinations 237 [Kurukshetra CEE 1999] (c) 101 (d) 126 (b) 60 (a) 20 **238.** The maximum number of points of intersection of 8 circles, is (a) 16 (b) 24 (c) 28 (d) 56 **239.** There are 10 points in a plane of which no three points are collinear and 4 points are concyclic. The number of different circles that can be drawn through at least 3 points of these points is (a) 116 (b) 120 (c) 117 (d) None of these Advance Level 240. The sides AB, BC, CA of a triangle ABC have respectively 3, 4 and 5 points lying on them. The number of triangles that can be constructed using these points as vertices is (a) 205 (b) 220 (d) None of these (c) 210 241. Six 'x's have to be placed in the square of the figure such that each row contains at least one x. In how many different ways can this be done (a) 28 (b) 27 (c) 26 (d) None of these **242.** The straight lines I_1, I_2, I_3 are parallel and lie in the same plane. A total number of *m* points are taken on I_1 , *n* points on I_2 , k points on I_3 . The maximum number of triangles formed with vertices at these points are [IIT 1993; UPSEAT 2001] (a) $^{m+n+k}C_3$ (b) ${}^{m+n+k}C_3 - {}^{m}C_3 - {}^{n}C_3 - {}^{k}C_3$ (c) ${}^{m}C_3 + {}^{n}C_3 + {}^{k}C_3$ (d) None of these 243. Six points in a plane be joined in all possible ways by indefinite straight lines, and if no two of them be coincident or parallel, and no three pass through the same point (with the exception of the original 6 points). The number of distinct points of intersection is equal to (a) 105 (b) 45 (c) 51 (d) None of these 244. There are m points on a straight line AB and n points on another line AC, none of them being the point A. Triangles are formed from these points as vertices when (i) A is excluded (ii) A is included. Then the ratio of the number of triangles in these two cases is (a) $\frac{m+n-2}{m+n}$ (b) $\frac{m+n-2}{2}$ (c) $\frac{m+n-2}{m+n+2}$ (d) None of these **245.** There are *n* straight lines in a plane, no two of which are parallel and no three pass through the same point. Their points of intersection are joined. Then the number of fresh lines thus obtained is (b) $\frac{n(n-1)(n-2)(n-3)}{6}$ (c) $\frac{n(n-1)(n-2)(n-3)}{8}$ (a) $\frac{n(n-1)(n-2)}{8}$ (d) None of these **246.** A parallelogram is cut by two sets of *m* lines parallel to its sides. The number of parallelograms thus formed is **[Karna**: (a) $({}^{m}C_{2})^{2}$ (b) $\binom{m+1}{2}C_2^2$ (c) $\binom{m+2}{2}C_2^2$ (d) None of these **247.** In a plane there are 37 straight lines of which 13 pass through the point *A* and 11 pass through the point *B*. Besides no three lines pass through one point, no line passes through both points A and B and no two are parallel. Then the number of intersection points the lines have is equal to (b) 601 (c) 728 (d) None of these (a) 535 248. There are *n* points in a plane of which *p* points are collinear. How many lines can be formed from these points[Karnata (c) ${}^{n}C_{2} - {}^{p}C_{2} + 1$ (a) $^{(n-p)}C_2$ (b) ${}^{n}C_{2} - {}^{p}C_{2}$ (d) ${}^{n}C_{2} - {}^{p}C_{2} - 1$ 249. ABCD is a convex quadrilateral. 3, 4, 5 and 6 points are marked on the sides AB, BC, CD and DA respectively. The number of triangles with vertices on different sides is (a) 270 (b) 220 (c) 282 (d) 342 **250.** The number of triangles that can be formed joining the angular points of decagon, is

	(a) 30	(b) 45	(c) 90	(d) 120							
251.	The number of triangles whose vertices are at the vertices of an octagon but none of whose sides happen										
	come from the sides of t	he octagon is									
	(a) 24	(b) 52	(c) 48	(d) 16							
252.	In a polygon no three	diagonals are concurrent. If t	he total number of points	of intersection of diagonals							
	interior to the polygon t	(b) 28	nais of the polygon is	(d) None of these							
252	(d) 20 There are $n(>2)$ points is	(U) 28	(C) 8	(d) None of these							
253.	line by a line segment drawn within the lines. The number of points (between the lines) in which the										
	segments intersect is	drawn within the mes. me	number of points (betwee	in the inles) in which these							
	(a) ${}^{2n}C_2 - 2.{}^{n}C_1 + 2$	(b) ${}^{2n}C_2 - 2.{}^{n}C_2$	(c) ${}^{n}C_{2} \times {}^{n}C_{2}$	(d) None of these							
254	m narallel lines in a play	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	of n parallel lines. The total	number of parallelograms so							
294.	formed is										
	(m-1)(n-1)	mn	m(m-1)n(n-1)	(d) $mn(m-1)(n-1)$							
	(a) $\frac{4}{4}$	(b) $\frac{1}{4}$	$(c) = \frac{2}{2}$	(d) $$							
255.	5. There are three coplanar parallel lines. If any <i>p</i> points are taken on each of the lines, the maximum number										
	triangles with vertices a	t these points									
	(a) $3p^2(p-1)+1$	(b) $3p^2(p-1)$	(c) $p^2(4p-3)$	(d) None of these							
		Multinomial	Theorem Number of Divi	core and Missellaneous							
		Mutthomat	Theorem, Number of Divi	sors and miscellaneous							
		Basic Le	evel								
2=6	If $^{n}D = \Box D \cap ^{n}C$ then π										
256.	If $P_r = 720$. C_r , then r	is equal to		[Kerala (Engg.) 2001]							
	(a) 6	(b) 5	(c) 4	(d) 7							
257.	If ${}^{n}P_{4} = 24$. ${}^{n}C_{5}$, then the	value of <i>n</i> is		[Karnataka CET 2001]							
	(a) 10	(b) 15	(c) 9	(d) 5							
258.	If ${}^{n}P_{3} + {}^{n}C_{n-2} = 14 n$, then	<i>n</i> =									
	(a) 5	(b) 6	(c) 8	(d) 10							
259.	If ${}^{n}P_{4} = 30 {}^{n}C_{5}$, then $n =$			[MP PET 1995]							
	(a) 6	(b) 7	(c) 8	(d) 9							
260.	If ${}^{n}P_{r} = 840, {}^{n}C_{r} = 35$, then	n is equal to		[EAMCET 1986]							
	(a) 1	(b) 3	(c) 5	(d) 7							
261	If ${}^{n}C - {}^{n}C$ and ${}^{n}P - {}^{n}H$	p then the value of n is									
201.	$\prod_{r=0}^{n} C_r = C_{r-1} \text{and} T_r = T$	(b) 4	(c) 2								
	(a) 3	(b) 4	(0) 2	(d) 5							
262.	$P_r \div C_r =$			[MP PET 1984]							
	(a) <i>n</i> !	(b) $(n-r)!$	(c) $\frac{1}{r!}$	(d) <i>r</i> !							
- 6 -			r!	Cartan in							
263.	If a, b, c, d, e are prime in	(h) =	isors of ab^2c^2de excluding 1	as a factor, is							
	(a) 94		(C) 36	(d) 71							
264.	ine number of proper d	(h) 24	(a) 27	(d) None of these							
_	(a) 18	(U) 34	(C) 27	(u) None of these							
265.	The number of odd prop	er divisors of $3^p.6^m.21^n$ is									
	(a) $(p+1)(m+1)(n+1) - 2$	(b) $(p+m+n+1)(n+1)-1$	(c) $(p+1)(m+1)(n+1) - 1$	(a) None of these							

266. The number of proper divisors of $2^{p}.6^{q}.15^{r}$ is

			Permutation	ns and Combinations 239										
	(a) $(p+q+1)(q+r+1)$	(r + 1)	(b) $(p+q+1)(q+r+1)(r+1)-2$											
	(c) $(p+q)(q+r)r-2$		(d) None of these											
267.	The number of even p	proper divisors of 1008 is												
	(a) 23	(b) 24	(C) 22	(d) None of these										
	Advance Level													
268.	8. The number of numbers of 4 digits which are not divisible by 5 are													
	(a) 7200	(b) 3600	(c) 14400	(d) 1800										
269.	269. A set contains $(2n + 1)$ elements. The number of subsets of the set which contain at most <i>n</i> elements is													
	(a) 2^n	(b) 2^{n+1}	(c) 2^{n-1}	(d) 2^{2n}										
270.	o. The number of ways in which an examiner can assign 30 marks to 8 questions, awarding not less than 2 ma to any question is													
	(a) $^{21}C_7$	(b) ${}^{30}C_{16}$	(c) $^{21}C_{16}$	(d) None of these										
271.	In a certain test a_i s	students gave wrong answers to	at least i questions where i	$k = 1, 2, 3, \dots, k$. No student gave										
	more than <i>k</i> wrong answers. The total numbers of wrong answers given is													
	(a) $a_1 + 2a_2 + 3a_3 + \dots + a_{n-1} + \dots + \dots + a_{n-1} + \dots + \dots + a_{n-1} + \dots + a_{n-1} + \dots + a_{n-1} + \dots + \dots + a_{n-1} + \dots + $	$+ka_k$	(b) $a_1 + a_2 + a_3 + \dots + a_k$											
	(c) Zero		(d) None of these											
272. is giv	Number of ways of ven by	selection of 8 letters from 24	t letters of which 8 are a,	8 are <i>b</i> and the rest unlike										
	(a) 2^7	(b) 8.2^8	(c) 10.2^7	(d) None of these										
273.	73. The number of ordered triplets of positive integers which are solutions of the equation $x + y + z = 100$ is													
	(a) 6005	(b) 4851	(c) 5081	(d) None of these										
274.	A person goes in for paper. The number of	an examination in which there f ways in which one can get 2 <i>m</i> i	e are four papers with a max marks is	imum of m marks from each										
	(a) $^{2m+3}C_3$	(b) $\frac{1}{3}(m+1)(2m^2+4m+1)$	(c) $\frac{1}{3}(m+1)(2m^2+4m+3)$	(d) None of these										
275.	The sum $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$	i , $\left(\text{where } \begin{pmatrix} p \\ q \end{pmatrix} = 0 \text{ if } p < q \right)$, is maxim	mum when <i>m</i> is	[IIT Screening 2002]										
	(a) 5	(b) 15	(c) 10	(d) 20										
276.	The number of diviso	ors of the form $4n+2(n \ge 0)$ of the	e integer 240 is											
	(a) 4	(b) 8	(C) 10	(d) 3										

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	d	a	b	d	a	d	d	a	a	d	d	d	a	b	с	a	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	a	с	b	с	с	a	a	a	b	b	с	b	a	с	b	a	с	с	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	d	d	b	b	b	a	с	a	a	с	a	a	b	с	с	b	a	b	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с	b	a	a	с	с	a	b	b	d	с	b	a	с	а	b	b	с	d	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	a	a	с	с	b	d	b	a	a	с	a	с	с	d	b	d	a	d	с
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	с	с	a	d	b	b	d	a	b	a	a	a	с	b	b	a	с	b	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
с	d	a	b	d	a	d	b	a	с	d	с	d	a	а	b	b	d	a	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
d	d	b	d	с	b	a	b	с	b	b	b	b	b	b	с	a	d	b	с
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	a	с	b	b	с	b	a	с	с	b	d	с	a	с	с	a	с	d	a
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
а	b	a	с	с	с	b	с	с	b	b	b	b	с	b	b	b	a	a	с
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
с	a	b	с	b	d	d	b	d	b	b	d	b	a	b	b	b	b,c	a	b
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	a	b	a	с	b	a	b	d	a	b	a	d	b	b	с	b	d	с	a
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
с	b	с	a	с	с	a	с	d	d	d	a	с	d	с	a	с	a	с	d
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276				
а	d	d	а	b	b	a	а	d	a	b	с	b	с	b	a				

Permutations and