Chapter 11

Inequalities

CHAPTER HIGHLIGHTS

Inequalities and Modulus

Symbols and Notations

- 🖙 Absolute Value
- Properties of Modulus

INEQUALITIES AND MODULUS

If 'a' is any real number, then 'a' is either positive or negative or zero. When 'a' is positive, we write a > 0, which is read 'a is greater than zero'. When 'a' is negative, we write a < 0, which is read 'a is less than zero'. If 'a' is zero, we write a = 0 and in this case, 'a' is neither positive nor negative.

Symbols and Notations

- '>' means 'greater than'
- '<' means 'less than'
- $^{\prime}$ ≥' means 'greater than or equal to'
- ' \leq ' means 'less than or equal to'

For any two non-zero real numbers *a* and *b*,

- 1. *a* is said to be greater than *b* when a b is positive.
- 2. *a* is said to be less than *b* when a b is negative.

These two statements are written as

- 1. a > b when a b > 0 and
- 2. a < b when a b < 0.

For example,

3 is greater than 2 because 3 - 2 = 1 and 1 is greater than zero. -3 is less than -2 because -3 - (-2) = -1 and -1 is less than zero.

Certain properties and useful results pertaining to inequalities are given below. A thorough understanding of these properties results is very essential for being able to solve the problems pertaining to inequalities.

[In the following list of properties and results, numbers like *a*, *b*, *c*, *d*, etc. are real numbers.]

- For any two real numbers a and b, either a > b or a < b or a = b.
- 2. If a > b, then b < a.
- 3. If $a \leq b$, then $a \geq b$ and if a > b, then $a \leq b$.
- 4. If a > b and b > c, then a > c.
- 5. If a < b and b < c, then a < c.
- 6. If a > b, then $a \pm c > b \pm c$.
- 7. If a > b and c > 0, then ac > bc.
- 8. If a < b and c > 0, then ac < bc.
- 9. If a > b and c < 0, then ac < bc.
- 10. If a < b and c < 0, then ac > bc.
- 11. If a > b and c > d, then a + c > b + d.
- 12. If a < b and c < d, then a + c < b + d.
- 13. Let *A*, *G* and *H* be the Arithmetic mean, Geometric mean and Harmonic mean of n positive real numbers. Then $A \ge G \ge H$, the equality occurring only when the numbers are all equal.

1.146 | Part I = Part B = Unit I = Quantitative Aptitude

- 14. If the sum of two positive quantities is given, their product is the greatest when they are equal; if the product of two positive quantities is given, their sum is the least when they are equal.
- 15. If a > b and c > d, then we cannot say anything conclusively about the relationship between (a b) and (c d); depending on the values of a, b, c, and d, it is possible to have

(a-b) > (c-d), (a-b)= (c-d) or (a-b) < (c-d).

Absolute Value

(written as |x| and read as 'modulus of x')

For any real number *x*, the absolute value is defined as follows:

$$|x| = \begin{cases} x, & \text{if } x \ge 0 \text{ and} \\ -x, & \text{if } x < 0 \end{cases}$$

Properties of Modulus

For any real number *x* and *y*,

1.
$$x = 0 \Leftrightarrow |x| = 0$$

2. $|x| \ge 0 \text{ and } -|x| \le 0$
3. $|x + y| \le |x| + |y|$
4. $||x| - |y|| \le |x - y|$
5. $-|x| \le x \le |x|$
6. $|x \cdot y| = |x| \cdot |y|$
7. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}; (y \ne 0)$
8. $|x|^2 = x^2$

In inequalities, the variables generally take a range of values unlike in the case of equations where the variables in general, take one value or a discrete set of values. (In some specific cases, the variables may take only one value.)

Solved Examples

Example 1

If $13x - 19 \le 4x + 26$, find the range of *x*.

Solution

 $13x - 4x \le 26 + 19$

 $x \leq 5$.

 $(-\infty, 5]$ in the interval notation.

Example 2

Solve the following inequalities:

5x + 21 < 46 and 4x + 18 < 54.

Solution

$$5x + 21 < 46 \Longrightarrow x < 5$$

The common inequality satisfying (1) and (2) is x < 5 or $(-\infty, 5)$ in the interval notation.

(2)

Example 3

Which of the numbers 50^{51} and 51^{50} is greater?

 $4x + 18 < 54 \implies x < 9$

Solution

Let $a = 50^{51}$ and $b = 51^{50}$.

$$\frac{b}{a} = \frac{51^{50}}{50^{51}} = \left(\frac{51}{50}\right)^{50} \left(\frac{1}{50}\right) = \left(1 + \frac{1}{50}\right)^{50} \left(\frac{1}{50}\right)$$

$$\left(1+\frac{1}{x}\right)^{x} \text{ where } x > 0 \text{ always lies between } 2 \text{ and } 2.8$$

$$\therefore \quad \frac{b}{a} \text{ lies between} \\ \frac{2}{50} = 0.04 \text{ and } \frac{2.8}{50} = 0.056$$

$$\therefore \qquad \frac{b}{a} < 1$$

$$\therefore \qquad a > b.$$

Example 4

Solve for *x* if $4x^2 - 21x + 20 > 0$

Solution

$$4x^2 - 21x + 20 > 0 \Longrightarrow (4x - 5) (x - 4) > 0$$

Both factors are positive (i.e. the smaller is positive) or both are negative (i.e. the greater is negative), i.e. x > 4 or $x < \frac{5}{4}$ or it can be expressed in the interval notation as $(4, \infty) \cup \left(-\infty, \frac{5}{4}\right)$

Example 5

Solve for *x*, if
$$\frac{x^2 + 5x - 24}{2x^2 - 5x - 3} < 0$$

Solution

(1)

$$x^{2} + 5x - 24 = (x + 8) (x - 3)$$

Similarly $2x^{2} - 5x - 3 = (2x + 1) (x - 3)$
Given: $\frac{x^{2} + 5x - 24}{2x^{2} - 5x - 3} < 0$
 $\Rightarrow \qquad \frac{(x + 8)(x - 3)}{(2x + 1)(x - 3)} < 0$
 $\Rightarrow \qquad \frac{x + 8}{2x + 1} < 0$
 $\frac{(x + 8)(2x + 1)}{(2x + 1)^{2}} < 0$

$$\Rightarrow \qquad (x+8)\left(x+\frac{1}{2}\right) < 0$$
$$\therefore \qquad -8 < x < -\frac{1}{2}.$$

Example 6

Solve the inequality |3x + 6| > -12.

Solution

The modulus of any number is always non-negative.

 $\therefore \qquad |3x+6| \ge 0.$

 \therefore The given inequality is always satisfied.

 \therefore $-\infty < x < \infty$

Example 7

Solve the inequality |2x + 4| < -6.

Solution

The modulus of any number is always non-negative.

 $\therefore \qquad |2x+4| \ge 0$

: The given inequality will never satisfy. The solution is null set.

Example 8

Solve for *x*: |2x - 3| = 5

Solution

$$2x - 3 = 5$$
 or $2x - 3 = -5$
(If $|y| = a, y = \pm a$) $\Rightarrow x = 4$ or $x = -1$.

Find the maximum value of

$$g(x) = 16 - |-x - 6|; x \in R.$$

Solution

g(x) is maximum when |-x-6| is minimum.

The minimum value of the modulus of all numbers is 0.

 \therefore The maximum value of g(x) = 16 - 0 = 16.

Exercises

Direction for questions 1 to 25: Select the correct alternative from the given choices.

1. If a < b and c < 0, then which of the following is true?

(A)
$$ac < bc$$

(B) $\frac{a}{c} < \frac{b}{c}$
(C) $ac > bc$
(D) None of these

2. If p and q are two real numbers, then which of the following statements is always true?

(A)
$$\frac{p}{q} < 1 \Rightarrow p < q$$

(B) $p > 0, q > 0$ and $\frac{p}{q} > 1 \Rightarrow p > q$
(C) $\frac{p}{q} > 1 \Rightarrow p > q$

- (D) All the above
- 3. If 5x 8 < 2x + 9 and 4x + 7 > 7x 8, then the range of the values of x that satisfies the inequalities is $(A) (5 \infty) = (B) (\infty 5)$

(Λ) $(3, \infty)$	(D) $(-\infty, 3)$		
(C) $\left(5, \frac{17}{3}\right)$	(D) $\left(-\infty, \frac{17}{3}\right)$		

4. Solve for real values of x; $5x^2 - 3x - 2 \ge 0$.

(A) $\left\lfloor \frac{-2}{5}, 1 \right\rfloor$	(B) $R - \left(\frac{-2}{5}, 1\right)$
(C) [1,∞)	(D) $R - (0, 1)$

5. If x² - 9x - 36 is negative, then find the range of x.
(A) (-3, 12)
(B) [-3, 12]
(C) (-12, 3)
(D) [-12, 3]

The maximum value of g(x) = 10

6 Which of the following is

6. Which of the following is true?

(A)
$$|x+y| \le |x|+|y|$$
 (B) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}, y \ne 0$

(C)
$$|x-y| \ge ||x|-|y||$$
 (D) All the above

7. If 6x + 8 > 7x - 9 and 4x - 7 < 6x - 3, then the values of *x* is

(B) (2, 17)

(D) 4

- (C) (-2, 17) (D) $(-\infty, 17)$
- 8. The solution set of the inequality |x-5|<9 is
 (A) (0, 14) (B) (-4, 14) (C) (-4, 0) (D) (9, 14)
- 9. The number of integral values of x that do not satisfy the inequation $\frac{x+5}{2} \ge 0$ is

$$x-2$$

10. If $(x + 5) (x + 9) (x + 3)^2 < 0$, then the solution set for the inequality is (A) (-9, -3) (B) (-9, -5)

(A)
$$(-9, -3)$$
 (B) $(-9, -5)$
(C) $(-3, \infty)$ (D) $(-9, \infty)$

- 11. Find the range of the real values of x satisfying $8-3x \le 5$ and $4x + 5 \le -7$.
 - (A) [-3, 1](B) $(-\infty, -3] \cup [1, \infty)$ (C) (-3, 1)(D) ϕ
- 12. Which of the following is true? (A) $30^{31} < 31^{30}$ (B) $71^{69} > 70^{70}$
 - (C) $(155)^{29} < (150)^{30}$ (D) Both (B) and (C)

1.148 | Part I = Part B = Unit I = Quantitative Aptitude

13.	At what value of x is $- x - 3 $	$3 + \frac{21}{2}$ maximum?	20. The range of x for which $2x^2 - 5x - 8 \le 2x^2 + x $ is				
	(A) -3 (B) $\frac{21}{2}$	2 (C) 0 (D) 3	(A) $\left[-\frac{4}{3},\infty\right)$ (B) $\left(-\frac{4}{3},-1\right)$				
14. 15.	Find the range of all real val (A) $(8, \infty)$ (C) $(-5/3, 8)$ If $ac = bd = 2$, then the m $c^2 + d^2$ is (A) 4 (B) 6	ues of x if $ 3x + 5 < 5x - 11$. (B) $(-\infty, -5/3) \cup (8, \infty)$ (D) $(-5/3, \infty)$ inimum value of $a^2 + b^2 +$ (C) 8 (D) 16	(C) $[-1, \infty)$ (D) $[-1, 2]$ 21. For how many integral values of x , is the inequation $\frac{x-5}{x+7} > 4$ satisfied? (A) 5 (B) 4 (C) 2 (D) 3 22. If $1 \le x \le 3$ and $2 \le y \le 5$, then the minimum value of $x+y$				
16.	If $x, y > 0$ and $x + y = 3$ then (A) $xy \le 0.72$ (C) $xy \le 2.25$	(B) $xy \le 1.8$ (D) $xy \le 1.25$	$\frac{x+y}{y} \text{ is}$ (A) $\frac{3}{5}$ (B) $\frac{1}{5}$ (C) $\frac{6}{5}$ (D) $\frac{5}{6}$				
17.	Find the complete range or $ x - 16 > x^2 - 7x + 24$. (A) (0, 2)	f values of x that satisfies (B) $\left(\frac{3}{2}, \frac{5}{2}\right)$ (D) (2, 4)	23. If $ b \ge 5$ and $x = a b$, which of the following is true? (A) $a - xb > 0$ (B) $a + xb < 0$ (C) $a + xb > 0$ (D) $a - xb \le 0$ 24. Find the number of colutions of the equation				
18.	For which of the following r less than $x^3 + 1$? (A) $(-\infty, -1)$	(D) $(2, 4)$ range of values of x is $x^2 + x$ (B) $(1, \infty)$	24. Find the number of solutions of the equation $ x- x-2 = 6$. (A) 2 (B) 1 (C) 3 (D) 4 25. If x, y and z are positive real numbers, then the mini-				
19.	(c) $(-1, 1) \cup (1, \infty)$ If x, y, z are positive, then th $A = \frac{(4x^2 + x + 4)(5y^2 + y + 5)}{xyz}$ (A) 400 (B) 500	(D) [-1, 1] he value of $5)(7z^2 + z + 7)$ can be (C) 1000 (D) 1500	mum value of $\frac{x^2y + y^2z + z^2x + xy^2 + yz^2 + zx^2}{xyz}$ is (A) 6 (B) 9 (C) 12 (D) 14				

Answer Keys									
1. C 11. D	2. B 12. C	3. B 13. D	4. B 14. A	5. A 15. C	6. D 16. C	7. C 17. D	8. B 18. C	9. A 19. D	10. B 20. A
21. D	22. C	23. D	24. B	25. A					